首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
ABSTRACT

This study investigated the potential influence of three organic ameliorators (peat, biochar and leonardite) on salts and nutrients in salt-affected soils during intermittent leaching. Results showed that nearly 90% of salt was removed from columns in the leaching process and sodium adsorption ratio (SAR) of the soil after leaching was reduced by 67.3% (control, CK), 62.9% (peat), 70.1% (biochar) and 55.0% (leonardite). Total N loss declined by 26.2% (peat), 11.7% (biochar) and 55.5% (leonardite) compared with CK in the process of leaching. The maintaining N (NH4+ and NO3?) of soil after leaching was 8.25, 7.31, 11.31 and 14.48?mg/kg for CK, peat, biochar and leonardite treatments. Final P loss was 0.47, 0.31, 0.54, 0.27?mg/column in leaching for CK, peat, biochar and leonardite treatments. Soluble P of soil after leaching was measured as 6.95 (CK), 5.62 (peat), 8.52 (biochar) and 3.33 (leonardite) mg/kg. Leaching could remove the salt effectively but with nutrient loss in the process. The findings of this study suggest that organic ameliorators (biochar, peat or leonardite) play an important role in retaining nutrients during leaching as well as supplying nutrients after leaching to offer practical assistance for the amendment of salt-affected soil in the Yellow River Delta.  相似文献   

2.
In order to examine the role of position in the tidal range on biomass production and nutrient pools in Spartina alterniflora in an Argentinian estuary, we estimated productivity, the concentration of C, N and P in tissues and pools (concentration×biomass) of these elements in low (LM) and high (HM) zones. Aboveground biomass of S. alterniflora was higher in HM than in LM. Aboveground primary productivity was 106 and 439 g dry wt m?2 year?1 in LM and HM, respectively. Belowground biomass was similar in LM and HM. Belowground primary productivity was 526 and 744 g dry wt m?2 year?1 for LM and HM, respectively. Nutrient pools were higher in HM than in LM. Biomass and productivity values were low, which makes nutrient pools low. The lower values of the parameters analysed in LM than in HM indicate that position in the tidal range is an important factor in this system, possibly due to the effect of flooding. Moreover, this pattern is opposite to the general one observed in the northern hemisphere, meaning that studying marshes from different environments is worth doing. Because pools were higher in HM, this zone would be more important for nutrient input to the estuary.  相似文献   

3.
Poor soil fertility is often the biggest challenge to the establishment of vegetation in mine wastes deposits. We conducted field trials in the El Gorguel and El Lirio sites in SE Spain, two representative tailing ponds of similar properties except for pH, to understand the environmental and plant-relevant benefits of marble waste (MW) and pig slurry (PS) applications to mine tailings. Low pH (5.4) tailings (El Lirio) exhibit reduction of up to fourfold in bio-availability of metals as shown by the DTPA-Zn, Pb, water-soluble Zn, Pb and up to 3× for water-soluble Cd. Tailings in El Gorguel have high pH (7.4) and did not exhibit significant trends in the reductions of water-extractable Zn, Pb, Cd and Cu. Improvements to the edaphic (plant-relevant) properties of tailings after the amendments are not as sensitive to pH compared to the environmental characteristics. The two sites had increases in aggregate stability, organic matter (total N and organic C) although total N is higher in the El Gorguel (up to 212 μg N kg?1) than the El Lirio (up to 26 μg N kg?1). However, cation exchange capacities are similar in both sites at 15.2 cmol(+) kg?1. We conclude that the characteristics, especially pH, of tailing materials significantly influence the fate of metals but not improvements to plant-relevant properties such as cation exchange capacity and aggregate stability 1 year after the application of MW and PS amendments.  相似文献   

4.
Surface and subsurface soil samples contaminated with crude oils were collected from an impacted site at Bodo City in the Niger Delta, Nigeria, after a field reconnaissance survey. An uncontaminated soil sample collected 100 m from the impacted site, but within the same geographical area, was used as a control. Trace elements such as, As, Cu, Cr, Cd, Fe, Pb, Ba, Ni, V, Hg and cation-exchange capacity constituents of the contaminated and uncontaminated soils were determined by atomic absorption spectroscopy. Trace element concentrations were: Cu, 0.5–13.4 mg kg? 1; Cr, 0.2–0.8 mg kg? 1; Fe, 6.2–8.7 mg kg? 1; Ba 80.0–108.0 mg kg? 1; Ni, 0.6–4.8 mg kg? 1; and V, 4.0–9.4 mg kg? 1; cation-exchange capacity ranged from 43.6 to 57.2 mg kg? 1 in surface and subsurface soils. Results showed that eigenvalues for the two first principal components represent up to 49% of the total variance. A positive correlation of the first principal component with Cu, Cr and cation-exchange capacity shows pollution from oil spillage, while a positive correlation of the second principal component with Cr, Fe, V, and dissolved oxygen (DO) shows both oil pollution and allochthonous inputs.  相似文献   

5.
This study investigated whether selenium species in wheat grains could be altered by exposure to different combinations of nitrogen (N) and sulphur (S) fertilisers in an agronomic biofortification experiment. Four Australian wheat cultivars (Mace, Janz, Emu Rock and Magenta) were grown in a glasshouse experiment and exposed to 3 mg Se kg?1 soil as selenate (SeVI). Plants were also exposed to 60 mg N kg?1 soil as urea and 20 mg S kg?1 soil as gypsum in a factorial design (N + S + Se; N + Se; S + Se; Se only). Plants were grown to maturity with grain analysed for total Se concentrations via ICP-MS and Se species determined via HPLC-ICP-MS. Grain Se concentrations ranged from 22 to 70 µg Se g?1 grain (dry mass). Selenomethionine (SeMet), Se-methylselenocystine (MeSeCys), selenohomolanthionine (SeHLan), plus a large concentration of uncharacterised Se species were found in the extracts from grains. SeMet was the major Se species identified accounting for between 9 and 24 µg Se g?1 grain. Exposure to different N and S fertiliser combinations altered the SeMet content of Mace, Janz and Emu Rock grain, but not that of Magenta. MeSeCys and SeHLan were found in far lower concentrations (<4 µg Se g?1 grain). A large component of the total grain Se was uncharacterisable (>30 % of total grain Se) in all samples. When N fertiliser was applied (with or without S), the proportion of uncharacterisable Se increased between 60 and 70 % of the total grain Se. The data presented here indicate that it is possible to alter the content of individual Se species in wheat grains via biofortification combined with manipulation of N and S fertiliser regimes. This has potential significance in alleviating or combating both Se deficiency and Se toxicity effects in humans.  相似文献   

6.
The current study examined the anthropogenic accumulation and natural decrease in metal concentrations in agricultural soils following organic waste application. Three common organic wastes, including municipal sewage sludge, alcohol fermentation processing sludge, and pig manure compost (PMC), were applied annually to an agricultural soil under field conditions over 7 years (1994–2000) at a rate of 12.5, 25, and 50 ton ha?1 year?1 and the soil accumulation of three metals of concern (Cu, Pb, and Zn) was monitored. Subsequently, organic waste amendments ceased and the experimental plots were managed using conventional fertilization for another 10 years (2001–2010) and the natural decrease in metal concentrations monitored. Although Cu and Zn concentrations in all experimental plots did not exceed the relevant guideline values (150 mg kg?1 for Cu and 300 mg kg?1 for Zn), significant increases in metal concentrations were observed from cumulative application of organic wastes over 7 years. For instance, PMC treatment resulted in an increase in Cu and Zn from 9.8 and 72 mg kg?1 to 108.2 and 214.3 mg kg?1, respectively. In addition, the natural decrease in Cu and Zn was not significant as soils amended with PMC showed only a 16 and 19 % decline in Cu and Zn concentrations, respectively, even 10 years after amendment ceased. This research suggested that more attention must be paid during production of organic waste-based amendments and at the application stage.  相似文献   

7.
Accumulation of metals by aquatic organisms is mostly affected by other biological components in environments. In this study, cadmium (Cd) accumulation in green algae, Cladophora glomerata (L.) Kutz., exposed to 0.1 and 1.0 mg L?1 of Cd for 15 and 30 days was examined in laboratory conditions in the presence of Nile tilapia Oreochromis niloticus (L.). The green algae C. glomerata accumulated Cd concentrations as 690 ± 70 and 3430 ± 470 mg kg?1 on day 15, and 1130 ± 180 and 6830 ± 1540 mg kg?1 on day 30. There were significant increases (p < 0.05) in metal accumulation by green algae as the exposure time and metal concentration increased. The results also indicated that the presence of Nile tilapia in the medium led to a significant Cd accumulation in the green algae compared to control (p < 0.05).  相似文献   

8.
The highly populated Indian regions are currently in a phase of rapid economic growth resulting in high emissions of carbonaceous aerosols. This leads to poor air quality and impact on climate. The chemical composition of carbonaceous aerosols has rarely been studied in industrial areas of India. Here, we investigated carbonaceous aerosols in particulate matter (PM) monthly in the industrial area of Delhi in 2011. The concentrations of organic C and elemental C in PM10 fraction were analyzed. Results show a clear seasonal variability of organic and elemental C. PM10 ranged 95.9–453.5 μg m?3, organic C ranged 28.8–159.4 μg m?3, and elemental C ranged 7.5–44.0 μg m?3; those values were higher than reported values. Organic and elemental C were correlated with each other in pre-monsoon and winter seasons, implying the existence of similar emission sources such as coal combustion, biomass burning and vehicular exhaust. The annual average contribution of total carbonaceous aerosols in PM10 was estimated as 62 %.  相似文献   

9.
Polychlorinated benzenes (PCBzs) including penta- and hexachlorobenzene can be unintentionally formed from thermal processes in different industrial activities, and very little information is available on the contamination and emission characteristics of these new persistent organic pollutants from industries in Vietnam. In this study, contamination of PCBzs (including penta- and hexachlorobenzene, named PeCBz and HCB, respectively) and PCBs (including CB-28, 52, 101, 153, 138, 180) in fly ash, bottom ash and soil from combustion processes of waste incineration, metallurgy (steel making and zinc production) and cement production from several provinces in the Northern Vietnam, including Hai Duong, Hanoi, Bac Ninh, Hai Phong and Thai Nguyen, was preliminary investigated. The PCBzs concentrations in fly ash, bottom ash and soil ranged from 2.7 to 100 ng g?1, from 2.7 to 159 ng g?1 and from 0.28 to 33.9 ng g?1, respectively. Relatively high residues of PeCBz in fly ash and bottom ash from municipal waste incinerators in some provinces from the Northern Vietnam were encountered. Total PCBs concentrations ranged from 18.0 to 8260 ng g?1, from 1.0 to 10600 ng g?1 and from 14.5 to 130 ng g?1 for the fly ash, bottom ash and soil, respectively. Daily intakes of PeCBz, HCB and PCBs through soil ingestion and dermal exposure estimated for children ranged 0.33–9.93 (mean 3.14), 0.39–21.1 (mean 4.9) and 6.09–1530 ng/kg bw/day (mean 346), respectively; and these intakes were about 4.7–5.4 times higher than those estimated for adult. The intakes of PeCBz and HCB were relatively low, while those for PCBs exceeded WHO TDI for some samples.  相似文献   

10.
Paddy fields near a mining site in north part of Guangdong Province, PR China, were severely contaminated by heavy metals as a result of wastewater irrigation from the tailing pond. The following clean water irrigation for 2 decades produced marked rinsing effect, especially on Pb and Zn. Paddy fields continuously irrigated with wastewater ever since mining started (50 years) had 1,050.0 mg kg?1 of Pb and 810.3 mg kg?1 of Zn for upper 20 cm soil, in comparison with 215.9 mg kg?1 of Pb and 525.4 mg kg?1 of Zn, respectively, with clean water irrigation for 20 years. Rinsing effect mainly occurred to a depth of upper 40 cm, of which the soil contained highest metals. Copper and Cd in the farmlands were also reduced due to clean water irrigation. Higher availability of Pb might partly account for more Pb transferred from the tailing pond to the farmland and also more Pb removal from the farmland as a result of clean water irrigation. Neither rice in the paddy field nor dense weeds in the uncultivated field largely took up the metals. However, they might contribute to activate metals differently, leading to a different purification extent. Rotation of rice and weed reduced metal retention in the farmland soil, in comparison with sole rice growth. Harvesting of rice grain (and partially rice stalk) only contributed small fraction of total amount of removed metal. In summary, heavy metal in paddy field resulted from irrigation of mining wastewater could be largely removed by clean water irrigation for sufficient time.  相似文献   

11.
The Mediterranean basin has undergone widespread land cover change. Urbanization of coastal areas, land abandonment of steeper slopes, and agricultural intensification in alluvial plains are recurrent themes. The objective of this study was to examine how vineyard land cover changes have affected agricultural soil erosion in a 50 year period (1950–2011). The study area covers a 235 km2 catchment located near the Gulf of St Tropez. Aerial photographs were used to map land cover in 1950, 1982, 2003 and 2011, and the RUSLE soil erosion model was run to estimate soil erosion.

Between 1950 and 2011, vineyard went from about 2,426 ha to 1,561 ha. Mean soil erosion increased as vineyard slopes became steeper (11.8 T ha?1, 13.2 T ha?1, 14.4 T ha?1 and 13.5 T ha?1 for 1950, 1982, 2003 and 2011). Total erosion decreased after 1982: 28,621 T y?1 in 1950, 29,030 T y?1 in 1982, 22,848 T y?1 in 2003, and 21,074 T y?1 in 2011. Total soil loss in 2011 is about 75% of values in 1950–1982, so impacts on water pollution and channel dredging have evolved positively over time.  相似文献   

12.
Chromium is a pollutant present in electroplating waste water and its removal is necessary for the protection of the environment. Vetiveria zizanioides (VZ) was grown in chromium effluent concentrations of 50, 100 and 200 mg kg ?1 soil amended with organic manure and the potential for phytoremediation was determined. The amounts of Cr in plant tissues (root and shoot), soil and percentage electrolyte leakage of VZ roots were analysed. From the results, VZ amended with organic manure showed the greatest potential for Cr removal because of its faster growth and larger biomass achieved over the whole length of the experiment. In this study, 92.25% Cr removal efficiency was obtained with a Cr concentration of 50 mg kg ?1 soil and removal efficiencies of 90.5% and 85% were obtained with 100 and 200 mg kg?1, respectively after a period of two months of VZ growth.  相似文献   

13.
Constructed wetlands (CWs) have been used effectively to remove nitrogen (N) and phosphorus (P) from non-point sources. Effluents of some CWs were, however, still with high N and P concentrations and remained to be pollution sources. Widely distributed paddy fields can be exploited to alleviate this concern. We were the first to investigate a combination system of three-level CWs with wetland paddy fields in a full scale to remove N and P from rural unregulated non-point sources. The removal efficiencies (REs) of CWs reached 57.3 % (37.4–75.1 %) for N and 76.3 % (62.0–98.4 %) for P. The CWs retained about 1,278 kg N ha?1 year?1 and 121 kg P ha?1 year?1. There was a notable seasonal change in REs of N and P, and the REs were different in different processing components of CWs. The removal rates of wetland paddy fields adopt “zero-drainage” water management according to local rainfall forecast and physiological water demand of crop growth reached 93.2 kg N ha?1 year?1 and 5.4 kg P ha?1 year?1. The rice season had higher potential in removing N and P than that in the wheat season. The whole combined system (0.56 ha CWs and 5.5 ha wetland paddy fields) removed 1,790 kg N year?1 and 151 kg P year?1, which were higher than those from CWs functioned alone. However, another 4.7-ha paddy fields were needed to fully remove the N and P in the effluents of CWs. The combination of CWs and paddy fields proved to be a more efficient nutrient removal system.  相似文献   

14.
The concentration and potential ecological risk of Mn, Zn, Cu, and Cd in the surface soils (0–30?cm) belonging to 12 soil profiles and 4 soil types (Vertisols, Chernozems, Calcisols, and Cambisols) from the cultivated soils and the corresponding uncultivated soils were investigated. Long-term cultivation caused a considerable build-up diethylene-triamine pentaacetic acid (DTPA)-extractable Mn (7–55%), and Cd (12–31%) as well as the total form of Zn (3–14%), Cu (8–25%), and Cd (33–78%) in all soil types. Following long-time cropping, total Zn (mean?=?73?mg?kg?1), Cu (mean?=?33?mg?kg?1), and Cd (mean?=?3.14?mg?kg?1) and DTPA Zn (mean?=?1.2?mg?kg?1) and Cu (mean?=?2.44?mg?kg?1) were below their maximum allowable limits. However, the average amount of DTPA Cd in the tilled soils (min?=?0.4, max?=?0.75, mean?=?0.55?mg?kg?1) was above its maximum permissible limit mainly due to the over application of phosphate fertilisers and the pesticides. Considering the potential ecological risk (RI) assessment of the cultivated soils (min?=?44, max?=?70, mean?=?54), the soil types were categorised as low (RI?≤?50) to moderate (50?相似文献   

15.
Adsorption and desorption of 137Cs by acid sulphate soils from the Nakhon Nayok province, South Central Plain of Thailand located near the Ongkarak Nuclear Research Center (ONRC) were investigated using a batch equilibration technique. The influence of added limestone (12 and 18 tons ha?1) on 137Cs adsorption–desorption was studied. Based on Freundlich isotherms, both adsorption and desorption of 137Cs were nonlinear. A large portion (98.26–99.97%) of added 137Cs (3.7?×?103?7.03?×?105 Bq l?1) was sorbed by the soils with or without added lime. The higher lime treatments, however, favoured stronger adsorption of 137Cs as compared with soil with no lime, which was supported by higher K ads values. The addition of lime, the cation exchange capacity and pH of the soil increased and hence favoured the stronger adsorption of 137Cs. Acid sulphate soils with a high clay content, medium to high organic matter, high CEC, and predominant clay types consisting of a mixture of illite, kaolinite, and montmorillonite were the main soil factors contributing to the high 137Cs adsorption capacity. Competing cations such as NH4 +, K+, Na+, Ca2+, and Mg2+ had little influence on 137Cs adsorption as compared with liming, where a significant positive correlation between K ads and soil pH was observed. The 137Cs adsorption–desorption characteristics of the acid sulphate soils studied exhibited a very strong irreversible sorption pattern. Only a small portion (0.09–0.58%) of 137Cs adsorbed at the highest added initial 137Cs concentration was desorbed by four successive soil extractions. Results clearly demonstrated that Nakhon Nayok province acid sulphate soils have a high 137Cs adsorption capacity, which limits the 137Cs bioavailability.  相似文献   

16.
The concentrations and flux of CO2, 222Radon (Rn), and gaseous elemental mercury (Hg) in soil gas were investigated based on the field measurements in June 2010 at ten sites along the seismic rupture zones produced by the May 12, 2008, Wenchuan M s 8.0 earthquake in order to assess the environmental impact of degassing of CO2, Rn and Hg. Soil gas concentrations of 344 sampling points were obtained. Seventy measurements of CO2, Rn and Hg flux by the static accumulation chamber method were performed. The results of risk assessment of CO2, Rn and Hg concentration in soil gas showed that (1) the concentration of CO2 in the epicenter of Wenchuan M s 8.0 earthquake and north end of seismic ruptures had low risk of asphyxia; (2) the concentrations of Rn in the north segment of seismic ruptures had high levels of radon, Maximum was up to level 4, according to Chinese code (GB 50325-2001); (3) the average geoaccumulation index I geo of soil Hg denoted the lack of soil contamination, and maximum values classified the soil gas as moderately to strongly polluted in the epicenter. The investigation of soil gas CO2, Rn and Hg degassing rate indicated that (1) the CO2 in soil gas was characterized by a mean \(\updelta^{13}C_{CO2}\) of ?20.4 ‰ and by a mean CO2 flux of 88.1 g m?2 day?1, which were in the range of the typical values for biologic CO2 degassing. The maximum of soil CO2 flux reached values of 399 g m?2 day?1 in the epicenter; (2) the soil Rn had higher exhalation in the north segment of seismic ruptures, the maximum reached value of 1976 m Bq m?2 s?1; (3) the soil Hg flux was lower, ranging from ?2.5 to 18.7 n g m?2 h?1 and increased from south to north. The mean flux over the all profiles was 4.2 n g m?2 h?1. The total output of CO2 and Hg degassing estimated along seismic ruptures for a survey area of 18.17 km2 were approximately 0.57 Mt year?1 and 688.19 g year?1. It is recommended that land-use planners should incorporate soil gas and/or gas flux measurements in the environmental assessment of areas of possible risk. A survey of all houses along seismic ruptures is advised as structural measures to prevent the ingress of soil gases, including CO2 and Rn, were needed in some houses.  相似文献   

17.
The Sonbhadra district in the Singrauli area of Uttar Pradesh, India, has many coal mines and thermal power plants and is a critically polluted area. Many residents of this area reported adverse health conditions which may be linked to metal pollution, especially of mercury investigated here.

In May 2012, samples of water (23), soil (7), blood, hair, and nails from persons showing adverse health conditions selected at random were collected and analyzed for total mercury by atomic absorption spectrometry.

Twenty percent drinking water samples contained mercury from 3 to 26 μg L?1 (3–26 times the permissible limit). Soil samples had 0.5–10.1 mg kg?1 Hg.

The average concentrations of mercury in human blood, hair, and nails were found to be 34 μg L?1, 7.4 mg kg?1, and 0.8 mg kg?1, respectively. Mercury concentrations in the blood of these persons were 45 and 28 μg L?1 on average in the case of men and women. This is much higher than the safe level of 5.8 μg L?1 set by the United States Environmental Protection Agency (USEPA).

It was concluded that all residents of Sonbhadra sampled could be suffering from mercury toxicity as the area is polluted by Hg released from the coal-fired thermal power plants.  相似文献   

18.
A field experiment was conducted to investigate the effect of chicken manure compost on the fractionation of cadmium (Cd), soil biological properties and Cd uptake by wheat in a soil affected by mining activities in Hubei province, China. Compost was applied at five levels (0, 27, 54, 108, 216 t ha?1), and winter wheat (Triticum aestivum L.) was chosen as an indicator plant. Results showed that the application of compost increased soil pH and the content of total phosphorus and organic matter. Soil biological properties such as microbial biomass carbon, invertase, protease, urease and catalase activities were significantly enhanced by 0.24–3.47 times after compost application. Sequential extraction indicated that compost amendments decreased the acid-extractable Cd by 8.2–37.6 %, while increased the reducible and oxidisable Cd by 9.2–39.5 and 8.2–60.4 %, respectively. The addition of 27–54 t ha?1 compost reduced Cd content in wheat stems and seeds by 69.6–75.0 % and 10.3–18.4 %, respectively. However, only 25.5–26.5 % reductions in Cd content in wheat stems were observed in 108–216 t ha?1 compost amendments, and no significant decrease was detected for seeds. This study suggests that although compost is a suitable organic amendment to improve soil fertility and biological activities, the addition of compost should be moderated by an appropriate rate to optimize the use of compost for the reclamation of metal-contaminated soils at field scale.  相似文献   

19.
Crops grown in metal-rich serpentine soils are vulnerable to phytotoxicity. In this study, Gliricidia sepium (Jacq.) biomass and woody biochar were examined as amendments on heavy metal immobilization in a serpentine soil. Woody biochar was produced by slow pyrolysis of Gliricidia sepium (Jacq.) biomass at 300 and 500 °C. A pot experiment was conducted for 6 weeks with tomato (Lycopersicon esculentum L.) at biochar application rates of 0, 22, 55 and 110 t ha?1. The CaCl2 and sequential extractions were adopted to assess metal bioavailability and fractionation. Six weeks after germination, plants cultivated on the control could not survive, while all the plants were grown normally on the soils amended with biochars. The most effective treatment for metal immobilization was BC500-110 as indicated by the immobilization efficiencies for Ni, Mn and Cr that were 68, 92 and 42 %, respectively, compared to the control. Biochar produced at 500 °C and at high application rates immobilized heavy metals significantly. Improvements in plant growth in biochar-amended soil were related to decreasing in metal toxicity as a consequence of metal immobilization through strong sorption due to high surface area and functional groups.  相似文献   

20.
Nickel hyperaccumulator plants have been the focus of considerable research because of their unique ecophysiological characteristics that can be exploited in phytomining technology. Comparatively little research has focussed on the soil chemistry of tropical nickel hyperaccumulator plants to date. This study aimed to elucidate whether the soil chemistry associated with nickel hyperaccumulator plants has distinctive characteristics that could be indicative of specific edaphic requirements. The soil chemistry associated with 18 different nickel hyperaccumulator plant species occurring in Sabah (Malaysia) was compared with local ultramafic soils where nickel hyperaccumulator plants were absent. The results showed that nickel hyperaccumulators in the study area were restricted to circum-neutral soils with relatively high phytoavailable calcium, magnesium and nickel concentrations. There appeared to be a ‘threshold response’ for the presence of nickel hyperaccumulator plants at >20 μg g?1 carboxylic-extractable nickel or >630 μg g?1 total nickel, and >pH 6.3 thereby delimiting their edaphic range. Two (not mutually exclusive) hypotheses were proposed to explain nickel hyperaccumulation on these soils: (1) hyperaccumulators excrete large amounts of root exudates thereby increasing nickel phytoavailability through intense rhizosphere mineral weathering; and (2) hyperaccumulators have extremely high nickel uptake efficiency thereby severely depleting nickel and stimulating re-supply of Ni from diffusion from labile Ni pools. It was concluded that since there was an association with soils with highly labile nickel pools, the available evidence primarily supports hypothesis (2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号