首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
For phytoremediation of organic contaminants, plants have to host an efficiently degrading microflora. To assess the role of endophytes in alkane degradation, Italian ryegrass was grown in sterile soil with 0, 1 or 2% diesel and inoculated either with an alkane degrading bacterial strain originally derived from the rhizosphere of Italian ryegrass or with an endophyte. We studied plant colonization of these strains as well as the abundance and expression of alkane monooxygenase (alkB) genes in the rhizosphere, shoot and root interior. Results showed that the endophyte strain better colonized the plant, particularly the plant interior, and also showed higher expression of alkB genes suggesting a more efficient degradation of the pollutant. Furthermore, plants inoculated with the endophyte were better able to grow in the presence of diesel. The rhizosphere strain colonized primarily the rhizosphere and showed low alkB gene expression in the plant interior.  相似文献   

2.
Lin Q  Chen Y  Wang Z  Wang Y 《Chemosphere》2004,57(10):1439-1447
Hydrogen peroxide was widely selected as the chemical oxidant in chemical remediation or as the donor of oxygen in in situ aerobic bioremediation of organic pollutants. In this paper, hydrogen peroxide pretreatment and plant system was done to examine its possibility to remediate the heavy metal contaminated soil or heavy metal-organic combined contaminated soil. Heavy metal contaminated soil was collected from the heavily industrialized area, in Fuyang county, Zhejiang province, China. And heavy metal-organic combined contaminated soil was prepared from the same contaminated soil by spiking 100 microg g(-1) 2,4-dichlorophenol (2,4-DCP). Results showed that H2O2 could improve the dissipation of 2,4-DCP and enhance the availability of Cu and Zn in soil. The greatly increased DOC (dissolved organic carbon) in the oxidation process was probably the main reason for the greatly increased water soluble Cu in higher pH condition. Water soluble Zn, however, easily rebound to soil components with the time being and had no positive relation with dissolved organic carbon. Planting with ryegrass influenced the behavior of pollutants in soil. It was observed that the dissipation of 2,4-DCP could be enhanced by the presence of plant roots and the availability of Cu and Zn in the planted soil was changed due to the mobilization and rebound mechanisms in the rhizosphere. Co-contamination of 2,4-DCP caused the greater availability of Cu and Zn in H2O2 pretreatment. But with the ryegrass planting, it was easier to rebound to the less available phase in the rhizosphere. Both Cu and Zn concentration in shoots increased with the H2O2 treatment. Therefore our results suggested that H2O2 pretreatment was probably a promising way for promoting the dissipation of persistent organic pollutants and enhancing the solubility of Cu and Zn in soil. A combination of H2O2 pretreatment and suitable plant might be an efficient alternative for remedying heavy metal or heavy metal-organic contaminated soil.  相似文献   

3.
Air pollutants or some chemicals applied to plant foliage can alter the ecology of the rhizosphere. Experiments were conducted to distinguish among possible foliage-mediated versus soil- or root-mediated effects of acid deposition on microorganism in the rhizosphere. Seedlings of a sorghum x sudangrass hybrid in pots of non-sterile soil-sand mix in a greenhouse were exposed to simulated rain solution adjusted with H2SO4 + HNO3 to pH 4.9, 4.2, 3.5 or 2.8. Solutions were applied as simulated rain to foliage and soil, foliage only (soil covered by plastic, and deionized water applied directly to the soil), or soil only (solution applied directly to the soil). Solutions were applied on 16 days during a 6-week period (1.5 cm deposition in 1 h per application). Plant shoot and root dry weights and population densities of selected types of bacteria, filamentous actinomycetes and fungi in the rhizosphere were quantified after exposures were completed. Deposition of simulated acidic rain onto foliage alone had no effect on plant biomass or microbial population densities in the rhizosphere (colony-forming units per gram of rhizosphere soil). However, plant growth was stimulated and all microbial populations in the rhizosphere increased 3- to 8-fold with increased solution acidity (relative to pH 4.9 solution) when solution penetrated the soil. Statistical analyses indicated that the acid dose-population response relationships for soil-only and foliage-and-soil applications were not different. Thus, no foliage-mediated effect of simulated acidic rain on rhizosphere ecology was detected.  相似文献   

4.
In this study we investigated the interactions among plant, rhizosphere microorganisms and Zn pollution. We tested the influence of two bacterial strains isolated from a Zn-polluted soil on plant growth and on the symbiotic efficiency of native arbuscular mycorrhizal fungi (AMF) under Zn toxicity. The two bacterial strains exhibited Zn tolerance when cultivated under increasing Zn levels in the medium. However, strain B-I showed a higher Zn tolerance than strain B-II at the two highest Zn levels in the medium (75 and 100 mg l(-1) Zn). Molecular identification placed the strain B-I within the genus Brevibacillus. Our results showed that bacterial strain B-I consistently enhanced plant growth, N and P accumulation, as well as nodule number and mycorrhizal infection which demonstrated its plant-growth promoting (PGP) activity. This strain B-I has been shown to produce IAA (3.95 microg ml) and to accumulate 5.6% of Zn from the growing medium. The enhanced growth and nutrition of plants dually inoculated with the AMF and bacterium B-I was observed at three Zn levels assayed. This effect can be related to the stimulation of symbiotic structures (nodules and AMF colonization) and a decreased Zn concentration in plant tissues. The amount of Zn acquired per root weight unit was reduced by each one of these bacterial strains or AMF and particularly by the mixed bacterium-AMF inocula. These mechanisms explain the alleviation of Zn toxicity by selected microorganisms and indicate that metal-adapted bacteria and AMF play a key role enhancing plant growth under soil Zn contamination.  相似文献   

5.
Phytostabilization has great practical significance and flexibility in the ecological restoration of mining tailings and remediation of heavy metals polluted soils. However, potential use of metallophytes in phytostabilization is limited by a lack of knowledge of many basic plant processes. A mining ecotype (ME) Athyrium wardii, Pb/Cd phytostabilizer, and a non-mining ecotype (NME) A. wardii were grown in a pot experiment to investigate the chemical characteristics of the rhizosphere when exposed to the Cd polluted soils. Rhizobags were used to collect rhizosphere and bulk soils, separately. The results indicated that the ME A. wardii was more efficient in Cd accumulation in the root than NME after growing in Cd polluted soils for 50 days in a green house. Soil solution pH and dissolved organic carbon (DOC) concentration in the rhizosphere of ME A. wardii were higher than in the bulk soil and initial values (before planting), whereas the increment in the ME A. wardii were greater than NME. Owing to the increasing of rhizosphere soil pH, exchangeable Cd significantly decreased, whereas the other Cd species were increased with increasing soil DOC values. It is assumed that the ME A. wardii was effective in stabilizing Cd from the mobile fraction to non-mobile fractions. Results from this study suggest that rhizosphere alkalinization and the exudation of high amounts of dissolved organic matter (DOM) to reduce heavy metal mobility might be the two important mechanisms involved in the metal tolerance/accumulation of ME A. wardii.  相似文献   

6.
Jiang LY  Yang XE  He ZL 《Chemosphere》2004,55(9):1179-1187
Phytoremediation is a promising approach for cleaning up soils contaminated with heavy metals. Information is needed to understand growth response and uptake mechanisms of heavy metals by some plant species with exceptional capability in absorbing and superaccumulating metals from soils. Greenhouse study, field trial, and old mined area survey were conducted to evaluate growth response and Cu phytoextraction of Elsholtzia splendens in contaminated soils, which has been recently identified to be tolerant to high Cu concentration and have great potential in remediating contaminated soils. The results from this study indicate that the plant exhibited high tolerance to Cu toxicity in the soils, and normal growth was attained up to 80 mg kg(-1) available soil Cu (the NH4OAc extractable Cu) or 1000 mg kg(-1) total Cu. Under the field conditions, a biomass yield of 9 ton ha(-1) was recorded at the soil available Cu level of 77 mg kg(-1), as estimated by the NH4OAc extraction method. Concentration-dependent uptake of Cu by the plant occurred mainly at the early growth stage, and at the late stage, there is no difference in shoot Cu concentrations grown at different extractable soil Cu levels. The extractability of Cu from the highly polluted soil is much greater by the roots than that by the shoots. The NH4OAc extractable Cu level in the polluted soil was reduced from 78 to 55 mg kg(-1) in the soil after phytoextraction and removal of Cu by the plant species for one growth season. The depletion of extractable Cu level in the rhizosphere was noted grown in the mined area, even at high Cu levels, the NH4OAc extractable Cu in the rhizosphere was 30% lower than that in the bulk soil. These results indicate that phytoextraction of E. splendens can effectively reduce the plant-available Cu level in the polluted soils.  相似文献   

7.
Plants coupled with endophytic bacteria hold great potential for the remediation of polluted environment. The colonization patterns and activity of inoculated endophytes in rhizosphere and endosphere of host plant are among the primary factors that may influence the phytoremediation process. However, these colonization patterns and metabolic activity of the inoculated endophytes are in turn controlled by none other than the host plant itself. The present study aims to determine such an interaction specifically for plant-endophyte systems remediating crude oil-contaminated soil. A consortium (AP) of two oil-degrading endophytic bacteria (Acinetobacter sp. strain BRSI56 and Pseudomonas aeruginosa strain BRRI54) was inoculated to two grasses, Brachiaria mutica and Leptochloa fusca, vegetated in crude oil-contaminated soil. Colonization patterns and metabolic activity of the endophytes were monitored in the rhizosphere and endosphere of the plants. Bacterial augmentation enhanced plant growth and crude oil degradation. Maximum crude oil degradation (78 %) was achieved with B. mutica plants inoculated with AP consortium. This degradation was significantly higher than those treatments, where plants and bacteria were used individually or L. fusca and endophytes were used in combination. Moreover, colonization and metabolic activity of the endophytes were higher in the rhizosphere and endosphere of B. mutica than L. fusca. The plant species affected not only colonization pattern and biofilm formation of the inoculated bacteria in the rhizosphere and endosphere of the host plant but also affected the expression of alkane hydroxylase gene, alkB. Hence, the investigation revealed that plant species can affect colonization patterns and metabolic activity of inoculated endophytic bacteria and ultimately the phytoremediation process.  相似文献   

8.
The process of EDTA-assisted lead phytoextraction from the Bovisa (Milan, Italy) brownfield soil was optimized in microcosms vegetated with Brassica juncea. An autochthonous plant growth-promoting rhizobacterium (PGPR), Sinorhizobium sp. Pb002, was isolated from the rhizosphere of B. juncea grown on the Pb-contaminated soil in presence of 2 mM EDTA. The strain was augmented (10(8) CFU g(-1) soil) in vegetated microcosms to stimulate B. juncea biomass production and, hence, its phytoextraction potential. Triton X-100 was also added to microcosms at 5 and 10 times the critical micelle concentration (cmc) to increase the permeability of root barriers to the EDTA-Pb complexes. Triton X-100 amendment determined an increase in Pb concentration within plant tissues. However it contextually exerted a phytotoxic effect. Sinorhizobium sp. Pb002 augmentation was crucial to plant survival in presence of both bioavailable lead and Triton X-100. The combination of the two treatments produced up to 56% increase in the efficiency of lead phytoextraction by B. juncea. The effects of these treatments on the structure of the soil bacterial community were evaluated by 16S rDNA denaturing gradient gel electrophoresis (DGGE).  相似文献   

9.
Accumulation of phenanthrene and pyrene in rhizosphere soil   总被引:14,自引:0,他引:14  
A study was conducted to determine PAH concentrations in the rhizosphere of plants grown in soil containing phenanthrene or pyrene. The rhizosphere of tall fescue and wheat grown in sterile soil contained 4-5-fold higher pyrene concentrations than unplanted soil. The rhizosphere of several plant species grown in non-sterile soil temporarily contained appreciably more phenanthrene or pyrene than unplanted soil, but those PAHs were degraded with time. The data suggest that plants accumulate such hydrophobic compounds in the rhizosphere after facilitating their transport toward the roots.  相似文献   

10.
This greenhouse experiment evaluated the influence of arsenic uptake by arsenic hyperaccumulator Pteris vittata L. and non-arsenic hyperaccumulator Nephrolepis exaltata L. on arsenic chemistry in bulk and rhizosphere soil. The plants were grown for 8 weeks in a rhizopot with a soil containing 105 mg kg(-1) arsenic. The soil arsenic was fractionated into five fractions with decreasing availability: non-specifically bound (N), specifically bound (S), amorphous hydrous-oxide bound (A), crystalline hydrous-oxide bound (C), and residual (R). P. vittata produced larger plant biomass (7.38 vs. 2.32 mg plant(-1)) and removed more arsenic (2.61 vs. 0.09 mg pot(-1) arsenic) than N. exaltata. Plant growth reduced water-soluble arsenic, and increased soil pH (P. vittata only) in the rhizosphere soil. P. vittata was more efficient than N. exaltata to access arsenic from all fractions (39-64% vs. 5-39% reduction). However, most of the arsenic taken up by both plants was from the A fraction (67-77%) in the rhizosphere soil, the most abundant (61.5%) instead of the most available (N fraction).  相似文献   

11.
Cattani I  Fragoulis G  Boccelli R  Capri E 《Chemosphere》2006,64(11):1972-1979
In this study, potentially bioavailable copper was estimated in two soils (a fungicide polluted and a natural soil) using a passive sampling technique, DGT. As plants can alter copper mobility and bioavailability in the soil, the rhizosphere properties of Zea mays L. were investigated using rhizoboxes.

Compared to the total concentration, the soluble and the potentially bioavailable copper concentration in the bulk soils were generally low (less than 0.20% and 0.06% respectively), with a sixfold increase in the rhizosphere of the polluted soil. Our results suggest that maize cultivation in a polluted vineyard soil could increase the potentially available fraction of copper. DGTs showed a good sensitivity to soil properties and to root-induced changes in the rhizosphere, but the potentially bioavailable copper could not be related to the copper concentration in the above ground parts of maize. The results suggest that DGT may be used to predict some effects of the cultivation of polluted soils, for example, metal mobility and increased availability, but they cannot mimic the uptake of a tolerant plant.

For both soils, dissolved organic carbon (DOC) concentrations were threefold higher in the rhizosphere than in the bulk soil, whilst bioaccumulation in leaves and roots was not significant. DOC production, usually effective in ion mobilization and assimilation, may help also in the reduction of Cu uptake at toxic concentrations. The sequestration of available Cu in soil and soil solution by DOC seems to contribute to maize tolerance.  相似文献   


12.
Zhang  Fan  Xu  Nuohan  Zhang  Zhenyan  Zhang  Qi  Yang  Yaohui  Yu  Zhitao  Sun  Liwei  Lu  Tao  Qian  Haifeng 《Environmental science and pollution research international》2023,30(13):35972-35984

The rhizosphere microbiome plays critical roles in plant growth and is an important interface for resource exchange between plants and the soil environment. Crops at various growing stages, especially the seedling stage, have strong shaping effects on the rhizosphere microbial community, and such community reconstruction will positively feed back to the plant growth. In the present study, we analyzed the variations of bacterial and fungal communities in the rhizosphere of four crop species: rice, soybean, maize, and wheat during successive cultivations (three repeats for the seedling stages) using 16S rRNA gene and internal transcribed spacer (ITS) high-throughput sequencing. We found that the relative abundances of specific microorganisms decreased after different cultivation times, e.g., Sphingomonas, Pseudomonas, Rhodanobacter, and Caulobacter, which have been reported as plant-growth beneficial bacteria. The relative abundances of potential plant pathogenic fungi Myrothecium and Ascochyta increased with the successive cultivation times. The co-occurrence network analysis showed that the bacterial and fungal communities under maize were much more stable than those under rice, soybean, and wheat. The present study explored the characteristics of bacteria and fungi in crop seedling rhizosphere and indicated that the characteristics of indigenous soil flora might determine the plant growth status. Further study will focus on the use of the critical microorganisms to control the growth and yield of specific crops.

  相似文献   

13.
Tracking chlordane compositional and chiral profiles in soil and vegetation   总被引:4,自引:0,他引:4  
The cycling of chlordane and other persistent organic pollutants through the environment must be comprehensively elucidated to assess adequately the human health risks posed from such contaminants. In this study the compositional and chiral profiles of weathered chlordane residues in the soil and vegetative compartments were investigated in order to provide details of the fate and transport of this persistent pesticide. Zucchini was planted in a greenhouse in three bays containing chlordane-contaminated soil. At harvest the vegetation and soil were extracted and analyzed for chlordane content using chiral gas chromatography/ion trap mass spectrometry. Both achiral and chiral chlordane components were quantified. The chlordane concentration in the rhizosphere (soil attached to roots) was significantly less than that in the bulk soil. However, the enantiomeric ratio of the chiral components and overall component ratios had changed little in the rhizosphere relative to the bulk soil. Significant levels of chlordane were detected in the vegetation, the amount varying in different plant tissues from a maximum in roots to a minimum in fruit. In addition to the chlordane concentration gradient in plant tissues, significant shifts in compositional profile, as indicated by the component ratios, and in chiral profile, as indicated by the enantiomeric ratio, of the contaminant were observed in the plant tissues. The data indicate that abiotic processes dominate the transport of the chlordane components through the soil to the plant. This is the first report of the effect of rapid biotic processes within the plant compartment on chlordane compositional and chiral profiles.  相似文献   

14.
Porteous F  Killham K  Meharg A 《Chemosphere》2000,41(10):1549-1554
The flow of carbon from plant roots into soil supports a range of microbial processes and is therefore critical to ecosystem function and health. Pollution-induced stress, which influences rhizosphere C flow is of considerable potential importance, and therefore needs to be evaluated. This paper reports on a method, based on reporter gene technology, for quantifying pollutant effects on rhizosphere C flow. The method uses the lux-marked rhizobacterium Pseudomonas fluorescens, where bioluminescence output of this biosensor is directly correlated with the metabolic activity and reports on C flow in root exudate. Plantago lanceolata was treated with paraquat (representing a model pollutant stress) in a simple microcosm system. The lux-biosensor response correlated closely with C concentrations in the exudate and demonstrated that the pollutant stress increased the C flow from the plantago roots, 24 h after application of the herbicide. The lux-reporter system therefore potentially offers a technique for use in assessing the impact of pollutant stress on rhizosphere C flow through the soil microbial biomass.  相似文献   

15.
Elsholtzia splendens is a well-known Cu-tolerant plant; yet, the impact of Cu-contaminated soil on bacterial community in its rhizosphere is not known. We studied the spatial variability of bacteria in the rhizosphere using Cu-contaminated soil with polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and real-time PCR. In the uncontaminated soil, the content of the dissolved organic carbon (DOC) and bacterial diversity gradually increased in the rhizosphere soil along the root growth direction (from the interface zone to the meristematic zone), while for the Cu-contaminated soil, the highest DOC content and the strongest potential bioavailability of Cu were found in the interface zone, which also had the lowest bacteria diversity. Bacteria diversity was positively correlated with DOC in the uncontaminated soil (p?Firmicutes only existed in the rhizosphere of contaminated soil, while the very small amount (if any) of some species exists such as Deinococcus-Thermus, indicating that the contaminated environment altered the bacterial composition. Moreover, spatial variation of the bacterial community was found among different soil zones. Real-time PCR confirmed the spatial variation via the gene expression of flagellin (fliC) and chemotaxis gene (cheA). The spatial characteristics of cheA expression were consistent with that of DOC and bacterial diversity. In conclusion, we demonstrated that the spatial variation of the bacterial community in the rhizosphere was present, independent of Cu contamination. DOC and Cu toxicity may affect specific gene expressions such as fliC and cheA, resulting in bacterial spatial variation.  相似文献   

16.
Background Phytoremediation is a promising technology for the cleanup of polluted environments. The technology has so far been used mainly to remove toxic heavy metals from contaminated soil, but there is a growing interest in broadening its applications to remove/degrade organic pollutants in the environment. Both plants and soil microorganisms have certain limitations with respect to their individual abilities to remove/breakdown organic compounds. A synergistic action by both rhizosphere microorganisms that leads to increased availability of hydrophobic compounds, and plants that leads to their removal and/or degradation, may overcome many of the limitations, and thus provide a useful basis for enhancing remediation of contaminated environments.Main Features The review of literature presented in this article provides an insight to the nature of plant-microbial interactions in the rhizosphere, with a focus on those processes that are relevant to the breakdown and/or removal of organic pollutants. Due consideration has been given to identify opportunities for utilising the plant-microbial synergy in the rhizosphere to enhance remediation of contaminated environments.Results and Discussion The literature review has highlighted the existence of a synergistic interaction between plants and microbial communities in the rhizosphere. This interaction benefits both microorganisms through provision of nutrients by root exudates, and plants through enhanced nutrient uptake and reduced toxicity of soil contaminants. The ability of the plant-microbial interaction to tackle some of the most recalcitrant organic chemicals is of particular interest with regard to enhancing and extending the scope of remediation technologies.Conclusions Plant-microbial interactions in the rhizosphere offer very useful means for remediating environments contaminated with recalcitrant organic compounds.Outlook A better knowledge of plant-microbial interactions will provide a basis for improving the efficacy of biological remediations. Further research is, however, needed to investigate different feedback mechanisms that select and regulate microbial activity in the rhizosphere.  相似文献   

17.
Polycyclic aromatic hydrocarbons (PAHs) are recalcitrant compounds, some of which are known carcinogens, often found in high residual soil concentrations at industrial sites. Recent research has confirmed that phytoremediation holds promise as a low-cost treatment method for PAH contaminated soil. In this study, the lability of soil bound PAHs in the rhizosphere was estimated using solid phase extraction resin. An extraction time of 14 days was determined to be appropriate for this study. Resin-extractable PAHs, which are assumed to be more bioavailable, decreased during plant treatments. Significant reductions in the labile concentrations of several PAH compounds occurred over 12 months of plant growth. The differences in concentration between the unplanted and the planted soil indicate that the presence of plant roots, in addition to the passage of time, contributes to reduction in the bioavailability of target PAHs.  相似文献   

18.
In this study, a nickel (Ni)-tolerant Bacillus subtilis strain SJ-101 was characterized based on the 16SrDNA homology and phylogenetic analysis. The role of this strain ascertained in facilitating Ni accumulation in the Indian mustard plant (Brassica juncea [L]. Czern and Coss) var. Pusa Bold (DIR-50), to elucidate the potential of Ni phytoremediation in combination with metal-tolerant rhizobacteria. The data revealed that the plants exposed to NiCl2 (1750 mg kg(-1)) in soil bioaugmented with strain SJ-101 have accumulated 0.147% Ni vis-à-vis 0.094% accumulation in dry biomass of the plants grown in uninoculated soil. The strain SJ-101 has also exhibited the capability of producing indole acetic acid (IAA) (55 microg ml(-1)), and solubilizing inorganic phosphate (90 microg ml(-1)) in specific culture media. The pot culture experiments clearly demonstrated the beneficial effects of bioinoculant strain SJ-101 with significant increase (p<0.05) in the plant growth attributes in untreated control soil. Furthermore, the protective effect of the strain SJ-101 against Ni phytotoxicity was evident in plants grown in soil treated with NiCl2 in concentration range of 250-1750 mg kg(-1). Thus, it is suggested that the strain SJ-101 owing to its intrinsic abilities of plant growth promotion, and attenuation of soil Ni by biosorption and bioaccumulation, could be exploited for bacteria-assisted phytoaccumulation of this toxic heavy metal from contaminated sites.  相似文献   

19.
The uptake of selected polycyclic aromatic hydrocarbons (PAHs) by rice (Oryza sativa) seedlings from spiked aged soils was investigated. When applied to soils aged for 4 months, naphthalene, phenanthrene, and pyrene exhibited volatilization loss of 98, 95, and 30%, respectively, with the remaining fraction being fixed by soil organic matter and/or degraded by soil microbes. In general, concentrations of the three PAHs in rice roots were greater than those in the shoots. The concentrations of root associated PHN and PYR increased proportionally with both soil solution and rhizosphere concentrations. PAH concentrations in shoots were largely independent of those in soil solution, rice roots, or rhizosphere soil. The relative contributions of plant uptake and plant-promoted rhizosphere microbial biodegradation to the total mass balance were 0.24 and 14%, respectively, based on PYR concentrations in rhizosphere and non-rhizosphere soils, the biomass of rice roots, and the dry soil weight.  相似文献   

20.
Dams RI  Paton GI  Killham K 《Chemosphere》2007,68(5):864-870
Sphingobium chlorophenolicum is well known as a pentachlorophenol (PCP) degrader. The objective of this study was to evaluate PCP degradation in a loamy sandy soil artificially contaminated with PCP using phytoremediation and bioaugmentation. Measurements of PCP concentrations were carried out using high performance liquid chromatography analyses (HPLC). The toxic effect of PCP on plants was studied through the monitoring of weight plant and root length. The biodegradation of PCP by S. chlorophenolicum in soil was assessed with a bioluminescence assay of Escherichia coli HB101 pUCD607. Bacterial analyses were carried out by plating on Mineral Salt Medium (MSM) for S. chlorophenolicum, MSM for PCP-degrading/tolerant organisms and Trypticase Soy Broth Agar (TSBA) for heterotrophic organisms. The introduction of S. chlorophenolicum into soil with plants showed a faster degradation when compared to the non-inoculated soil. The monitoring of the plant growth showed a protective role of S. chlorophenolicum against the toxicity of PCP. The bioassay confirmed that initial toxicity was lowered while degradation progressed. There was a significant increase of organisms tested in the roots in comparison to those in the soil. This study showed that the presence of S. chlorophenolicum enhanced the PCP degradation in a loamy soil and also it had a protective role to prevent phytotoxic effects of PCP on plant growth. The combined use of bioaugmentation and plants suggests that the rhizosphere of certain plant species may be important for facilitating microbial degradation of pesticides in soil with important implications for using vegetation to stabilize and remediate surface soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号