首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amphiphilic nonionic cross-linked nanopolymers (NPs) were synthesized to examine removal of five organochlorines (OCs), namely lindane, heptachlor, aldrin, dieldrin, endrin, and DDT, from a range of Thai agricultural soils. The synthesized NP particles had polarity characteristics similar to those of nonionic surfactant micelles and were largely in the size range of 55-155 nm. This work aimed to determine the optimal conditions for leaching of OC contaminated soil with NPs and also to investigate the role and influence of soil properties on this leaching. An investigation of the concentrations of aqueous dispersions of these particles found that a concentration of 10 g L(-1). was found most effective in leaching the OCs from a column of spiked soil. The optimal contact time that allowed a NP dispersion and spiked soil to reach equilibrium was 48 h. The results indicated influencing factors for OC removal and soil remediation were properties both of the soil and the compounds themselves. Soil organic carbon (SOC) content and soil texture played an important role on the sorption as well as compound hydrophobicity expressed as log K(OW) values. The removal efficiency was found to be in the range of 85.2-92.8 % for all soil samples and in the order of DDT < aldrin < heptachlor < dieldrin < endrin < lindane regardless of soil type. This order is inversely related to the log K(OC) values of these compounds. For OC compounds with a similar molecular structure, removal efficiency was related to molecular weight (MW).  相似文献   

2.
Amphiphilic nonionic cross-linked nanopolymers (NPs) were synthesized to examine removal of five organochlorines (OCs), namely lindane, heptachlor, aldrin, dieldrin, endrin, and DDT, from a range of Thai agricultural soils. The synthesized NP particles had polarity characteristics similar to those of nonionic surfactant micelles and were largely in the size range of 55–155 nm. This work aimed to determine the optimal conditions for leaching of OC contaminated soil with NPs and also to investigate the role and influence of soil properties on this leaching. An investigation of the concentrations of aqueous dispersions of these particles found that a concentration of 10 g L?1. was found most effective in leaching the OCs from a column of spiked soil. The optimal contact time that allowed a NP dispersion and spiked soil to reach equilibrium was 48 h. The results indicated influencing factors for OC removal and soil remediation were properties both of the soil and the compounds themselves. Soil organic carbon (SOC) content and soil texture played an important role on the sorption as well as compound hydrophobicity expressed as log KOW values. The removal efficiency was found to be in the range of 85.2–92.8 % for all soil samples and in the order of DDT < aldrin < heptachlor < dieldrin < endrin < lindane regardless of soil type. This order is inversely related to the log KOC values of these compounds. For OC compounds with a similar molecular structure, removal efficiency was related to molecular weight (MW).  相似文献   

3.
Wet and dry atmospheric depositions and soil chemical and microbiological properties were determined in a Mediterranean natural ecosystem of Central Italy near Rome (Castelporziano Estate). The monitoring of depositions permitted us to quantify the exceedances of S and N compounds (expressed as eqH(+)ha(-1)year(-1)) over the critical loads of acidity. Critical loads, i.e. the quantity of a substance which a part of the environment can tolerate without adverse effects occurring, were determined adopting the level 0 methodology following the UN/ECE Convention on Long-range Transboundary Air Pollution. Deposition data were available for the period 1992-1997, and acidity exceedances were referred to the main vegetation types present in the area. Results showed that most part of the Estate has a medium degree of vulnerability to acidification, and the corresponding risk of acidification deriving from the exceedances of atmospheric deposition was rather low. The study of soil chemical and microbiological properties included mainly total soil organic carbon (SOC), microbial biomass-C, biomass-C/SOC, soil respiration, and metabolic quotient (qCO2). Soil organic C metabolism has been discussed on the basis of the results from eight sampling sites.  相似文献   

4.
Tsang DC  Zhang W  Lo IM 《Chemosphere》2007,68(2):234-243
Ethylenediaminetetraacetic acid (EDTA) was used as a reference chelating agent in column experiments to investigate the effectiveness of chelant-enhanced flushing of soils artificially contaminated under various conditions (low/high Cu loading, and aging). The associated soil dissolution issues were of particular concern. Dissolution of indigenous Fe/Al oxides, Ca carbonates and organic matter was monitored over the course of flushing. Regardless of contamination condition, above 85% extraction efficiency could be accomplished by 10(-2) and 10(-3)M EDTA-flushing, but not 10(-4)M. The Cu extraction kinetics positively correlated to EDTA concentration but inversely to Cu loading in soils. In addition to extraction from weakly sorbed fractions, a large portion of Cu was extracted from oxide, organic matter and residual fractions, which appears to derive from soil dissolution. Cumulative dissolved amounts of Fe, Al, and Ca were found to reach as high as hundreds of mgkg(-1), which were comparable to Cu contamination. Soil organic matter, which is known to strongly interact with Fe and Al oxides, was also mobilized. The rate and extent of these soil dissolutions were also positively correlated to EDTA concentration. Therefore, the co-extraction of soil minerals and organic matter during chelant-enhanced flushing, which would alter both physical structure and chemical properties of the soils, is detrimental to future land use and deserves greater attention. The concentration of chelating agent is the most crucial factor for an effective soil flushing with minimal damage.  相似文献   

5.
Xu F  Liang X  Lin B  Su F  Schramm KW  Kettrup A 《Chemosphere》2002,48(5):553-562
The capacity factors of a series of hydrophobic organic compounds (HOCs) were measured in soil leaching column chromatography (SLCC) on a soil column, and in reversed-phase liquid chromatography on a C18 column with different volumetric fractions (phi) of methanol in methanol-water mixtures. A general equation of linear solvation energy relationships, log(XYZ) XYZ0 + mV(I)/100 + spi + bbetam + aalpham, was applied to analyze capacity factors (k'), soil organic partition coefficients (Koc) and octanol-water partition coefficients (P). The analyses exhibited high accuracy. The chief solute factors that control logKoc, log P, and logk' (on soil and on C18) are the solute size (V(I)/100) and hydrogen-bond basicity (betam). Less important solute factors are the dipolarity/polarizability (pi*) and hydrogen-bond acidity (alpham). Log k' on soil and log Koc have similar signs in four fitting coefficients (m, s, b and a) and similar ratios (m:s:b:a), while log k' on C18 and logP have similar signs in coefficients (m, s, b and a) and similar ratios (m:s:b:a). Consequently, logk' values on C18 have good correlations with logP (r > 0.97), while logk' values on soil have good correlations with logKoc (r > 0.98). Two Koc estimation methods were developed, one through solute solvatochromic parameters, and the other through correlations with k' on soil. For HOCs, a linear relationship between logarithmic capacity factor and methanol composition in methanol-water mixtures could also be derived in SLCC.  相似文献   

6.
Lee CH  Park CY  Park KD  Jeon WT  Kim PJ 《Chemosphere》2004,56(3):299-304
The changes in total P accumulation and P compounds with time in the plough layer in a paddy soil in southern Korea were investigated in relation to the continuous application of chemical fertilizers (NPK), straw based compost (Compost), combination these two (NPK+Compost) for 31 years. Continuous fertilization increased the total and inorganic P contents in plough layers. In NPK, inorganic P fraction did not change with time, but organic P content increased significantly. Long-term application of chemical fertilizer together with compost accelerated the decrease in the organic P fraction, presumably due to promoting microbial activity in the plow layer, and then increased significantly inorganic P fraction. Compost application decreased the residual P and Fe-P fractions and then increased inorganic P fraction, in spite of continuous compost application. Increase in total, inorganic and extractable P with time may be closely related to the increase in the availability of accumulated P for rice growth.  相似文献   

7.
The effect of soil properties on the retention of kerosene in soils, at equilibrium and under venting, was studied. Eleven soils were studied, which represent a wide range of chemical properties and mechanical composition. The retention of kerosene in dry soils ranges from 3.5 to 18.1 mL/(100 g), and was related linearly to clay, silt and organic matter (OM) contents. A coarsely-aggregated dry vertisol (2–5 mm aggregates) retained half as much kerosene as its finely-aggregated (<2 mm) counterpart. Moisture content had a strong inverse effect on kerosene retention. The soil factors that inversely affected kerosene retention also enhanced kerosene stripping by venting. Of these, soil aggregation and porosity were the most important. In addition, kerosene volatilized faster and more completely from an initially moist soil, as compared with an initially dry soil. Differential volatilization of lighter components of kerosene changed the chemical composition of the residue in the soil substantially, as compared with the initial composition.  相似文献   

8.
Present study aims to quantify the influence of soil parameters on soil solution uranium concentration for (238)U spiked soils. Eighteen soils collected under pasture were selected such that they covered a wide range for those parameters hypothesised as being potentially important in determining U sorption. Maximum soil solution uranium concentrations were observed at alkaline pH, high inorganic carbon content and low cation exchange capacity, organic matter content, clay content, amorphous Fe and phosphate levels. Except for the significant correlation between the solid-liquid distribution coefficients (K(d), L kg(-1)) and the organic matter content (R(2)=0.70) and amorphous Fe content (R(2)=0.63), there was no single soil parameter significantly explaining the soil solution uranium concentration (which varied 100-fold). Above pH=6, log(K(d)) was linearly related with pH [log(K(d))=-1.18 pH+10.8, R(2)=0.65]. Multiple linear regression analysis did result in improved predictions of the soil solution uranium concentration but the model was complex.  相似文献   

9.
Thirty-three organic acids and furfural metabolites were examined for their nematicidal activity against plant-parasitic, free-living and predacious nematodes. Propionic acid, 2-methylhexanoic acid, lactic acid, maleic acid, and furic acid were the most effective nematicides among normal chain organic acids, branched organic acids, hydroxy/keto-acids, dicarboxylic acids and furfural metabolites, respectively. Seven of the tested compounds were found to have more than 90% mortality thus designating them as highly active nematicides. Of the highly active tested compounds, an average octanol/water log P of 0.97 was observed with a range from 0.28 to 2.64, and a Henry's Law constant averaging 2.6 x 10(- 7) atm.m3/mole. Tested chemicals with minor or low nematicidal activity showed an average log P of 1.76 with a range from 0.15 to 3.42 and a Henry's Law constant averaging 16.6 x 10(- 7) atm.m3/mole.  相似文献   

10.
The effect of heavy metal contamination on biological and biochemical properties of Italian volcanic soils was evaluated in a multidisciplinary study, involving pedoenvironmental, micromorphological, physical, chemical, biological and biochemical analyses. Soils affected by recurring river overflowing, with Cr(III)-contaminated water and sediments, and a non-flooded control soil were analysed for microbial biomass, total and active fungal mycelium, enzyme activities (i.e., FDA hydrolase, dehydrogenase, beta-glucosidase, urease, arylsulphatase, acid phosphatase) and bacterial diversity (DGGE characterisation). Biological and biochemical data were related with both total and selected fractions of Cr and Cu (the latter deriving from agricultural chemical products) as well as with total and extractable organic C. The growth and activity of soil microbial community were influenced by soil organic C content rather than Cu or Cr contents. In fact, positive correlations between all studied parameters and organic C content were found. On the contrary, negative correlations were observed only between total fungal mycelium, dehydrogenase, arylsulphatase and acid phosphatase activities and only one Cr fraction (the soluble, exchangeable and carbonate bound). However, total Cr content negatively affected the eubacterial diversity but it did not determine changes in soil activity, probably because of the redundancy of functions within species of soil microbial community. On the other hand, expressing biological and biochemical parameters per unit of total organic C, Cu pollution negatively influenced microbial biomass, fungal mycelium and several enzyme activities, confirming soil organic matter is able to mask the negative effects of Cu on microbial community.  相似文献   

11.
Dissipation of pentachlorophenol (PCP) in soil was investigated and the chemical relationships with soil properties were addressed. The results indicate that the dissipation of extractable PCP residues can be described using first-order kinetics equations, with a half-dissipation time (T(1/2)) ranging from 6.5 to 173.3d. The sharply different patterns of PCP dissipation in different soils were closely related to soil properties. Correlations of stepwise regression equations obtained were significant at 0.01 probability level between soil parameters and extractable PCP residues (R(2)=0.974**) as well as T(1/2) values (R(2)=0.882**). Using pH together with organic carbon content (OC) and soil particle size distribution, the dissipation dynamics of PCP in soil could be accurately predicted.  相似文献   

12.
Thirty-three organic acids and furfural metabolites were examined for their nematicidal activity against plant-parasitic, free-living and predacious nematodes. Propionic acid, 2-methylhexanoic acid, lactic acid, maleic acid, and furic acid were the most effective nematicides among normal chain organic acids, branched organic acids, hydroxy/keto-acids, dicarboxylic acids and furfural metabolites, respectively. Seven of the tested compounds were found to have more than 90% mortality thus designating them as highly active nematicides. Of the highly active tested compounds, an average octanol/water log P of 0.97 was observed with a range from 0.28 to 2.64, and a Henry's Law constant averaging 2.6 × 10? 7 atm.m3/mole. Tested chemicals with minor or low nematicidal activity showed an average log P of 1.76 with a range from 0.15 to 3.42 and a Henry's Law constant averaging 16.6 × 10? 7 atm.m3/mole.  相似文献   

13.
[1-(13)C]-labelled phenanthrene was incubated in a closed bioreactor to study the flux and biotransformation of polycyclic aromatic hydrocarbon (PAH) in contaminated soils on a bulk and molecular level. The degradation of extractable phenanthrene was observed by GC-MS measurements and the mineralisation was monitored by (13)CO(2) production. The transformation of the (13)C-label into non-extractable soil-bound residues was determined by carbon isotopic measurements. With these data we were able to calculate a carbon budget of the (13)C-label. Moreover, the chemical structure of non-extractable bound residues was characterised by applying selective chemical degradation reactions to cleave xenobiotic subunits from the macromolecular organic soil matrix. The obtained low molecular weight products yielded (13)C-labelled compounds which were identified using IRM (isotope ratio monitoring)-GC-MS and structurally characterised with GC-MS. Most of the (13)C-labelled products obtained by chemical degradation of non-extractable bound residues are well-known metabolites of phenanthrene. Thus, metabolites of [1-(13)C]phenanthrene formed during biodegradation appear to be reactive components which are subsequently involved in the bound residue formation. Hydrolysable amino acids of the soil residues were significantly labelled with (13)C as confirmed by IRM-GC-MS measurements. Therefore, phenanthrene-derived carbon was transformed by anabolic microbial processes into typical biologically derived compounds. These substances are likely to be incorporated into humic-like material after cell death.  相似文献   

14.
Bound residues: environmental solution or future problem?   总被引:4,自引:0,他引:4  
The paper examines the issue of bound residues from the viewpoint of the risk assessment procedures employed for environmental protection. It considers, on one hand, the evidence that such residues are so tightly bound to soil organic matter as to be essentially unavailable; and on the other, the perspective that we should not be loading up the environment with compounds whose future behaviour and release we cannot predict. Existing knowledge of the mechanisms by which residues bind to soil organic matter suggests that release will be closely dependent on soil organic matter breakdown. Simple models of organic matter turnover suggest that the release following single applications of individual compounds will be very slow; but the significance of releases following repeated application over many years of a number of compounds needs to be investigated further. Applying environmental risk assessment techniques is complicated by the difficulty in identifying parent molecules and potential metabolites in the bound residue fraction. The paper concludes that for single additions of individual compounds, bound residues probably do represent an environmental solution. But the long-term significance of bound residues formed from multiple additions of a number of compounds is less clear. The paper recommends that future work should emphasise the biological significance of such residues and their release.  相似文献   

15.
Chilom G  Bestetti G  Sello G  Rice JA 《Chemosphere》2004,56(9):853-860
The formation of bound residues by naphthalene and its metabolite, cis-naphthalene-1,2-dihydrodiol, in a sediment (1% OC), a silty loam soil (2.9% OC) and a peat (26% OC) was examined. The experiments were carried out under both sterile and nonsterile conditions for up to 35 days. The samples containing bound contaminant were hydrolyzed at an alkaline pH and fractionated using 3,000 and 500 Da molecular weight cutoff ultrafiltration membranes in series. The results for all the geosorbents examined showed that bound residue formation is low for naphthalene and between 5 and 20 times higher for the metabolite. The amount of bound residues released by hydrolysis was higher for the metabolite than for the parent compound for all the samples. The molecular weight distribution of bound radioactivity after hydrolysis showed binding to the high molecular weight components of the sediment organic matter and to the low molecular weight components for soil and peat organic matter when incubated with cis-naphthalene-1,2-dihydrodiol. Experiments performed with naphthalene-UL-(14)C showed larger amounts of bound residue found than in experiments with naphthalene-1-(14)C.  相似文献   

16.
Laboratory studies were conducted to determine the sorption behaviour of six commonly used pesticides (acetochlor, atrazine, carbendazim, diazinon, imidacloprid and isoproturon) on Hungarian brown forest soil with clay alluviation (Luvisol) using the batch equilibrium technique. The sorption isotherms could be described by the Freundlich equation in non-linear form (n < 1) for all compounds, however in case of diazinon using the extended Freundlich equation proved to be a better approach. The adsorption constant related soil organic carbon content (Koc) calculated from Freundlich equation were 314 for acetochlor, 133 for atrazine, 2805 for carbendazim, 1589 for diazinon, 210 for imidacloprid and 174 for isoproturon. The octanol-water partition coefficients (Pow), which can be a useful parameter to predict of adsorption behaviour of a chemical on soil, and dissociation coefficients of these pesticides were calculated based on the chemical structure of them using a computerized expert system. The octanol-water partition coefficients were determined experimentally from high performance liquid chromatographic parameters as well. Good agreement was observed between experimental and the computer expert system estimated data. Computer estimated log Pow values ranged 0.5 and 3.86 for the examined pesticides, with imidacloprid and diazinon being the least and most hydrophobic respectively. Experimentally determined logPow ranged between 0.92 and 3.81 with the same tendency. It can be concluded that the Freundlich adsorption constants (Kf) are slightly related to the octanol-water partition coefficients of investigated chemicals, nevertheless no close correlation could be established because of the influence of further characteristics of solutes and soil.  相似文献   

17.
Zhang W  Zhuang L  Tong L  Lo IM  Qiu R 《Chemosphere》2012,86(8):809-816
Cr(VI) was often reported to oxidize soil organic matter at acidic environments due to its high ORP, probably thus changing cationic metal species bound to soil organic matter, and influencing their electro-migration patterns. However, such an effect on the electro-migration was not confirmed in most previous studies. Therefore, this study applied a fixed voltage direct current field on an aged electroplating contaminated clayed soil, with a special interest in the direct or indirect influence of Cr(VI) on the electro-migration of other coexisting metals. After 353 h electrokinetic process, 81% of Zn, 53% of Ni and 22% of Cu in the original soil were electro-migrated into the electrolyte, and most of the remaining concentrated near the cathode. The Cr(VI) oxidized some soil organic matter along its migration pathway, with a pronounced reaction occurred near the anode at low pHs. The resulting Cr(III) reversed its original movement, and migrated towards the cathode, leading to the occurrence of a second Cr concentration peak in the soil. Metal species analyses showed that the amount of metals bound to soil organic matter significantly decreased, while a substantial increase in the Cr species bound to Fe/Mn (hydro-)oxides was observed, suggesting an enhancement of cationic metal electro-migration by the reduction of Cr(VI) into Cr(III). However, the Cr(VI) may form some stable lead chromate precipitates, and in turn demobilize Pb in the soil, as the results showed a low Pb removal and an increase in its acid-extractable and residual fractions after electrokinetic remediation.  相似文献   

18.
A loamy clay soil containing unextractable 14C-ring labeled atrazine residues was incubated in microcosms under abiotic and biotic conditions. The mineralization activity of the soil microflora was evaluated by the release of total CO2 and 14C02. After 63 days of sample incubation the total organic carbon mineralization was of 1.71%, that of 14C-residues was of 0.72% of the initial radioactivity. No direct relationship was established between the mineralization of atrazine residues and the global mineralization. The contribution of soil microorganisms in the release of 14C-residues was weak. The availability of non-extractable residues was mainly controlled by physico-chemical factors. The low value of the reextractability rate and the distribution of bound residues during the soil sample incubation shown the active role of organic matter in detoxification procedure. Ninety percent of the residues remained bound after 63 days of incubation and were thus, potentially available without biocide activity.

The fractionation of soil organic matter allowed to specify the distribution of bound residues within the organic compartments. After a long-stay of pesticides in soils, approximately 65% of bound residues were associated with humin.  相似文献   


19.
We examined organically bound halogens in a coniferous soil profile and in Norway spruce litter enclosed in litter bags and subjected to degradation in field. Throughout the soil profile the total amount of organically bound halogens (TOX, μg Cl/g soil) was related to organic matter, i.e. amounts decreased with increasing depth. In contrast, the organic chlorine to organic carbon ratio (mg Clorg:g Corg) increased with increasing depth, and a pronounced increase in this ratio was observed in the transition between the O-horizon and the A-horizon, strongly indicating that in situ production of organically bound halogens occur in soil. This conclusion was strengtened by the results of the litter bag study, which clearly showed that a net-production of organically bound halogens occurred during decomposition of the spruce needle litter. Furthermore, this part of the study showed that organically bound halogens are not a static factor of organic matter. On the contrary, the results strongly indicated that during decomposition of organic matter, organically bound halogens are subjected to both production, i.e. incorporation of inorganic halides into organic matter, and mineralisation, i.e. release of inorganic halides from organic matter. A method previously developed in our laboratory to determine TOX in soil was further evaluated; there were no indications that inorganic halides interfere with the determination.  相似文献   

20.
The facility with which hydrocarbons can be removed from soils varies inversely with aging of soil samples as a result of weathering. Weathering refers to the result of biological, chemical and physical processes that can affect the type of hydrocarbons that remain in a soil. These processes enhance the sorption of hydrophobic organic contaminants (HOCs) to the soil matrix, decreasing the rate and extent of biodegradation. Additionally, pollutant compounds in high concentrations can more easily affect the microbial population of a recently contaminated soil than in a weathered one, leading to inhibition of the biodegradation process. The present work aimed at comparing the biodegradation efficiencies obtained in a recently oil-contaminated soil (spiked one) from Brazil and an weathered one, contaminated for four years, after the application of bioaugmentation and biostimulation techniques. Both soils were contaminated with 5.4% of total petroleum hydrocarbons (TPHs) and the highest biodegradation efficiency (7.4%) was reached for the weathered contaminated soil. It could be concluded that the low biodegradation efficiencies reached for all conditions tested reflect the treatment difficulty of a weathered soil contaminated with a high crude oil concentration. Moreover, both soils (weathered and recently contaminated) submitted to bioaugmentation and biostimulation techniques presented biodegradation efficiencies approximately twice as higher as the ones without the aforementioned treatment (natural attenuation).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号