首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Open beef cattle feedlots emit various air pollutants, including particulate matter (PM) with equivalent aerodynamic diameter of 10 microm or less (PM10); however limited research has quantified PM10 emission rates from feedlots. This research was conducted to determine emission rates of PM10 from large cattle feedlots in Kansas. Concentrations of PM10 at the downwind and upwind edges of two large cattle feedlots (KS1 and KS2) in Kansas were measured with tapered element oscillating microbalance (TEOM) PM10 monitors from January 2007 to December 2008. Weather conditions at the feedlots were also monitored. From measured PM10 concentrations and weather conditions, PM10 emission rates were determined using reverse modeling with the American Meteorological Society/U.S. Environmental Protection Agency Regulatory Model (AERMOD). The two feedlots differed significantly in median PM10 emission flux (1.60 g/m2-day for KS1 vs. 1.10 g/m2-day for KS2) but not in PM10 emission factor (27 kg/1000 head-day for KS1 and 30 kg/1000 head-day KS2). These emission factors were smaller than published U.S. Environmental Protection Agency (EPA) emission factor for cattle feedlots.  相似文献   

2.
Public housing developments across the United States are being demolished, potentially increasing local concentrations of particulate matter (PM) in communities with high burdens of severe asthma. Little is known about the impact of demolition on local air quality. At three public housing developments in Chicago, IL, PM with an aerodynamic diameter < 10 microm (PM10) and < 2.5 microm were measured before and during high-rise demolition. Additionally, size-selective sampling and real-time monitoring were concurrently performed upwind and downwind of one demolition site. The concentration of particulates attributable to demolition was estimated after accounting for background urban air pollution. Particle microscopy was performed on a small number of samples. Substantial increases of PM10 occurred during demolition, with the magnitude of that increase varying based on sampler distance, wind direction, and averaging time. During structural demolition, local concentrations of PM10 42 m downwind of a demolition site increased 4- to 9-fold above upwind concentrations (6-hr averaging time). After adjusting for background PM10, the presence of dusty conditions was associated with a 74% increase in PM10 100 m downwind of demolition sites (24-hr averaging times). During structural demolition, short-term peaks in real-time PM10 (30-sec averaging time) occasionally exceeded 500 microg/m(3). The median particle size downwind of a demolition site (17.3 microm) was significantly larger than background (3 microm). Specific activities are associated with realtime particulate measures. Microscopy did not identify asbestos or high concentrations of mold spores. In conclusion, individuals living near sites of public housing demolition are at risk for exposure to high particulate concentrations. This increase is characterized by relatively large particles and high short-term peaks in PM concentration.  相似文献   

3.
Field data for coarse particulate matter ([PM] PM10) and fine particulate matter (PM2.5) were collected at selected sites in Southeast Kansas from March 1999 to October 2000, using portable MiniVol particulate samplers. The purpose was to assess the influence on air quality of four industrial facilities that burn hazardous waste in the area located in the communities of Chanute, Independence, Fredonia, and Coffeyville. Both spatial and temporal variation were observed in the data. Variation because of sampling site was found to be statistically significant for PM10 but not for PM2.5. PM10 concentrations were typically slightly higher at sites located within the four study communities than at background sites. Sampling sites were located north and south of the four targeted sources to provide upwind and downwind monitoring pairs. No statistically significant differences were found between upwind and downwind samples for either PM10 or PM2.5, indicating that the targeted sources did not contribute significantly to PM concentrations. Wind direction can frequently contribute to temporal variation in air pollutant concentrations and was investigated in this study. Sampling days were divided into four classifications: predominantly south winds, predominantly north winds, calm/variable winds, and winds from other directions. The effect of wind direction was found to be statistically significant for both PM10 and PM2.5. For both size ranges, PM concentrations were typically highest on days with predominantly south winds; days with calm/variable winds generally produced higher concentrations than did those with predominantly north winds or those with winds from "other" directions. The significant effect of wind direction suggests that regional sources may exert a large influence on PM concentrations in the area.  相似文献   

4.
Fang GC  Chang CN  Wang NP  Wu YS  Wang V  Fu PP  Cheng CD  Chen SC  Lin DY 《Chemosphere》2000,41(11):1727-1731
Ambient particle concentration was taken on the traffic sampling site over the Chung-Chi Road over bridge (CCROB) in front of Hungkuang Institute of Technology (HKIT). The sampling time was from August 1999 to December 1999. During the sampling period, Taiwan's biggest earthquake in more than a century registered 7.3 on the Richter scale (Taiwan Chi-Chi Earthquake). Besides, there were more than 20,000 aftershocks that followed the Taiwan Chi-Chi Earthquake within three months. Thus, the PM2.5, PM(2.5-10) particle concentrations were also collected then and compared with total suspended particle (TSP) in this study. The average PM(2.5-10), PM2.5 and TSP concentrations are 24.6, 58.0 and 106 microg/m3, respectively, after the Taiwan Chi-Chi Earthquake. The average TSP concentrations before and after Taiwan Chi-Chi Earthquake were 70 and 127 microg/m3, respectively. It is clearly shown that the average concentration of TSP after Taiwan Chi-Chi Earthquake was about 1.8 times as that of TSP concentration before Taiwan Chi-Chi Earthquake in the traffic site of central Taiwan. And the ratios of PM2.5/PM(2.5-10), PM2.5/PM10 and PM2.5/TSP are 2.2%, 67.2%, 38.9%, respectively. The results also indicated about Chi-Chi fine particle concentration (PM25) and the TSP increases in the traffic site of central Taiwan after Taiwan Chi-Chi Earthquake.  相似文献   

5.
Abstract

Field data for coarse particulate matter ([PM] PM10) and fine particulate matter (PM2.5) were collected at selected sites in Southeast Kansas from March 1999 to October 2000, using portable MiniVol particulate samplers. The purpose was to assess the influence on air quality of four industrial facilities that burn hazardous waste in the area located in the communities of Chanute, Independence, Fredonia, and Coffeyville. Both spatial and temporal variation were observed in the data. Variation because of sampling site was found to be statistically significant for PM10 but not for PM2.5. PM10 concentrations were typically slightly higher at sites located within the four study communities than at background sites. Sampling sites were located north and south of the four targeted sources to provide upwind and downwind monitoring pairs. No statistically significant differences were found between upwind and downwind samples for either PM10 or PM2.5, indicating that the targeted sources did not contribute significantly to PM concentrations. Wind direction can frequently contribute to temporal variation in air pollutant concentrations and was investigated in this study. Sampling days were divided into four classifications: predominantly south winds, predominantly north winds, calm/variable winds, and winds from other directions. The effect of wind direction was found to be statistically significant for both PM10 and PM2.5. For both size ranges, PM concentrations were typically highest on days with predominantly south winds; days with calm/variable winds generally produced higher concentrations than did those with predominantly north winds or those with winds from “other” directions. The significant effect of wind direction suggests that regional sources may exert a large influence on PM concentrations in the area.  相似文献   

6.
Ammonia emissions contribute to the formation of secondary particulate matter (PM) and violations of the National Ambient Air Quality Standard. Ammonia mass concentration measurements were made in February 1999 upwind and downwind of an open-lot dairy in California, using a combination of active bubbler and passive filter samplers. Ammonia fluxes were calculated from concentrations measured at 2, 4, and 10 m above ground at three locations on the downwind edge of the dairy, using micrometeorological techniques. A new method was developed to interpolate fluxes at six additional locations from ammonia concentrations measured at a single height, providing measurements at sufficient spatial resolution along the downwind border of the dairy to account for the heterogeneity of the source. PM measured up- and downwind of the dairy demonstrated insignificant ammonium particle formation in the immediate vicinity of the dairy and negligible contribution of dissociated ammonium nitrate to measured ammonia concentrations. Ammonium nitrate concentrations measured downwind of the dairy ranged from 26 to 0.26 microg m(-3) and from 2 to 43% of total PM2.5 mass concentrations. Measured ammonia fluxes showed that liquid manure retention ponds represented relatively minor sources of ammonia in winter on the dairy studied. Ammonia emission factors derived from the measurements ranged from 19 to 143 g head(-1) day(-1), showing an increase with warmer, drier weather and a decrease with increased relative humidity and lower temperatures.  相似文献   

7.
Abstract

Public housing developments across the United States are being demolished, potentially increasing local concentrations of particulate matter (PM) in communities with high burdens of severe asthma. Little is known about the impact of demolition on local air quality. At three public housing developments in Chicago, IL, PM with an aerodynamic diameter <10 μm (PM10) and <2.5 μm were measured before and during high-rise demolition. Additionally, size-selective sampling and real-time monitoring were concurrently performed upwind and downwind of one demolition site. The concentration of particulates attributable to demolition was estimated after accounting for background urban air pollution. Particle microscopy was performed on a small number of samples. Substantial increases of PM10 occurred during demolition, with the magnitude of that increase varying based on sampler distance, wind direction, and averaging time. During structural demolition, local concentrations of PM10 42 m downwind of a demolition site increased 4- to 9-fold above upwind concentrations (6-hr averaging time). After adjusting for background PM10, the presence of dusty conditions was associated with a 74% increase in PM10 100 m downwind of demolition sites (24-hr averaging times). During structural demolition, short-term peaks in real-time PM10 (30-sec averaging time) occasionally exceeded 500 μg/m3. The median particle size downwind of a demolition site (17.3 μm) was significantly larger than background (3 μm). Specific activities are associated with real-time particulate measures. Microscopy did not identify asbestos or high concentrations of mold spores. In conclusion, individuals living near sites of public housing demolition are at risk for exposure to high particulate concentrations. This increase is characterized by relatively large particles and high short-term peaks in PM concentration.  相似文献   

8.
Scientists have effectively proved that vegetative environment buffers (VEBs) can be used for reducing dust emissions from livestock buildings, but they have seen fewer tests in poultry farms. A field research was conducted to assess the effectiveness of VEBs on reducing downwind transport of particulate matter (PM) from a ventilated poultry house in Changchun. Five plant species transferred from local area were used to establish five diverse VEBs and separately installed outside of the ventilation fans in summer 2017. The five plant species were Winged Euonymus (WE), Malus Spectabilis (MS), Padus Maackii (PAA), Acer Saccharum Marsh (ASM), and Padus Virginiana “Red Select Shrub” (PV_RSS). The mass concentrations of PM2.5 and PM10 (particulate matter with an aerodynamic diameter of 2.5 μm and 10 μm or less, respectively) were monitored at downwind and upwind sampling locations around the VEB. The results showed that with the presenting of VEBs, the particle concentrations at the downwind sampling point were significantly reduced compared with that at the upwind sampling point (p < 0.05). Specifically, compared to the control test without VEB, the VEB with PV_RSS had the best PM concentration reduction rate (CRR) of 47.24%±4.33% and 41.13%±5.83% for PM2.5 and PM10, respectively. The rough surface of plant leaves may help intercept more PM, though it was also affected by other factors (such as the blade angle, the interaction with wind) needed to be further investigated. The VEB with PV_RSS, which presented the best capacity of CRR, selectively intercepted PM, mainly related to the elements of N, Na, Mg, P, S, and Cl.

Implications: Five plant species, including WE, PAA, MS, ASM, and PV_RSS, were evaluated as VEBs to mitigate particulate emissions from outside of a ventilated poultry house in Changchun. They all significantly reduced particulate matter emissions. However, the PV_RSS presented the best capability of trapping fine and coarse particles: PM2.5 and PM10, respectively, while the PAA was the worst one. The microstructure of leaves affected particle deposition and remaining on the leaves, and PV_RSS selectively intercepted particulate matter mainly related to certain elements.  相似文献   


9.
Particles emitted from gravel processing sites are one contributor to worsening air quality in Taiwan. Major pollution sources at gravel processing sites include gravel and sand piles, unpaved roads, material crushers, and bare ground. This study analyzed fugitive dust emission characteristics at each pollution source using several types of particle samplers, including total suspended particulates (TSP), suspended particulate (PM10), fine suspended particulate (PM2.5), particulate sizer, and dust-fall collectors. Furthermore, silt content and moisture in the gravel were measured to develop particulate emission factors. The results showed that TSP (< 100 microm) concentrations at the boundary of gravel sites ranged from 280 to 1290 microg/m3, which clearly exceeds the Taiwan hourly air quality standard of 500 microg/m3. Moreover, PM10 concentrations, ranging from 135 to 550 microg/m3, were also above the daily air quality standard of 125 microg/m3 and approximately 1.2 and 1.5 times the PM2.5 concentrations, ranging from 105 to 470 microg/m3. The size distribution analysis reveals that mass mean diameter and geometric standard deviation ranged from 3.2 to 5.7 microm and from 2.82 to 5.51, respectively. In this study, spraying surfactant was the most effective control strategy to abate windblown dust from unpaved roads, having a control efficiency of approximately 93%, which is significantly higher than using paved road strategies with a control efficiency of approximately 45%. For paved roads, wet suppression provided the best dust control efficiencies ranging from 50 to 83%. Re-vegetation of disturbed ground had dust control efficiencies ranging from 48 to 64%.  相似文献   

10.
Spatial gradients of vehicular emitted air pollutants were measured in the vicinity of three roadways in the Austin, Texas area: (1) State Highway 71 (SH-71), a heavily traveled arterial highway dominated by passenger vehicles; (2) Interstate 35 (I-35), a limited access highway north of Austin in Georgetown; and (3) Farm to Market Road 973 (FM-973), a heavily traveled surface roadway with significant truck traffic. A mobile monitoring platform was used to characterize the gradients of CO and NOx concentrations with increased distance from each roadway, while concentrations of carbonyls in the gas-phase and fine particulate matter mass and composition were measured at stationary sites upwind and at one (I-35 and FM-973) or two (SH-71) downwind sites. Regardless of roadway type or wind direction, concentrations of carbon monoxide (CO), nitric oxide (NO), and oxides of nitrogen (NOx) returned to background levels within a few hundred meters of the roadway. Under perpendicular wind conditions, CO, NO and NOx concentrations decreased exponentially with increasing distance perpendicular to the roadways. The decay rate for NO was more than a factor of two greater than for CO, and it comprised a larger fraction of NOx closer to the roadways than further downwind suggesting the potential significance of near roadway chemical processing as well as atmospheric dilution. Concentrations of most carbonyl species decreased with distance downwind of SH-71. However, concentrations of acetaldehyde and acrolein increased farther downwind of SH-71, suggesting chemical generation from the oxidation of primary vehicular emissions. The behavior of particle-bound organic species was complex and further investigation of the size-segregated chemical composition of particulate matter (PM) at increasing downwind distances from roadways is warranted. Fine particulate matter (PM2.5) mass concentrations, polycyclic aromatic hydrocarbons (PAHs), hopanes, and elemental carbon (EC) concentrations generally exhibited concentrations that decreased with distance downwind of SH-71. Concentrations of organic carbon (OC) increased from upwind concentrations immediately downwind of SH-71 and continued to increase further downwind from the roadway. This behavior may have primarily resulted from condensation of semi-volatile organic species emitted from vehicle sources with transport downwind of the roadway.  相似文献   

11.
The particle size distributions (PSDs) of particulate matter (PM) in the downwind plume from simulated sources of a cotton gin were analyzed to determine the impact of PM settling on PM monitoring. The PSD of PM in a plume varies as a function of gravitational settling. Gravitational settling has a greater impact on the downwind PSD from sources with PSDs having larger mass median diameters (MMDs). The change in PSD is a function of the source PSD of emitted PM, wind speed, and downwind distance. Both MMD and geometric standard deviation (GSD) in the downwind plume decrease with an increase in downwind distance and source MMD. The larger the source MMD, the greater the change in the downwind MMD and GSD. Also, the greater the distance from the source to the sampler, the greater the change in the downwind MMD and GSD. Variations of the PSD in the downwind plume significantly impact PM10 sampling errors associated with the U.S. Environmental Protection Agency (EPA) PM10 samplers. For the emission sources with MMD > 10 microm, the PM10 oversampling rate increases with an increase in downwind distance caused by the decrease of GSD of the PSD in the downwind plume. Gravitational settling of particles does not help reduce the oversampling problems associated with the EPA PM10 sampler. Furthermore, oversampling rates decrease with an increase of the wind speed.  相似文献   

12.
Abstract

Ammonia emissions contribute to the formation of secondary particulate matter (PM) and violations of the National Ambient Air Quality Standard. Ammonia mass concentration measurements were made in February 1999 upwind and downwind of an open-lot dairy in California, using a combination of active bubbler and passive filter samplers. Ammonia fluxes were calculated from concentrations measured at 2, 4, and 10 m above ground at three locations on the downwind edge of the dairy, using micrometeorological techniques. A new method was developed to interpolate fluxes at six additional locations from ammonia concentrations measured at a single height, providing measurements at sufficient spatial resolution along the downwind border of the dairy to account for the heterogeneity of the source. PM measured up- and downwind of the dairy demonstrated insignificant ammonium particle formation in the immediate vicinity of the dairy and negligible contribution of dissociated ammonium nitrate to measured ammonia concentrations. Ammonium nitrate concentrations measured downwind of the dairy ranged from 26 to 0.26 μg m?3 and from 2 to 43% of total PM2.5 mass concentrations. Measured ammonia fluxes showed that liquid manure retention ponds represented relatively minor sources of ammonia in winter on the dairy studied. Ammonia emission factors derived from the measurements ranged from 19 to 143 g head?1 day?1, showing an increase with warmer, drier weather and a decrease with increased relative humidity and lower temperatures.  相似文献   

13.
The tapered element oscillating microbalance (TEOM) is one type of continuous ambient particulate matter (PM) monitor. Adsorption and desorption of moisture and semivolatile species may cause positive or negative artifacts in TEOM PM mass measurement. The objective of this field study was to investigate possible uncertainties associated with TEOM measurements in the poultry operation environment. For comparisons of TEOM with filter-based gravimetric method, four instruments (TEOM-PM10, low-volume PM10 sampler TEOM-PM2.5, and PM2.5 speciation sampler) were collocated and tested inside a poultry house for PM2.5 and PM10 (PM with aerodynamic equivalent diameter < or =2.5 and < or =10 microm, respectively) measurements. Fifteen sets of 24-hr PM10 concentrations and 13 sets of 24-hr PM2.5 measurements were obtained. Results indicate that compared with filter-based gravimetric method, TEOM gave significantly lower values of both PM10 and PM2.5 mass concentrations. For PM10, the average ratio of TEOM to the gravimetric method was 0.936. For PM2.5, the average ratio of TEOM to the gravimetric method was 0.738. Particulate matter in the poultry houses possibly contains semivolatile compounds and moisture due to high levels of relative humidity (RH) and gas pollutants. The internal heating mechanism of the TEOM may cause losses in mass through volatilization. To investigate the effects of TEOM settings on concentration measurements, the heaters of two identical TEOMs were set at 50 degrees C, 30 degrees C, or no heating at all. They were collocated and tested for total suspended particle (TSP), PM10, and PM25 measurements in layer house for 6 weeks. For all TSR PM10, and PM2.5 measurements, the internal TEOM temperature setting had a significant effect (P < 0.05). Significantly higher PM mass concentrations were measured at lower temperature settings. The effects of environmental (i.e., temperature, RH, NH3 and CO2 concentrations) and instrumental (i.e., filter loading and noise) parameters on PM measurements were also assessed using regression analysis.  相似文献   

14.
Federally funded, multistate field studies were initiated in 2002 to measure emissions of particulate matter (PM) < 10 microm (PM10) and total suspended particulate (TSP), ammonia, hydrogen sulfide, carbon dioxide, methane, nonmethane hydrocarbons, and odor from swine and poultry production buildings in the United States. This paper describes the use of a continuous PM analyzer based on the tapered element oscillating microbalance (TEOM). In these studies, the TEOM was used to measure PM emissions at identical locations in paired barns. Measuring PM concentrations in swine and poultry barns, compared with measuring PM in ambient air, required more frequent maintenance of the TEOM. External screens were used to prevent rapid plugging of the insect screen in the PM10 preseparator inlet. Minute means of mass concentrations exhibited a sinusoidal pattern that followed the variation of relative humidity, indicating that mass concentration measurements were affected by water vapor condensation onto and evaporation of moisture from the TEOM filter. Filter loading increased the humidity effect, most likely because of increased water vapor adsorption capacity of added PM. In a single layer barn study, collocated TEOMs, equipped with TSP and PM10 inlets, corresponded well when placed near the inlets of exhaust fans in a layer barn. Initial data showed that average daily mean concentrations of TSP, PM10, and PM2.5 concentrations at a layer barn were 1440 +/- 182 microg/m3 (n = 2), 553 +/- 79 microg/m3 (n = 4), and 33 +/- 75 microg/m3 (n = 1), respectively. The daily mean TSP concentration (n = 1) of a swine barn sprinkled with soybean oil was 67% lower than an untreated swine barn, which had a daily mean TSP concentration of 1143 +/- 619 microg/m3. The daily mean ambient TSP concentration (n = 1) near the swine barns was 25 +/- 8 microg/m3. Concentrations of PM inside the swine barns were correlated to pig activity.  相似文献   

15.
Fang GC  Chang CN  Wu YS  Wang NP  Wang V  Fu PP  Yang DG  Che SC 《Chemosphere》2000,41(9):1349-1359
Aerosol samples for PM2.5, PM(2.5-10) and TSP were collected from June to September 1998 and from February to March 1999 in central Taiwan. Ion chromatography was used to analyze the acidic anions: sulfate, nitrate and chloride in the Universal samples. The ratios of fine particle concentrations to coarse particle concentrations displayed that the fine particle concentrations are almost greater than that of coarse particle concentrations in Taichung area. The average concentrations of PM2.5, PM(2.5-10) and TSP in urban sites are higher than in suburban and rural sites at both daytime and night-time. Chloride dominated in the coarse mode in daytime and in fine mode in night-time. Nitrate can be found in both the coarse and fine modes. Sulfate dominated in fine mode in both daytime and night-time.  相似文献   

16.
With utility-scale photovoltaic (PV) projects increasingly developed in dry and dust-prone geographies with high solar insolation, there is a critical need to analyze the impacts of PV installations on the resulting particulate matter (PM) concentrations, which have environmental and health impacts. This study is the first to quantify the impact of a utility-scale PV plant on PM concentrations downwind of the project site. Background, construction, and post-construction PM2.5 and PM10 (PM with aerodynamic diameters <2.5 and <10 μm, respectively) concentration data were collected from four beta attenuation monitor (BAM) stations over 3 yr. Based on these data, the authors evaluate the hypothesis that PM emissions from land occupied by a utility-scale PV installation are reduced after project construction through a wind-shielding effect. The results show that the (1) confidence intervals of the mean PM concentrations during construction overlap with or are lower than background concentrations for three of the four BAM stations; and (2) post-construction PM2.5 and PM10 concentrations downwind of the PV installation are significantly lower than the background concentrations at three of the four BAM stations. At the fourth BAM station, downwind post-construction PM2.5 and PM10 concentrations increased marginally by 5.7% and 2.6% of the 24-hr ambient air quality standards defined by the U.S. Environmental Protection Agency, respectively, when compared with background concentrations, with the PM2.5 increase being statistically insignificant. This increase may be due to vehicular emissions from an access road near the southwest corner of the site or a drainage berm near the south station. The findings demonstrate the overall environmental benefit of downwind PM emission abatement from a utility-scale PV installation in desert conditions due to wind shielding. With PM emission reductions observed within 10 months of completion of construction, post-construction monitoring of downwind PM levels may be reduced to a 1-yr period for other projects with similar soil and weather conditions.

Implications: This study is the first to analyze impact of a utility photovoltaic (PV) project on downwind particulate matter (PM) concentration in desert conditions. The PM data were collected at four beta attenuation monitor stations over a 3-yr period. The post-construction PM concentrations are lower than background concentrations at three of four stations, therefore supporting the hypothesis of post-construction wind shielding from PV installations. With PM emission reductions observed within 10 months of completion of construction, postconstruction monitoring of downwind PM levels may be reduced to a 1-yr period for other PV projects with similar soil and weather conditions.  相似文献   


17.
As part of an international research project, aerosol samples were collected by several filter-based devices on Nuclepore polycarbonate membrane, Teflon membrane and quartz fibre filters over separate daylight periods and nights, and on-line aerosol measurements were performed by TEOM and aethalometer within an urban canyon (kerbside) and at a near-city background site in Budapest, Hungary from 23 April–5 May 2002. Aerosol masses in PM2.0, PM10–2.0, PM2.5, PM10 size fractions and of TSP were determined gravimetrically; atmospheric concentrations of organic (OC) and elemental carbon (EC) for PM2.5 (or PM2.0), PM10 fractions and for TSP were measured by thermal–optical transmission method. Repeatability of the mass determination by Nuclepore filters seems to be 5–6%. Collections on Teflon filters yielded smaller mass on average by 8(±12)% than that for the Nuclepore filters. Quartz filters overestimated the PM10 mass in comparison with the Nuclepore filters due primarily to sampling artefacts on average by 10(±16)% at the kerbside. Tandem filter set-ups were utilised for correcting the sampling artefacts for OC by subtraction method. At the kerbside, the aerosol mass was made up on average of 35(±4)% of organic matter (OM) in the PM10 fraction, while the contribution of OM to the PM2.5 mass was 43(±9)%. At the background, OM also accounted for 43(±13)% of the PM2.0 mass. On average, EC made up 14(±6)%, 7(±2)% and 4.5(±1.1)% of the mass in the PM2.5, PM10 fractions and TSP, respectively, at the kerbside; while its contribution was only 2.1(±0.5)% in the PM2.0 fraction in the near-city background. Temporal variability for PM mass, OC and EC concentrations was related to road traffic, local meteorology and long-range transport of air masses. It was concluded that a direct coupling between the atmospheric concentration levels and vehicle circulation can be identified within the urban canyon, nevertheless, the local meteorology in particular and long-range transport of air masses have much more influence on the air quality than changes in the source intensity of road traffic. Concentration ratios of OC/EC were evaluated, and the amount of secondary organic aerosol (SOA) was estimated by using EC as tracer for the primary OC emissions. Mean contribution and standard deviation of the SOA to the OM in the PM2.5 size fraction at the kerbside over daylight periods and nights were of 37(±18) and 46(±16)%, respectively.  相似文献   

18.
ABSTRACT

Motor vehicle contributions to primary particulate matter (PM) emissions include exhaust, tire wear, brake and clutch wear, and resuspended road dust. Relatively few field studies have been conducted to quantify fleetaverage exhaust emissions for actual on-road conditions. Therefore, direct measurements of motor vehicle-related PM emissions are warranted. In this study, PM10 and PM2.5 mass concentrations were measured near two major highways in the St. Louis area over the period from February–April 1997. Samplers were deployed both upwind and downwind of the roadways to capture the transport and dispersion of PM with distance from the roadway. The observed microscale concentration fields were compared to estimates using the PART5 emission factor model together with the CALINE4 highway dispersion model. Traffic- induced PM mass concentrations observed downwind of the roadway were always less than PART5/CALINE4 predictions; average percent differences for observed traffic-induced mass concentrations compared to predicted values were ?34% for PM2.5 and -70% for PM10. In most cases, the observed PM concentration decay with increasing distance from the roadway was steeper than predicted by dispersion modeling. Motor vehicle-induced emission factors were reconstructed by fitting CALINE4 to the observed concentration data with the emission factor as the sole adjustable parameter. Reconstructed fleet-average motor vehicle emission factors for the urban interstate highway were 0.03–0.04 g/VMT for both PM2.5 and PM10, while the fleet-average emission factors for the rural interstate highway were 0.2 and 0.3 g/VMT for PM2.5 and PM10, respectively.  相似文献   

19.
Ambient air PCB concentrations in the Lake Calumet region in Southeast Chicago have been found to be significantly higher than in nearby non-urban areas. This area is highly industrialized and also contains municipal sludge drying facilities and landfills. In an effort to quantify the importance of the sludge drying facilities to the elevated concentrations, upwind/downwind air samples from the Calumet East sludge drying bed were obtained between April and October 2002. For these samples, the downwind minus upwind (downwind-upwind) concentration varied from 0.33 to 1.27ngm(-3) for non-northeast (NE) direction winds suggesting sludge drying is a source of PCBs to the atmosphere. However, the upwind concentrations were higher than the downwind for winds from the NE of the sampling site suggesting more significant source(s), possibly Lake Calumet or the so called "Cluster site" NE of the sludge drying beds. Flux chamber experiments carried out during the sampling period measured average PCB fluxes of 210ngm(-2)h(-1) (range 43-910ngm(-2)h(-1)) which resulted in an overall flux of 0.005kgday (d)(-1) ( approximately 2kgyr(-1)). A developed regression equation between moisture content and sludge concentration estimated higher PCB losses of 0.26kgd(-1) ( approximately 95kgyr(-1)). Although these two approaches yielded different values, they both indicate that the emission from the Calumet East sludge drying beds were of minimal importance when compared to the total estimated amount of 2-70kgd(-1) (700-2100kgyr(-1)) of PCBs entering the Chicago atmosphere.  相似文献   

20.
Particle number distributions were measured simultaneously upwind and downwind of a suburban-agricultural freeway to determine relationships with traffic and meteorological parameters. Average traffic volumes were 6330 vehicles/hr with 10% heavy-duty vehicles, and volumes were higher in July than November. Most downwind particle number distributions were bimodal, with a primary mode at approximately 10-25 nm, indicating that newly formed particles were sampled. Total downwind 6-237 nm particle number concentrations (Ntot) ranged from 9.3 x 10(3) to 2.5 x 10(5) cm(-3), with higher daily average concentrations in November compared with July. Ntot correlated with wind speed, temperature, and relative humidity. Upwind photochemically initiated nucleation likely led to elevated background nanoparticle concentrations in July, as evidenced by increasing upwind distribution modal diameter with increasing temperature and a strong correlation between upwind Ntot and solar radiation. Also in summer, Ntot showed stronger correlation with heavy-duty vehicle volumes than wind speed, temperature, and relative humidity. These results indicate the importance of measuring background particle size distributions simultaneously with roadside distributions. There may be a minimum vehicle volume from which useful real-world vehicle particle number distributions can be measured at roadside, even when collecting samples within 10 m of the traveled lanes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号