首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为了研究南京市PM2.5的污染特征及来源贡献,于2018年3月至2019年2月在南京仙林地区进行PM2.5组分的在线监测,运用PMF和CMB受体模型,开展PM2.5的来源解析.结果表明,观测期间南京市PM2.5平均质量浓度为54.3μg/m3,其中冬季平均浓度76.4μg/m3.PM2.5的主要组分为NO3-(21.3%~30.8%)、SO42-(18.9%~23.5%)、NH4+(14.3%~16.2%).从全年平均来看,PMF模型得到的PM2.5解析结果为:二次无机气溶胶(54.9%)、燃煤源(17.4%)、二次有机气溶胶(7.4%)、机动车排放源(7.1%)、工业源(4.9%)、扬尘源(4.8%)、其他源(3.4%);CMB模型得到的PM2.5解析结果为:硝酸盐(33.0%)、硫酸盐(24.0%)、燃煤源(16.4%)、机动车排放源(8.4%)、二次有机气溶胶(7.1%)、扬尘源(5.7%)、其他源(2.9%)、工业源(2.4%).不同季节PM2.5来源有所差异,夏冬季二次无机气溶胶占比大于春秋季,春冬季燃煤占比最大,二次有机气溶胶在秋季占比最大.结合2017年南京市大气污染源排放清单,对二次气溶胶贡献进行再解析,得到南京仙林地区PM2.5主要贡献来自燃煤源(PMF:34.14%,CMB:33.82%),机动车排放源(PMF:27.33%,CMB:29.33%)以及工业源(PMF:26.76%,CMB:24.77%).可见,影响南京仙林地区PM2.5的污染源主要来自燃煤源、机动车排放源和工业源,基于在线组分监测、利用PMF和CMB模型得到的PM2.5源解析结果具有较好的一致性.  相似文献   

2.
为识别和量化深圳市大气PM2.5的污染来源,2014年3,6,9,12月分别在5个站点采集PM2.5的膜样品并进行质量浓度及组分分析,利用正向矩阵因子解析(PMF)模型对其主要来源和时空变化规律进行了解析.结果表明,2014年深圳市PM2.5年均浓度为35.7 μg/m3,其中机动车源、二次硫酸盐生成、二次有机物生成和二次硝酸盐生成是最主要的来源,质量浓度贡献比例分别为27%、21%、12%和10%;地面扬尘、生物质燃烧源、远洋船舶源、工业源、海洋源、建筑尘和燃煤源贡献比例达2%~6%.各个源贡献的时空变化特征表明,二次硫酸盐生成、生物质燃烧源、二次有机物生成、工业源、远洋船舶源和海洋源显示出明显的区域源特征,机动车源、二次硝酸盐生成、燃煤源、地面扬尘和建筑尘具有显著的本地源特征.  相似文献   

3.
贾佳  丛怡  高清敏  王玲玲  杨静静  张国辉 《环境科学》2020,41(12):5256-5266
为揭示郑州市冬季空气污染过程及形成原因,选取郑纺机国控站点为采样点,探讨2019年12月郑州大气污染物浓度和主要气象参数特征,对比不同污染阶段PM2.5水溶性离子、元素和碳质组分浓度变化,并利用空气质量模型模拟结果,分析采样期间污染源排放与区域传输对采样点PM2.5质量浓度的贡献.结果表明,采样期间第一次和第二次重污染形成和消散过程略有差异,分别呈现出"缓慢累积、缓慢清除"和"缓慢积累、快速清除"的特征.第一次和第二次重污染时段NO3-、SO42-和NH4+质量浓度占PM2.5比值达到41.5%和46.2%,OC/EC比值分别为4.0和4.5,二次气溶胶颗粒的大量生成是两次重污染形成的主要原因.采样期间本地、东部、南部、西部和北部区域对采样点PM2.5浓度贡献占比均值分别为58.0%、2.4%、6.7%、6.9%和12.7%,第一次重污染是本地污染物排放和外来源区域传输...  相似文献   

4.
为对台州市市区环境空气中PM2.5的主要来源进行全面分析,运用CMAQ(空气质量模型)模型中的ISAM源追踪算法,计算了台州市本地各类污染源及外来源对PM2.5的贡献,同时基于CMB模型的初步源解析结果,利用CMAQ模型解析二次前体物排放源的贡献,得到CMB-CMAQ联用模型的源解析结果,综合分析CMAQ模型和CMB-CMAQ联用模型解析结果最终获得台州市市区空气中PM2.5的贡献源数据.结果表明:①CMAQ模型和CMB-CMAQ联用模型解析结果均表明,台州市市区PM2.5本地源中首要贡献源为工业源,两个模型中工业源贡献率分别为20.13%和26.94%,其次为扬尘源(贡献率分别为16.98%、19.37%)和道路移动源(贡献率分别为16.44%、18.14%).②CMB-CMAQ联用模型解析结果中工业源、扬尘源和道路移动源的贡献率均高于CMAQ模型解析结果,而外来源和电力源的贡献率均低于CMAQ模型解析结果.③CMAQ模型和CMB-CMAQ联用模型综合分析分配结果表明,外来源、工业源、扬尘源、道路移动源是对区域中PM2.5贡献较大的4个污染源,贡献率分别为26.10%、22.38%、16.09%、15.07%.研究显示,台州市市区环境空气中PM2.5污染呈以工业源、扬尘源为主,道路移动源污染突出的复合型污染特征,加强这三类源的排放管理对于台州市市区PM2.5污染防治具有重要意义.   相似文献   

5.
为探讨ME-2模型控制旋转对传统PMF模型源解析效果的提升作用,于2017年9月10日~2018年8月29日在深圳北部某工业区开展PM2.5采样,共获得153套样品.对PM2.5中31种化学组分进行了分析,筛选出17个物种输入模型运算.2018年深圳北部工业区大气PM2.5年均浓度为32.3 μg/m3,利用PMF模型初步识别出9个因子,分别为二次硫酸盐、二次硝酸盐、老化海盐、土壤扬尘、工业排放、燃煤、生物质燃烧、船舶排放和机动车,PMF输出结果中"混合因子"问题显著.基于PMF解析结果及获得的先验信息,在ME-2模型中建立4个限制源谱进一步解析,结果表明,与PMF模型相比,ME-2结果的示踪物在源中分配更集中,对示踪物浓度与相应源贡献的时间序列也提供了更好的拟合效果.二次硝酸盐、老化海盐、工业排放源在PMF模型中被高估了9%~51%,而二次硫酸盐、燃煤和生物质燃烧源被低估了19%~40%.本研究中ME-2解析结果比PMF更具有环境和统计学意义,为污染防治提供了更精确的控制指向.  相似文献   

6.
王成  闫雨龙  谢凯  李如梅  徐扬  彭林 《环境科学》2020,41(3):1036-1044
采集了阳泉市城区2017年10月15日~2018年1月23日PM2.5样品,分析了优良天和污染天PM2.5及其化学组分特征,并利用富集因子分析法(EF)和正定矩阵因子分析法(PMF)对PM2.5进行来源分析.结果表明,采样期间污染天二次无机离子(SO42-、 NO-3和NH+4)在PM2.5中的比例为23.83%,是优良天的2.43倍,污染天二次无机污染严重,污染天人为源相关的元素Cd、 Sb、 Sn、 Cu、 Pb、 Zn和As富集程度大于优良天;主要的污染源对PM2.5的贡献分别是燃煤29.26%、扬尘23.83%、机动车19.34%、二次源16.01%和工业源11.57%,其中,污染天机动车排放对PM2.5的贡献20.57%,高于优良天时17.82%,而燃煤源的贡献23.04%明显低于优良天时33.75%,静稳天气时机动...  相似文献   

7.
为厘清包括二次有机气溶胶(SOA)在内的深圳市区PM2.5各种一次和二次来源贡献,本文于2017年9月2日~2018年8月29日在深圳市大学城点位开展PM2.5样品采集,并进行化学组分和水溶性有机物(WSOM)质谱测量,共获得162组有效数据.观测期间深圳市大气PM2.5平均质量浓度为26μg/m3,在传统PMF源解析的基础上加入羧基离子碎片(CO2+)作为SOA的示踪物,加入水溶性有机氧(WSOO)用于计算各因子O/C,验证有机物解析效果.结果表明,SOA可以被独立解析出,其O/C明显高于其他一次污染源中有机物;机动车、二次硫酸盐、二次硝酸盐、SOA为最主要的4个源,对PM2.5质量浓度的贡献分别为25%、23%、17%和10%,船舶、地面扬尘、老化海盐、建筑尘、生物质燃烧、燃煤和工业贡献均在5%以内.各个源的变化特征表明,机动车、二次硫酸盐、二次硝酸盐、SOA等源贡献呈现冬高夏低的季节特征,与冬季季风条件下源自内陆的污染传输密切相关.污染天气时,二次硝酸盐和SOA的贡献增加相对最显著,因此NOx和挥发性有机物是减排的关键.  相似文献   

8.
PM2.5主要受排放源、大气化学、气象条件等驱动因素的非线性影响,了解驱动因素对PM2.5浓度的影响十分重要. 本研究基于南开大学大气环境综合观测超级站的逐时在线观测数据,耦合机器学习方法和受体模型,揭示了驱动因素的重要性以及对PM2.5浓度的影响. 结果表明:① 2018年11月—2020年10月观测地点的PM2.5浓度范围为3.21~291.80 μg/m3,采暖季PM2.5浓度和化学组分均高于非采暖季. ②使用受体模型解析PM2.5的来源及其贡献,发现观测期间二次源的贡献率(44.7%)最高,其他依次为燃煤源(23.6%)、机动车排放源(11.0%)、扬尘源(9.9%)、生物质燃烧源(7.2%),工业源的贡献率(3.6%)最小. ③利用随机森林-SHAP模型量化排放源、大气氧化能力、气象条件等驱动因素对PM2.5浓度的影响,发现观测期间排放源对PM2.5浓度的影响程度为54.3%,高于其他驱动因素;气象条件对PM2.5浓度的影响程度次之,为32.4%;大气氧化能力对PM2.5浓度的影响程度相对较低,为13.3%. 在采暖季和非采暖季,各驱动因素对PM2.5浓度的重要性在排序上没有变化,然而驱动因素对PM2.5浓度的影响程度有所不同. 采暖季排放源对PM2.5浓度的影响程度高于非采暖季,采暖季大气压对PM2.5浓度的影响程度低于非采暖季. 研究显示,排放源对PM2.5的影响相对较大,气象条件和大气氧化能力对PM2.5浓度的影响也不容忽视.   相似文献   

9.
为厘清包括二次有机气溶胶(SOA)在内的深圳市区PM2.5各种一次和二次来源贡献,本文于2017年9月2日~2018年8月29日在深圳市大学城点位开展PM2.5样品采集,并进行化学组分和水溶性有机物(WSOM)质谱测量,共获得162组有效数据.观测期间深圳市大气PM2.5平均质量浓度为26μg/m3,在传统PMF源解析的基础上加入羧基离子碎片(CO2+)作为SOA的示踪物,加入水溶性有机氧(WSOO)用于计算各因子O/C,验证有机物解析效果.结果表明,SOA可以被独立解析出,其O/C明显高于其他一次污染源中有机物;机动车、二次硫酸盐、二次硝酸盐、SOA为最主要的4个源,对PM2.5质量浓度的贡献分别为25%、23%、17%和10%,船舶、地面扬尘、老化海盐、建筑尘、生物质燃烧、燃煤和工业贡献均在5%以内.各个源的变化特征表明,机动车、二次硫酸盐、二次硝酸盐、SOA等源贡献呈现冬高夏低的季节特征,与冬季季风条件下源自内陆的污染传输密切相关.污染天气时,二次硝酸盐和SOA的贡献增加相对最显著,因此NOx和挥发性有机物是减排的关键.  相似文献   

10.
为研究淮南市不同功能区2019—2020年大气细颗粒物(PM2.5)的季节污染特征及其来源情况,采用热光碳分析仪、离子色谱仪和电感耦合等离子体质谱仪分别对淮南市八公山区政府、潘集区和师范学院3个采样站点不同季节大气PM2.5滤膜样品中碳质组分、水溶性无机离子和无机元素进行检测分析。结果表明:采样期间,在潘集区采样站点大气PM2.5的污染最为严重,其季节变化特征表现为冬季>春季>秋季>夏季;从大气PM2.5中各组分的质量浓度年平均值来看,在潘集区采样站点碳质组分和无机元素的污染最为严重,而在师范学院采样站点水溶性无机离子的污染最严重;从大气PM2.5中各组分的质量浓度季节变化来看,在秋季碳质组分的平均质量浓度最高、夏季其平均质量浓度最低,在春、冬季水溶性无机离子的平均质量浓度高于夏、秋季,无机元素呈现出夏季>春季>秋季>冬季的季节变化规律;PMF模型污染源解析结果显示,淮南市大气PM2.5污染主要来自燃煤排放源和机动车排放...  相似文献   

11.
为研究济南市机动车排气对城市区域空气质量的影响,利用环境空气质量监测站点(简称"1号站点")和路边机动车尾气监测站点(简称"2号站点")的在线数据,以及基于4种模拟情景的CMAQ空气质量模型预测数据,研究了济南市城市区域大气污染物质量浓度变化规律及不同机动车车型对6种常规大气污染物的贡献.结果表明:①在采暖季,1号站点ρ(PM2.5)、ρ(PM10)、ρ(NO2)、ρ(CO)、ρ(O3)和ρ(SO2)月均值分别为435 μg/m3、702 μg/m3、84.2 μg/m3、6.8 mg/m3、4.5 μg/m3和92 μg/m3.②2015年12月24日(灰霾天),1号站点ρ(CO)、ρ(PM2.5)和ρ(PM10)均明显升高,ρ(SO2)、ρ(O3)和ρ(NO2)均变化不明显.2个监测站点中ρ(NO2)和ρ(PM10)均呈双峰趋势,2个峰值出现的时间与上、下班高峰期基本一致.除ρ(O3)和ρ(SO2)达GB 3095-2012《环境空气质量标准》二级标准外,其他污染物均超过GB 3095-2012二级标准限值,采暖季大气污染特征为颗粒物型污染.③机动车对研究区域NO2和PM10贡献率较大,其中,小型车对CO、NO2、PM10和PM2.5贡献率最大,其贡献率分别为85.7%、50.1%、53.4%和52.8%.机动车排放源能降低空气中ρ(O3),其总贡献率为-25.5%,其中大型车、中型车、小型车对O3的贡献率分别为-8.8%、-2.7%和-8.9%.灰霾天下不同机动车车型对空气中污染物质量浓度的总贡献率均比采暖季大.研究显示,济南市采暖季大气污染特征为颗粒物型污染,机动车排放源对空气中NO2和PM2.5有较大贡献.   相似文献   

12.
为了探究北方寒冷地区城市PM2.5化学组分特征,采用WRF-CMAQ模型对辽宁中部城市群2019年1月、4月、7月、10月及一次重污染过程(2019年1月11—14日)的PM2.5化学组分展开模拟分析.结果表明:WRF-CMAQ模型分析下SO2、NO2、PM10、PM2.5浓度模拟值与监测值的相关系数(R)在0.63~0.82之间,PM2.5组分中SO42-、NO3-、NH4+、EC、OC浓度的相关系数(R)在0.59~0.88之间,WRF-CMAQ模型对大气污染物及PM2.5主要化学组分的模拟效果较好,可以反映PM2.5及其组分的时空变化特征.通过对模拟结果的进一步分析发现,辽宁中部城市群PM2.5中SNA(SO42-、NO3-、NH4+三者的合称)的占比为37%,与成渝城市群、长三角地区、京津冀地区城市相比,PM2.5二次污染程度较低,一次污染仍是PM2.5的主要来源.1月、4月、7月、10月PM2.5中[NO3-]/[SO42-](质量浓度比)分别为0.62、0.44、0.15、0.50,表明该区域的燃煤污染对PM2.5的贡献大于机动车尾气的贡献,该现象在秋冬季尤为明显;硫氧化率(SOR)普遍处于较高水平,分别为0.34、0.54、0.61、0.58,表明该区域燃煤排放的SO2更易对PM2.5产生贡献.同时,全年OC/EC(质量浓度比)的平均值为3.6,说明碳气溶胶的贡献主要来自机动车尾气的排放与化石燃料燃烧.通过分析2019年1月11—14日重污染过程PM2.5组分浓度的逐小时变化发现,该时段中SOR与NOR分别是1月平均值的1.2与2.0倍,NOR的提升导致PM2.5中NO3-浓度占比上升了8%,超过SO42-的占比,这表明该重污染过程中机动车尾气对PM2.5的贡献超过平常时段.研究显示,辽宁中部城市群的大气污染呈燃煤与机动车尾气为主的复合型污染特征,尤其在重污染天气下,实施工业限产的同时,加强机动车限行尤为重要.   相似文献   

13.
金属元素是大气PM2.5的重要组成成分,对人群危害性极强且兼具源特异性,分析不同经济模式地区大气细颗粒物中金属污染状况及来源差异,可以为科学规划城市产业布局和保护大气环境提供参考.通过霾/非霾期大气PM2.5采样,使用电感耦合等离子体发射光谱仪(ICP-OES)测定成都市及仁寿县样品中18种金属元素质量浓度,分析其污染水平,并基于正定矩阵因子分解模型(PMF)解析两地大气PM2.5中金属元素的来源.结果表明,成都市扬尘源、移动源和燃煤源特征元素占元素总和的比值大于仁寿县,而仁寿县生物质燃烧源、工业源以及燃油源特征元素占比则较高.两地Cr、Cd和As元素浓度均超标,表明PM2.5中重金属污染严重.随着霾污染加剧,两地PM2.5中金属元素总量上升,但增幅远低于PM2.5浓度增长.此外,不同元素在霾期和非霾期浓度比值存在差异,成都市变化范围为0.7(Al)~2.8(Ba),仁寿县介于0.8(Al)~3.1(Mn)之间,但总的来说两地大致呈现出燃煤和工业活动排放元...  相似文献   

14.
青岛环境空气PM10和PM2.5污染特征与来源比较   总被引:8,自引:1,他引:8  
年分别在青岛设6个和2个采样点采集PM10和PM2.5样品,分析二者质量浓度及颗粒物中多种无机元素、水溶性离子和碳等组分的质量浓度,以研究PM10及PM2.5的污染特征. 采用CMB-iteration模型估算法,确定一次源类及二次源类对PM10和PM2.5的贡献,利用统计学方法比较PM10和PM2.5的污染源. 结果表明:青岛大气颗粒物质量浓度季节变化显著,表现为春、冬季高,夏、秋季低;Na、Mg、Al、Si、Ca和Fe元素主要富集在PM10中,SO42-、NO3-、EC和OC主要富集在PM2.5中;城市扬尘、煤烟尘、建筑水泥尘及海盐粒子等粗粒子在PM10中的分担率较PM2.5中的高,分担率分别为28.7%、17.2%、7.16%及4.47%;二次硫酸盐、二次硝酸盐、机动车尾气尘及SOC(二次有机碳)等在PM2.5中的分担率较PM10中的高,分担率分别为19.3%、8.97%、13.7%及6.07%;由PM10与PM2.5化学组分的分歧系数可见,春、秋季PM10和PM2.5化学构成存在一定差异,而冬、夏季二者的化学构成相似.   相似文献   

15.
为探究北方沿海城市大气PM2.5的化学组分特征及其关键来源,本文选择典型代表城市青岛市作为研究对象,在2021年3月-2022年2月采集大气PM2.5样品,测定水溶性无机离子、碳组分及化学元素等组分,深入分析大气PM2.5化学组分特征,采用正定矩阵因子分解(PMF)和潜在源贡献函数(PSCF)对青岛市PM2.5的主要贡献源类和潜在源区进行分析研究.结果表明:(1)采样期间青岛市PM2.5浓度平均值为42.2μg/m3,NO3-、NH4+、SO42-、OC是PM2.5的主导成分,浓度分别为11.77、5.76、5.20和6.67μg/m3,占比分别为27.88%、13.65%、12.32%和15.80%.(2)各组分浓度季节性变化与PM2.5浓度变化基本一致,呈现冬季最高、夏季最低,春...  相似文献   

16.
利用2018年11月21日~2019年2月8日期间的Xact元素仪观测数据,分析了华北农村地区望都站点秋冬季细颗粒物PM2.5中的元素组分特征.结果表明,采样期间,望都站受到了严重的PM2.5污染,PM2.5的平均浓度为(186.6±142.0)μg/m3.PM2.5中最主要的元素是S、Cl和K,其平均质量浓度分别为6230,8708,1780ng/m3;其次是Al、Si、Ca、Fe和Zn,其平均质量浓度在500~1000ng/m3;剩余元素的平均质量浓度均低于500ng/m3.使用Al作为参比元素计算各元素的富集系数判断来源,Si、Ca、Ti、Fe主要来自于地壳源,K、Cr、Mn、Ni、Se、Ba同时受地壳源与人为源影响,Cu、Zn、As、Ag、Cd、In、Sn、Pb主要来自于人为源;采用NMF(非负矩阵因子分解法)模型量化各种潜在排放源对本研究中PM2.5的贡献,确认烟花爆竹源、扬尘源、机动车尾气源、燃煤/生物质燃烧源、二次源和工艺过程源是主要污染源,其贡献分别为2.6%、1.7%、6.5%、39.7、36.5%和13%.夜间燃煤/生物质燃烧源贡献与白天二次源贡献是造成PM2.5重污染的主要成因.春节期间,烟花爆竹燃放源会造成农村地区重污染过程.Ba的富集因子适合作为烟花爆竹燃放的指征.本文研究结果可为华北农村冬季细颗粒物溯源和治理提供数据支持.  相似文献   

17.
为探讨内陆山区城市湖北省十堰市冬季PM2.5污染特征及来源构成,于2016年1月12日—2月4日在4个采样点位同步采集PM2.5样品,分析了无机元素、水溶性离子、有机碳和元素碳的质量浓度.并采集了十堰市主城区城市扬尘、裸露山体尘、建筑水泥尘、燃煤源、机动车尾气、工业源及餐饮油烟源等7类污染源,初步建立十堰市本地的污染源成分谱库,利用统计学方法研究冬季PM2.5的污染特征,并采用CMB受体模型及“二重源解析技术”分析其来源构成.结果表明:冬季采样期间,十堰市ρ(PM2.5)平均值达到110.65 μg/m3,超过GB 3095—2012《环境空气质量标准》二级标准24 h浓度限值,并且随空气RH(相对湿度)增加污染加重.城区3个采样点PM2.5化学组成及特征的空间差异不明显.PM2.5中ρ(TC)最高,其次是ρ(NO3-)和ρ(SO42-),与二次反应、机动车尾气、煤燃烧等密切相关.ρ(NO3-)/ρ(SO42-)为1.22,说明机动车尾气的影响较大.二次粒子、燃煤源和机动车尾气是十堰市城区冬季大气PM2.5的主要来源,贡献率分别为51.2%、10.9%和10.1%.研究显示,十堰市城区冬季ρ(PM2.5)超过GB 3095—2012二级标准,PM2.5的污染控制应以二次粒子、燃煤和机动车为主,采取多源控制原则.   相似文献   

18.
郑州市民运会期间大气PM2.5改善效果评估   总被引:2,自引:2,他引:0  
利用2019年8月5日至9月30日大气污染物和颗粒物组分在线数据,评估郑州市少数民族运动会空气质量管控效果.根据政府管控措施的实施时间,将研究时期分为管控前(8月5~24日)、管控中(8月25日至9月18日)和解除管控后(9月19~30日).相较管控前,管控中PM2.5平均浓度增加2.3μg·m-3,解除管控后PM2.5的浓度增加了11.7μg·m-3,解除管控后PM2.5浓度增幅高于管控中,表明管控措施对颗粒物有显著的减排效果.从颗粒物组分来看,研究期间郑州市主要组分依次是有机物、硝酸根、铵根、硫酸根和地壳元素.相比于管控前,管控期间PM2.5组分中有机物和硝酸根占比分别上升3.9%和0.9%,硫酸根、铵根和地壳元素的占比下降了1.1%、 1.9%和2.2%.利用正定矩阵因子分解法解析颗粒物来源,结果表明二次硫酸、二次硝酸、二次有机气溶胶、机动车源、工艺过程源、扬尘和燃煤是PM2.5主要来源.管控对一次源中的扬尘、燃煤和工业效果显著...  相似文献   

19.
为了定量解析环境受体中不同方向PM2.5的源贡献水平,利用“源方向解析”(source directional apportionment,SDA)法〔综合PMF(positive matrix factorization,正定矩阵因子)方法和后向轨迹模型〕对京津冀大气污染传输通道上某典型城市——菏泽市环境受体中PM2.5进行来源解析,并分析不同方向的源贡献.结果表明,菏泽市环境受体中ρ(PM2.5)变化范围为42.73~191.72 μg/m3,平均值为92.54 μg/m3.SO42-、NO3-和NH4+是菏泽市环境受体中PM2.5的主要化学组分;ρ(SO42-)、ρ(NO3-)和ρ(NH4+)的平均值分别为29.78、22.11和7.91 μg/m3,三者之和占ρ(PM2.5)的63.54%.PMF的计算结果显示,二次无机盐、机动车排放、扬尘、煤烟尘和建筑水泥尘是菏泽市环境受体中PM2.5的贡献源类,分担率分别为32.61%、22.60%、19.54%、16.25%和9.00%.利用后向轨迹模型识别出PM2.5贡献源类的4个潜在方向,分别为东南、正西、西北和正东.二次无机盐在4个方向的贡献分别为8.49%、5.01%、6.65%和12.88%;机动车排放分别为1.39%、4.44%、7.47%和8.22%;扬尘分别为4.95%、3.65%、4.12%和6.92%;煤烟尘分别为4.56%、1.93%、2.16%和7.28%;建筑水泥尘分别为2.22%、1.88%、1.27%和3.56%.研究显示,菏泽市PM2.5污染较为严重,其中二次源、机动车和扬尘源是其主要贡献源类,并且来自菏泽市东部的各源类贡献均较高.   相似文献   

20.
为了明确驻马店市区PM2.5污染特征及贡献源类,2019年1—3月在驻马店市区2个采样点采集PM2.5样品,分析了其化学组分特征;结合PMF和后向轨迹模型构建了PM2.5的时间和空间来源解析方法,并对该解析方法进行应用.结果表明:①采暖季,驻马店市区环境空气中ρ(PM2.5)平均值为117 μg/m3,NO3-和OC是其主导组分;ρ(OC)和ρ(EC)分别达18.2和5.2 μg/m3,且ρ(OC)/ρ(EC)平均值为3.5,说明机动车源和燃煤源的影响较明显.②ρ(SO42-)与ρ(NO3-)相关性显著(R=0.80,P < 0.01),表明SO42-和NO3-具有较高的同源性.③重污染过程中ρ(SNA)(SNA为SO42-、NO3-和NH4+三者统称)平均值为61.5 μg/m3,显著高于清洁期;重污染过程中硫氧化率(SOR)和氮氧化率(NOR)分别达0.42和0.39,说明存在明显的二次离子生成过程.④重污染过程中Si、Al、Mg等地壳类元素的浓度和占比均高于清洁期,说明重污染过程中扬尘源的贡献可能较高.⑤来源解析结果表明,二次源是采暖季PM2.5的最大贡献源,贡献率为32.6%,其次为扬尘和生物质燃烧混合源(26.4%)、机动车源(21.4%)、燃煤源(13.2%)和工业源(6.3%);两次重污染过程中的最大贡献源分别为二次源(54.5%)和机动车源(46.2%),清洁期的主要贡献源主要为二次源(45.2%)和燃煤源(29.8%).从空间变化来看,扬尘和生物质燃烧混合源对天方二分厂的贡献率(29.3%)明显高于对彩印厂的贡献率(23.3%),而燃煤源对彩印厂的贡献率(16.5%)高于对天方二分厂的贡献率(10.1%),其他源类的贡献率相差不大.正东、东南以及西北方向是彩印厂和天方二分厂各类源的主要贡献方向.研究显示:二次源是采暖季、重污染期间和清洁期最大的贡献源;相比于清洁期,重污染期间扬尘和生物质燃烧混合源贡献增加.源类贡献存在空间差异,正东、东南及西北方向是采样点各类源主要贡献方向.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号