首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
采集湘江(株洲段)9个断面的底泥样品,和1个柱状样品,对重金属(Cu、Pb、Zn、Cd、Ni、Cr、Hg、As)含量进行了检测;并运用地质积累指数法对底泥中重金属进行了生态风险评价.结果表明,该江段底泥已受到较严重的重金属污染,在霞湾断面达峰值.Cu、Pb、Zn、Cd含量为湘江背景值4.6倍~58.8倍,比该江段20世...  相似文献   

2.
通过采集G60高速公路贵阳—昆明段自然分布的银叶真藓(Bryum argenteum),监测其中Zn、Cd、Cu、Cr和Pb的含量,并采用污染因子和主成分分析方法研究重金属污染程度及来源。结果表明:研究路段银叶真藓中的重金属含量由高到低依次为Zn Cu Cr Pb Cd,Zn和Cu质量比平均值分别为1 060 mg/kg和102 mg/kg,明显高于对照点。主成分分析表明,重金属Zn、Cu、Pb和Cd可能来源于交通污染,而Cr来源于其他污染源。污染因子分析表明,重金属Zn污染最严重,Cu总体属于重度污染,Cr和Cd属于中度污染,Pb总体污染较低。  相似文献   

3.
采用地累积指数和Hakanson潜在生态风险指数法,通过分析清水溪18个采样点底泥中典型重金属镉的含量,定量确定了清水溪底泥中重金属镉的污染程度和潜在生态风险程度。结果表明,清水溪流域镉污染比较严重,上游比下游污染严重,而且在新桥到高滩岩段受到重金属镉的中强度污染,对周围环境存在极高的镉生态风险。在清水溪干流上采样点底泥中镉的质量浓度范围在0.38~1.48mg/kg之间,平均值0.88mg/kg,各支流底泥中镉的质量浓度范围为0.51~1.08mg/kg。对于清水溪各支流镉的污染程度与潜在生态风险程度由高到低的排序为杨家沟>金竹沟>芭蕉沟>关井沟>石碾盘沟。  相似文献   

4.
乌鲁木齐市米东污灌区农田土壤重金属污染评价   总被引:7,自引:0,他引:7  
对米东污灌区农田土壤重金属含量进行监测分析,利用不同的评价方法和标准对土壤重金属的环境质量进行评价。结果表明:米东污灌区农田土壤重金属含量分别为Cd(0.12±0.06)mg/kg,Cu(40.43±5.30)mg/kg,Zn(78.38±11.04)mg/kg,Pb(11.66±11.79)mg/kg,Ni(20.24±8.05)mg/kg,Cr(75.81±8.05)mg/kg。以国家土壤环境质量标准(二级)为标准评价,各元素的污染指数排序为Cu>Ni>Cr>Zn>Cd>Pb,综合污染指数为0.337,污染程度为安全。以食用农产品产地土壤环境质量要求为标准评价,各元素的污染指数排序为Cu>Ni>Cr>Zn>Cd>Pb,综合污染指数为0.343,污染程度为安全。表明米东污灌区农田土壤重金属含量尚能达到食用农产品产地土壤环境质量要求。Pb、Cu、Zn的平均含量超过乌鲁木齐市土壤背景值,这说明污灌区土壤重金属Pb、Cu、Zn近年来已有所累积,存在一定的污染风险。  相似文献   

5.
通过在海南八门湾内布设15个调查站位,监测分析表层沉积物中重金属分布、污染来源及潜在生态风险。结果表明,研究区表层沉积物中Cu、Pb、Zn、Cr、Cd、Hg和As平均值分别为19.78 mg/kg、5.94 mg/kg、36.27 mg/kg、15.99 mg/kg、0.18 mg/kg、0.04 mg/kg和6.82 mg/kg;Pb、Cr及Zn,Cu与Cd、As可能具有相同或相似污染源;重金属污染程度以轻微生态危害为主,其次为中等生态危害及强生态危害;重金属Cd与Hg为主要潜在生态危害因子,潜在生态风险由高到低依次为CdHgAsCuPbZnCr。  相似文献   

6.
苏南地区农村河塘底泥中重金属污染调查与评价   总被引:1,自引:1,他引:1  
对苏南地区农村河塘底泥中重金属的污染物状况及分布特征进行了调查,分别在镇江、宜兴和常州采集了农村居民生活区、农田附近和养殖厂周围13个底泥样品,对底泥中的5种重金属Zn、Cu、Cd、Pb、Cr质量比进行了分析研究,并利用Hakason生态风险指数法评价了底泥中5种重金属对其所在水域的污染程度,对水域和周围环境造成的潜在风险影响.结果表明,苏南地区部分农村河塘底泥已受到轻度的重金属污染,部分采样点Cd、Cu和Zn已达到中度污染;不同类型底泥的重金属的污染程度趋势为:居民生活区>养殖厂周围>农田附近.  相似文献   

7.
河流底泥砷污染状况及分布特征研究   总被引:1,自引:0,他引:1  
为了今年马鞍山市河湖整治重点工程中清淤工程环境安全需要,对该市城郊某河全流域不同断面底泥中砷含量进行了分析,评价了底泥砷污染状况并分析了该河流底泥中砷的沿程分布特征、横向分布特征和垂向分布特征。结果表明,该河流底泥砷含量范围为17.9~335mg/kg,均值为94.25mg/kg。参照土壤环境质量标准三级标准值对底泥中砷含量进行评价,平均砷污染指数2.69为中度污染;用土壤背景值标准参照评价,平均砷污染指数为9.72,超过当地背景值水平8.50倍,该河流从上游到下游,总体上沿程底泥砷含量未呈明显变化,但局部域段呈现一定变化趋势;断面横向分布上,河中间砷含量总体高于河岸边;垂向分布上,表层底泥砷含量最高。  相似文献   

8.
濮阳工业园区土壤重金属背景值及质量评价   总被引:6,自引:5,他引:1  
为了研究濮阳工业园区土壤重金属背景值,采集了该园区及周边土壤46个样品,测定了土壤中重金属Cu、Zn、Pb、Cr、Cd和Ni的含量,并采用污染负荷指数法和潜在生态危害指数法对土壤质量进行了评价。结果表明:工业园区土壤中Cu、Zn、Pb、Cr、Cd、Ni的背景值分别为36.2、118、49.2、40.6、0.125、15.3 mg/kg;Cu、Zn、Pb、Cd的含量高于河南省土壤重金属背景值;Pb为极强污染,Cu、Zn、Cd为中等污染,重金属污染程度从重到轻的排序为PbZnCuCd,表明濮阳工业园区土壤重金属具有轻微的潜在生态危害。  相似文献   

9.
为了解北方某水库重金属污染状况,采用BCR连续提取法对该水库表层沉积物中Cu、Pb、Zn、Cd的赋存形态进行了分析,对其含量及空间分布进行了研究,结合重金属总量讨论了各元素的潜在环境风险。结果表明,该水库表层沉积物中Cu、Pb、Zn、Cd的平均质量比分别为65.20 mg/kg、36.69 mg/kg、137.5 mg/kg、2.38 mg/kg,与该地区土壤元素背景值、该地区水系沉积物平均值及全国水系沉积物平均值相比,4种重金属元素均有一定程度的累积,其中Cd累积最为严重。形态分析结果表明,Cd主要以醋酸可提取态及可还原态存在,具有很高的环境风险;Pb主要以极高比例的可还原态存在,潜在风险较高;Zn和Cu存在较大比例的酸可提取态及可还原态,也具有一定程度的潜在风险。各元素生物有效性即可提取态含量排序为:Cd>Cu>Pb>Zn。  相似文献   

10.
选择云南会泽县者海镇矿区重金属污染场地,按不同暴露途径计算土壤中Pb、As、Cd、Zn、Cu、Cr、Hg等金属污染物的风险,并通过风险评价,分析场地内的健康风险水平。结果表明:所有暴露途径中Zn、Cu、Pb对人体健康的平均风险较小。在居住用地情景下,土壤中Cd的综合致癌风险为2. 6×10-5,As的综合致癌风险为3. 3×10-4,场地内As和Cd的污染对敏感受体健康的潜在危害较大。  相似文献   

11.
TCLP法对天津市农田重金属生态风险评价   总被引:1,自引:0,他引:1  
TCLP法是用缓冲剂提取重金属的一种方法,该法评价重金属生态风险在美国已开展多年。利用TCLP法对天津市某农田土壤重金属进行生态风险评价,结果表明,在采集的23个样品中有效态铜、铅、锌、镉的含量范围为1.13~5.26、2.11~5.22、2.60~30.6、1.09×10-3~77.9×10-3mg/kg,普遍低于铜、铅、锌、镉在土壤中的总量(22.1~66.8、21.2~50.6、56.8~445、0.04~0.20 mg/kg)。镉的TCLP有效态与总量的差别最大。锌、铅存在轻微污染,污染率分别为21.7%、4.3%。  相似文献   

12.
The concentrations of heavy metals in tench, pike-perch, and common carp fish caught in four different seasons from Damsa dam lake (Nev?ehir) were determined. Heavy metal contents of fishes changed depending on seasons. The highest Al (20.894 mg/kg) in tench was established in winter, and the lowest Al (1.605 mg/kg) was determined in summer. Fe content of tench fish changed between 112.906 mg/kg (autumn) and 31.207 mg/kg (spring). In addition, Zn contents of tench were found between 36.0323 mg/kg (summer) and 430.586 mg/kg (winter). The results indicate that concentrations of Cu of tench varied from 0.1934 mg/kg (winter) to 15.422 mg/kg (autumn). Results indicate that concentrations varied from 2.923 mg/kg (autumn) to 32.078 mg/kg (summer) with a mean of 11.1893 mg/kg for Al; 0.2483 mg/kg (spring) to 3.3088 mg/kg (autumn) with a mean of 1.6189 mg/kg for Ni; 0.5325 mg/kg (spring) to 0.845 mg/kg (autumn) with a mean of 0.7234 for Pb; and 7.0464 mg/kg (winter) to 253.686 mg/kg (summer) with a mean of 133.6348 for Zn. In common carp, Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn, Se, Ga, and Te contents were determined as 3.9623 mg/kg; 0.1293, 0.2336, 0.0526, 0.1543, 4.2406, 0.726, 1.797, 0.6216, 6.8536, 0.1783, 0.7876, and 0.371 mg/kg in autumn, respectively.  相似文献   

13.
The concentrations of selected heavy metals in the soil and vegetation in the immediate vicinity of a metal scrap recycling factory were determined in the dry and wet seasons using the Atomic Absorption Spectrophotometer. The results showed that the soil pH in all the sites indicated slight acidity (from 5.07 to 6.13), high soil organic matter content (from 2.08 to 5.60 %), and a well-drained soil of sandy loam textural composition. Soil heavy metal content in the dry season were 0.84–3.12 mg/kg for Pb, 0.26–0.46 mg/kg for Cd, 9.19–24.70 mg/kg for Zn, and 1.46–1.97 mg/kg for Cu. These values were higher than those in the wet season which ranged from 0.62–0.69 mg/kg for Pb, 0.67–0.78 mg/kg for Cd, 0.84–1.00 mg/kg for Zn, and 1.26–1.45 mg/kg for Cu. Except for cadmium in the dry season, the highest concentrations occurred in the northern side of the factory for all the elements in both seasons. An increase in the concentrations of the elements up to 350 m in most directions was also observed. There was no specific pattern in the level of the metals in the leaves of the plant used for the study. However, slightly elevated values were observed in the wet season (Pb 0.53 mg/kg, Cd 0.59 mg/kg, Cu 0.88 mg/kg) compared with the dry season values (Pb 0.50 mg/kg, Cd 0.57 mg/kg, Cu 0.83 mg/kg). This study showed that the elevated concentrations of these metals might be associated with the activities from the recycling plant, providing the basis for heavy metal pollution monitoring and control of this locality that is primarily used for agricultural purposes.  相似文献   

14.
Zn, Cd, Cr, Hg, As (total), Cu, Pb, and Ni levels of the deepwater rose shrimp (Parapenaeus longirostris, Lucas 1846), which were collected from the Tekirda? coast of the Marmara Sea, were evaluated. The Marmara Sea is the recipient of discharges from both land-based sources and the Black Sea Bosphorus stream. There are large numbers of anthropogenic activities in the coastal region of the northern Marmara Sea that include urban effluent, discharges from touristic resorts, agricultural runoff, fishing, and transportation. Heavy metal contamination of water resources may cause critical health problems for the people living around these water bodies. In deepwater rose shrimp (P. longirostris), the highest concentration level detected for Zn was 22.4?±?24.4 mg/kg in winter 2012, Cd 0.106?±?0.01 mg/kg in summer 2012, Cr 0.77?±?0.05 mg/kg in winter 2012, Hg 0.18?±?0.04 mg/kg in summer 2011, As 9.93?±?1.4 mg/kg in spring 2012, Cu 25.48?±?0.3 mg/kg in winter 2012, Pb 2.12?±?0.8 mg/kg in spring, and Ni 19.25?±?7.1 mg/kg in spring. The values of heavy metal analysis were compared to both the Turkish Food Codex (TFC) limits and international standards for human consumption. The Pb, As, and Cu levels were found to be higher than the maximum allowable limits.  相似文献   

15.
Landfills are sources of groundwater and soil pollution due to the production of leachate and its migration through refuse. This study was conducted in order to determine the extent of soil pollution within and around the Jebel Chakir landfill, located in the Tunis City, Tunisia. The main objective was to characterize soil samples of an unlined storage basin in relation to heavy metal concentrations in the Jebel Chakir landfill to the southwest of Tunis, Northern Tunisia. Twenty-four soil samples taken from different locations around the storage basin were analyzed by atomic absorption spectrophotometry for Cr, Cu, Ni, Pb, and Zn investigation. Our results indicated high concentrations of Cr (54.4–129.9 mg/kg of DM), Zn (4.1–81.8 mg/kg of DM), Ni (15.1–43.9 mg/kg of DM), Pb (5.6–16.1 mg/kg of DM), and Cu (0.2–1.84 mg/kg of DM). These results suggested that contaminant migration is controlled by an active clay layer acting as an insulating material in the landfill. It is therefore necessary to set a treatment system for the landfill leachates and place a liner under the storage basin to reduce the pollution threat.  相似文献   

16.
The pollution of soil is a source of danger to the health of people, even to those living in cities. The anthropogenic pollution caused by heavy industries enters plants then goes through the food chain and ultimately endangers human health. In the context, the knowledge of the regional variability, the background values and anthropogenic vs. natural origin of potentially harmful elements in soils is of critical importance to assess human impact. The present study was undertaken on soil contamination in Surat, Gujarat (India). The aims of the study were: i) to determine extent and distribution of heavy metals (Ba, Cu, Cr, Co, Ni, Sr, V and Zn) ii) to find out the large scale variability, iii) to delineate the source as geogenic or anthropogenic based on the distribution maps and correlation of metals in soils. Soil samples were collected from the industrial area of Surat from top 10 cm layer of the soil. These samples were analysed for heavy metals by using Philips PW 2440 X-ray fluorescence spectrometer. The data reveal that soils in the area are significantly contaminated, showing higher levels of toxic elements than normal distribution. The heavy metal loads of the soils in the study area are 471.7 mg/kg for Ba, 137.5 mg/kg for Cu, 305.2 mg/kg for Cr, 51.3 mg/kg for Co, 79.0 mg/kg for Ni, 317.9 mg/kg for Sr, 380.6 mg/kg for V and 139.0 mg/kg for Zn. The higher concentrations of these toxic metals in soils need to be monitored regularly for heavy metal enrichment.  相似文献   

17.
The purpose of this study was to investigate the impact of overland traffic on the spatial distribution of heavy metals in urban soils (Istanbul, Turkey). Road dust, surface, and subsurface soil samples were collected from a total of 41 locations along highways with dense traffic and secondary roads with lower traffic and analyzed for lead (Pb), zinc (Zn), and copper (Cu) concentrations. Statistical evaluation of the heavy metal concentrations observed along highways and along the secondary roads showed that the data were bimodally distributed. The maximum observed Pb, Zn, and Cu concentrations were 1,573, 522 and 136 mg/kg, respectively, in surface soils along highways and 99.3, 156, and 38.1 mg/kg along secondary roads. Correlation analysis of the metal concentrations in road dust, surface and 20-cm depth soils suggests the presence of a common pollution source. However, metal concentrations in the deeper soils were substantially lower than those observed at the surface, indicating low mobility of heavy metals, especially for Pb and Zn. A modified kriging approach that honors the bimodality of the data was used to estimate the spatial distribution of the surface concentrations of metals, and to identify hotspots. Results indicate that despite the presence of some industrial zones within the study area, traffic is the main heavy metal pollution source.  相似文献   

18.
The lead–zinc industry in the Bukowno region of southern Poland has polluted the surface layer of the surrounding soils mainly with lead (Pb), cadmium (Cd), zinc (Zn), arsenic (As), and thallium (Tl). Analysis of six soil profiles, taken on the east side of the postflotation waste site of the Mining and Metallurgical Plants ZGH "Boles?aw" in Bukowno, showed that they were podzol soils, taking form of loose sands with neutral pH and reducing conditions. Concentration of organic matter in the horizons ranged from 2 to 80 %. The main components of the mineral soil were quartz, carbonates, K-feldspars, plagioclases, and micas (sericite). The highest total concentrations of metals were found in the O, A, and B horizons. Over 90 % of the Cd content, 80 % of the Pb content, 60 % of the Zn content, ~60 % of the Tl content, and 20 % of the As content occurred as mobile forms. The corresponding total concentrations were 10 mg/kg Cd, 922 mg/kg Pb, 694 mg/kg Zn, <1 mg/kg Tl, and <5 mg/kg As. This can potentially be taken up from the soil and transported in the trophic chain. Comparing the total metal content with the legal limits in Poland, it is observed, that the investigated soils exceeded the permissible levels of Cd, Pb, and Zn for agricultural soils. Arsenic and Tl are not reflected in the chemical quality of soil classifications.  相似文献   

19.
This study was carried out to find out the comparative distribution of heavy metals (Fe, Cu, Mn, Zn, Co, Cr, Cd and Pb) in various tissues (muscles, gills, liver, stomach and intestine) of Cyprinus carpio from Rawal Lake, Pakistan, during summer and winter. Relatively higher concentrations of Cd, Co, Cr, Cu, Fe and Zn were found in the stomach samples, while the highest Pb and Zn levels were noted in muscle and intestine samples, respectively. Correlation study exhibited diverse relationships among the metals in various tissues. Generally, the metal concentrations found during the summer were comparatively higher than the winter. Potential non-carcinogenic and carcinogenic health risks related to the metals in C. carpio were evaluated using the US Environmental Protection Agency approved cancer risk assessment guidelines. The calculated daily and weekly intakes of Pb, Cd, Cr and Co through the fish consumption were significantly higher than the permissible limits. In relation to the non-carcinogenic risks to human, Pb, Cd, Cr, Co and Zn levels were higher than the safe limits; however, carcinogenic risks related to Cr (3.9?×?10?3 during summer and 1.1?×?10?3 during winter) and Pb (2.6?×?10?4 during summer and 1.5?×?10-4 during winter) clearly exceeded the safe limit (1?×?10?6). Consequently, the consumption of C. carpio from Rawal Lake on regular basis was considered unsafe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号