首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A laboratory procedure was developed and verified for stabilizing salt produced by an industrial waste incinerator. This procedure is based on salt stabilization by means of an asphalt binder. Conductivity values and relevant anion contents in leachates of stabilized waste with an asphalt coating were near zero. The pH value of these leachates equaled the pH value of the water used, so that the stabilized waste salt represented inert material, posing no environmental hazard. An unusually significant reduction in the volume of processed salt occurred during stabilization. After compacting under 10.4 MPa pressure, the volume of test specimens was almost 55% smaller than the initial salt volume. In practice, this would mean more than a doubling of landfill waste capacity. Volume reduction was successfully explained by means of a mathematical model.  相似文献   

2.
Determination of Henry's law constant for elemental mercury   总被引:1,自引:0,他引:1  
The assessment of the global mercury cycle involves estimations of the evasion of mercury form oceanic waters. In such estimations Henry's law constant is often used. In this study the Henry's law constant for elemental mercury has been re-determined in MQ water and artificial sea water. Moreover, for the first time it has been determined for 1.5M sodium chloride (NaCl) solution which is of relevance for modeling of atmospheric waters at coastal locations. For all solutions, experiments has been conducted at five different temperatures between 278 and 308K, using a novel technique, for mercury, based on direct measurements of the portioning of mercury between the aqueous and gaseous phase. Elemental mercury was extracted from the water column and the logarithm of the mass of extracted mercury was plotted against time. A dimensionless Henry's law constant, defined as: [Formula: see text] was obtained from the slope of the curve. Almost no difference was observed in the values comparing the Milli-Q water and artificial sea water, however for the 1.5M NaCl solution a salting-out effect was seen, i.e. the solubility of mercury in the water phase decreased. The decreased solubility will generate an increase in the value of Henry's law constant.  相似文献   

3.
研究了载硫温度、硫炭比(简称S/C),吸附温度等因素对载硫活性炭的硫含量、脱汞能力以及硫损失的影响,探讨载硫活性炭制备的工艺条件优化。结果表明,不同载硫温度下制备的载硫活性炭的气态Hg0吸附能力远强于原料活性炭;载硫温度不同时,负载到活性炭孔隙或表面上的硫的形态不同,导致了脱汞能力的差异,较合适的载硫温度为350℃;S/C为5%(质量分数,下同)时,随着吸附温度的升高,载硫活性炭的气态Hg0吸附量降低;在一定的载硫温度下,原料中S/C越高时,制备的载硫活性炭的硫含量越高、气态Hg0吸附能力越强,但其硫损失率也越高,从实际的使用效果来看,较合适的S/C为10%。  相似文献   

4.
用于气态零价汞转化的催化剂研究   总被引:4,自引:0,他引:4  
零价汞的高效去除是燃煤烟气汞污染控制过程中的关键环节。为了促进烟气中的零价汞转化为易于去除的氧化态汞,分别考察了在有HCl存在时,几种过渡金属氧化物(Cu、Fe、Mn、Co和Zr)对零价汞氧化的催化作用,以筛选出性能较好的催化组分;为提高催化剂的抗SO2性能,分别尝试了利用几种金属元素(Sr、Ce、W和Mo)对催化剂进行掺杂改性的方法。结果表明,锰氧化物的催化作用最好,其最佳使用温度在573 K左右;SO2对零价汞的催化氧化有明显抑制作用,在无SO2及1 400 mg/m3SO2时锰催化剂对零价汞催化氧化效率分别为93%和78%。而Mo改性的锰氧化物催化剂的抗硫性能大幅提高,在1 400 mg/m3SO2存在的情况下其对零价汞的催化氧化效率可达到90%以上,较其他改性元素高。  相似文献   

5.
Gamma radiation was found to be an effective tool for hygienization of municipal wastewater sludge. The sludge received from the primary settling tank of a municipal wastewater treatment plant was gamma irradiated using a cobalt-60 source in a sludge hygienization research irradiator. The process parameters were adjusted to effectively eliminate coliform bacteria in the sludge and to prevent their regrowth. Irradiated sludge was found to be free of fecal coliform and could be directly disposed after drying in a landfill or used as manure. It could also be used as a medium for growth of Rhizobium sp for obtaining a bio-fertilizer.  相似文献   

6.
为研究来源于生物质的椰壳活性炭对单质汞的脱除性能, 采用化学浸渍法对椰壳活性炭进行化学改性处理,并在小型实验台架上考察了椰壳碳基吸附剂的脱汞性能.并对改性前后的样品进行了BET和SEM表征分析以研究改性前后椰壳活性炭的变化规律.结果表明,改性后椰壳活性炭具有较强的脱汞能力,特别是在140℃、180℃时的脱汞效率仍保持在95%以上.改性后椰壳活性炭具有更多的利于脱汞的官能团,其主要靠化学吸附脱汞.烟气中低浓度的SO2与NO对汞的脱除有一定的抑制作用,而HCl有一定的促进作用.  相似文献   

7.
水泥、粉煤灰及DTCR固化/稳定化重金属污染底泥   总被引:2,自引:0,他引:2  
采用水泥、粉煤灰及有机硫稳定剂DTCR固化/稳定化处理重金属污染的底泥,考察固化体的抗压强度及重金属浸出毒性,确定了底泥固化/稳定化的最佳工艺条件。结果表明:仅用水泥固化/稳定化重金属污染底泥,固化体抗压强度随水泥用量的增加而上升,重金属浸出浓度则下降,当水泥∶干底泥质量比为0.6∶1.0时,固化体7 d抗压强度能达到0.99 MPa的标准值;进一步研究发现,水泥∶粉煤灰∶干底泥质量比为0.54∶0.06∶1.0时,重金属浸出浓度有所上升,但7 d及28 d抗压强度仍能分别达到1.2 MPa和2.8 MPa;加入DTCR后,当水泥∶粉煤灰∶DTCR∶干底泥质量比为0.54∶0.06∶0.012∶1.0时,固化体7 d及28 d抗压强度分别为1.1 MPa和2.1 MPa,醋酸缓冲溶液法浸出的Cd、Pb、Zn和Cu浓度分别为0.102、0.189、0.180和0.032 mg/L。  相似文献   

8.
A J Renneberg  M J Dudas 《Chemosphere》2001,45(6-7):1103-1109
There are many industrial sites, such as gas processing plants, that are contaminated with both mercury and hydrocarbons. These sites tend to be localized but can have very high concentrations of mercury in the soil and heterogeneous distribution of hydrocarbons. The original form of mercury in many cases was elemental mercury from broken manometers. Over time the mercury has become redistributed within soil and has undergone chemical transformations into new forms. The forms of mercury will govern the chemical behavior and the availability of the mercury to biological receptors. The availability of the mercury is important as it will govern the risk associated with the contaminated soil and will also determine the effectiveness of any attempts at remediation. In the present study a chemical extraction protocol was used to determine the forms of mercury in soil originally contaminated by spillage of elemental mercury and petroleum hydrocarbons. Chemical extractions have been used in the past to determine the forms of mercury in uncontaminated soils and several researchers have used them to study contaminated soils. However, to date, no researchers have studied the forms of mercury in soils following years of weathering of elemental mercury after a spill. This study shows that decades after the original spill the elemental mercury has transformed and is dominantly (up to 85%) associated with soil organic matter, and to a lesser extent the mineral fraction of soil.  相似文献   

9.
通过活性炭负载CuO和CeO2来制备吸附剂,采用固定床吸附方式,在不同反应条件下对吸附剂的吸附性能进行测试,筛选出去除效率最好的吸附剂,并通过BET和XRD对吸附剂的理化性质进行分析。结果表明,CuO和CeO2的加入大大改变了原活性炭的比表面积和孔结构,改善了活性炭的吸附性能。CuO-CeO2/AC中CuO和CeO2质量比不同,对汞的去除效率也不同,在1∶2时去除效率最好;CuO-CeO2/AC中所负载的CuO和CeO的总量为5%时,能大大促进汞的吸附效率,增长有效吸附时间;CuO-CeO2/AC对汞的吸附性能随反应温度的增加呈先增加后减小的趋势,在80℃时达到最大值。  相似文献   

10.
过硫酸钾脱除气态元素汞的试验研究   总被引:2,自引:0,他引:2  
在鼓泡塔反应器中,用过硫酸钾(K2S2O8)脱除气态元素汞.试验考察了K2S2O8浓度、吸收温度及催化剂等因素对脱汞效率的影响.结果表明:当K2S2O8在1.0~10.0 mmol/L时,随着浓度的增加,脱汞效率显著升高;AgNO3对K2S2O8脱汞具有显著的催化作用,且0.3 mmol/L AgNO3的催化效果优于0.1 mmol/L AgNO3;CuSO4对K2S2O8除汞也具有催化作用,但催化效果不如AgNO3;AgNO3存在下,低温更有利于汞的脱除.  相似文献   

11.
Jeon SH  Eom Y  Lee TG 《Chemosphere》2008,71(5):969-974
Photocatalytic fibers were generated from the continuous evaporation of titanium tetraisopropoxide with tetraethyl orthosilicate through a flame burner. The morphology, the crystal form, and the components of the nanotitanosilicate fibers were analyzed by Raman spectroscopy, Field emission-scanning electron microscope, X-ray diffraction, and Brunauer-Emmett-Teller surface area analysis. The nanotitanosilicates prepared by three different carrier gases (air, N(2), and Ar) were tested for their photocatalytic ability to remove/oxidize gas-phase elemental mercury. Under UV black light, the Hg(0) capture efficiencies were 78%, 86%, and 85% for air, N(2), and Ar, respectively. For air, the value was close to 90%, even under household fluorescent light. The Hg(0) capture efficiency by nanotitanosilcate was measured under fluorescent light, UV black light, and sunlight.  相似文献   

12.
Byun Y  Ko KB  Cho M  Namkung W  Shin DN  Lee JW  Koh DJ  Kim KT 《Chemosphere》2008,72(4):652-658
The oxidation of gas phase elemental mercury (Hg0) by atmospheric pressure non-thermal plasma has been investigated at room temperature, employing both dielectric barrier discharge (DBD) of the gas mixture of Hg0 and injection of ozone (O3) into the gas mixture of Hg0. Results have shown that the oxidative efficiencies of Hg0 by DBD and the injection of O3 are 59% and 93%, respectively, with energy consumption of 23.7 J L(-1). This combined approach has indicated that O3 plays a decisive role in the oxidation of gas phase Hg0. Also the oxidation of Hg0 by injecting O3 into the gas mixture of Hg0 proceeds with better efficiency than DBD of the gas mixture of Hg0. These results have been explained by the incorporation of the competitive reaction pathways between the formation of HgO by O3 and the decomposition of HgO back to Hg0 in the plasma environment.  相似文献   

13.
Jeong J  Jurng J 《Chemosphere》2007,68(10):2007-2010
The removal of elemental mercury (Hg(0)) with the reactive species produced from dielectric barrier discharge (DBD) was studied. The effects of the operating parameters, such as the applied voltage, residence time, initial concentration and co-existence of other pollutants, were investigated. The removal of Hg(0) was significantly promoted by an increase in the applied voltage of the DBD reactor system. The presence of NO gas decreased the Hg(0) removal efficiency within the range of input powers tested compared to the case of Hg(0)-only due to the competition for ozone between Hg(0) and NO gas in the DBD reactor.  相似文献   

14.
采用钴-钛层柱粘土催化剂,向烟气中添加HCl气体进行零价汞的催化脱除实验研究。考察了反应温度及催化剂的焙烧温度、Ti/粘土、活性组分(Co)负载量等制备条件对零价汞催化脱除效果的影响。研究表明,在HCl含量20×10-6的模拟烟气中,焙烧温度为400℃、Ti/粘土为15 mmol/g、Co含量为5 wt%(以CoO计)的钴钛层柱粘土催化剂(Co-Ti-PILCs)在空速为1.0×104 h-1、温度为300℃时零价汞脱除效率为86.7%。  相似文献   

15.
Byun Y  Koh DJ  Shin DN 《Chemosphere》2011,83(1):69-75
The removal mechanism of elementary mercury (Hg(0)) by non-thermal plasma (NTP) has been investigated, where dielectric barrier discharge and O(3) injection methods as oxidation techniques are employed, together with the analysis of mercury species deposited on the reactor surface using temperature-programmed desorption and dissociation (TPDD) and scanning electron microscopy-energy dispersive spectroscopy. The removal of Hg(0) by NTP is found to be time-dependent and proceed through three domains; the Hg(0) concentration just slightly decreases as soon as NTP is initiated and then becomes constant for several minutes (Region 1), thereafter starts to decrease rapidly for 1h (Region 2) and, after passing fall-off region, very slowly decreases for about 4h (Region 3). The deposited mercury species on the reactor surface were conglomerated like islands, rather than dispersed uniformly, and their ratio of Hg(0) to O composition is observed to be 1:2. Additionally, the new peak in TPDD spectra observed in the region of 260-380°C is proposed as HgO(3). These results lead us to conclude that the deposited mercury species by NTP have extra O atoms to oxidize the adsorbed Hg(0), resulting in the acceleration of removal rate as the oxidation of Hg(0) proceeds.  相似文献   

16.
CuO-CeO_2/AC吸附燃煤烟气中元素汞的实验研究   总被引:2,自引:0,他引:2  
通过活性炭负载CuO和CeO2来制备吸附剂,采用固定床吸附方式,在不同反应条件下对吸附剂的吸附性能进行测试,筛选出去除效率最好的吸附剂,并通过BET和XRD对吸附剂的理化性质进行分析。结果表明,CuO和CeO2的加入大大改变了原活性炭的比表面积和孔结构,改善了活性炭的吸附性能。CuO-CeO2/AC中CuO和CeO2质量比不同,对汞的去除效率也不同,在1∶2时去除效率最好;CuO-CeO2/AC中所负载的CuO和CeO的总量为5%时,能大大促进汞的吸附效率,增长有效吸附时间;CuO-CeO2/AC对汞的吸附性能随反应温度的增加呈先增加后减小的趋势,在80℃时达到最大值。  相似文献   

17.
Byun Y  Koh DJ  Shin DN  Cho M  Namkung W 《Chemosphere》2011,84(9):1285-1289
The effect of polarity on the oxidation of Hg0 was examined in the presence of O2 via a pulsed corona discharge (PCD). The experimental result showed no difference in the energy yield of Hg0 oxidation at both positive and negative PCDs (∼8 μg Hg W h−1 at following conditions: total flow rate = 2 L min−1 (Hg0 = 50 μg N m−3, O2 = 10%, and N2 balance), temperature = 150 °C, and specific energy density = 5-15 W h N m−3). This suggests that the positive PCD process used to control gaseous air pollutants may play an essential key role in Hg0 oxidation because it consumes enough energy (∼15 W h N m−3) but an electrical precipitator could not because it consumes less energy (∼0.3 W h N m−3) to oxidize Hg0.  相似文献   

18.
Bench-scale and full-scale investigations of waste stabilization and volume reduction were conducted using spiked soil and ash wastes containing heavy metals such as Cd, Cr, Pb, Ni, and Hg. The waste streams were stabilized and solidified using chemically bonded phosphate ceramic (CBPC) binder, and then compacted by either uniaxial or harmonic press for volume reduction. The physical properties of the final waste forms were determined by measuring volume reduction, density, porosity, and compressive strength. The leachability of heavy metals in the final waste forms was determined by a toxicity characteristic leaching procedure (TCLP) test and a 90-day immersion test (ANS 16.1). The structural composition and nature of waste forms were determined by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. CBPC binder and compaction can achieve 80-wt% waste loading and 39-47% reduction in waste volume. Compressive strength of final waste forms ranged from 1500 to 2000 psi. TCLP testing of waste forms showed that all heavy metals except Hg passed the TCLP limits using the phosphate-based binder. When Na2S was added to the binder, the waste forms also passed TCLP limits for Hg. Long-term leachability resistance of the final waste forms was achieved for all metals in both soil and ash wastes, and the leachability index was approximately 14. XRD patterns of waste forms indicated vermiculite in the ash waste was chemically incorporated into the CBPC matrix. SEM showed that waste forms are layered when compacted by uniaxial press and are homogeneous when compacted by harmonic press.  相似文献   

19.
From February 29 until June 15 2008 gaseous elemental mercury (GEM) fluxes above a snow covered surface was measured in Ny-Ålesund, Svalbard using a GEM flux gradient method. A clear seasonal pattern in the meteorological variables associated with the GEM flux was observed. For the first time in Ny-Ålesund a net deposition of GEM was recorded during polar night, despite the lack of Atmospheric Mercury Depletion Events (AMDE). 7500 ng m−2 GEM was emitted from the surface snow to the air during the entire study. The depositions of GEM and reactive gaseous mercury (RGM) were calculated to be 1500 and 1000 ng m−2, respectively, during the same time period. The GEM fluxes reported in this study were found to be comparable to GEM fluxes measured at other Arctic locations (i.e. Alert and Barrow), suggesting that GEM acts in a similar way throughout the Arctic. An assessment of the GEM flux gradient method used discovered a non-linear GEM concentration profile. The nonlinearity was explained by a non-stationary turbulence regime. The GEM flux calculated was not found to be representative for the entire surface boundary layer.  相似文献   

20.
Experiments were performed to investigate the effect of ozone (O3) on mercury (Hg) emission from a variety of Hg-bearing substrates. Substrates with Hg(II) as the dominant Hg phase exhibited a 1.7 to 51-fold increase in elemental Hg (Hgo) flux and a 1.3 to 8.6-fold increase in reactive gaseous mercury (RGM) flux in the presence of O3-enriched clean (50 ppb O3; 8 substrates) and ambient air (up to ∼70 ppb O3; 6 substrates), relative to clean air (oxidant and Hg free air). In contrast, Hgo fluxes from two artificially Hgo-amended substrates decreased by more than 75% during exposure to O3-enriched clean air relative to clean air. Reactive gaseous mercury emissions from Hgo-amended substrates increased immediately after exposure to O3 but then decreased rapidly. These experimental results demonstrate that O3 is very important in controlling Hg emissions from substrates. The chemical mechanisms that produced these trends are not known but potentially involve heterogenous reactions between O3, the substrate, and Hg. Our experiments suggest they are not homogenous gas-phase reactions. Comparison of the influence of O3 versus light on increasing Hgo emissions from dry Hg(II)-bearing substrates demonstrated that they have a similar amount of influence although O3 appeared to be slightly more dominant. Experiments using water-saturated substrates showed that the presence of high-substrate moisture content minimizes reactions between atmospheric O3 and substrate-bound Hg. Using conservative calculations developed in this paper, we conclude that because O3 concentrations have roughly doubled in the last 100 years, this could have increased Hgo emissions from terrestrial substrates by 65–72%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号