首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
ABSTRACT: Efforts are under way to recover habitat for several threatened and endangered species in and along the Platte River in central Nebraska. A proposed recovery program for these species requires a means of characterizing “wet” versus “normal” versus “dry” hydrologic conditions in order to set corresponding Platte River instream flow targets. Methods of characterizing hydrologic conditions in real time were investigated for this purpose. Initially, 10 watershed variables were identified as potentially valuable indicators of hydrologic conditions. Ultimately, six multiple linear regression equations were developed for six periods of the year using a subset of these variables expressed as frequencies of nonexceedence. The adequacy of these equations for characterizing conditions was assessed by evaluating their historic correlation to subsequent flow in the central Platte River (1947–1994). These equations explained 54 to 82 percent of variability in the observed flow exceedences in the validation datasets, depending upon the period of year evaluated. These equations will provide initial criteria for setting applicable flow targets to determine, in real time, whether water regulation projects associated with the species recovery effort can divert or store flows without conflicting with recovery objectives.  相似文献   

2.
The Platte River Basin consists of tributaries largely in Wyoming, Colorado and Western Nebraska, with the main stem in Central Nebraska. Critical wildlife habitat on the main stem requires additional in-stream flows. The watershed is one hosting multiple resources, a variety of users, and managed by an array of state and federal agencies. This study proposes a basis for securing in-stream flows for the Platte River. Candidate water supply mechanisms are suggested based on the way in which Casper, Wyoming secured water for its municipal needs. Canal lining is compared to a dam project, increasing reservoir storage, and purchasing water rights, with consideration also made for water pricing to reduce municipal use. Comparisons are based on economic efficiency, potential water conservation, and property rights criteria. Canal lining, coupled with demand management, is shown to conserve water best, given the set of efficiency and cost criteria for in-stream flow enhancement. The approach offers an opportunity to organize the water supply choice context in a transboundary watershed when quantitative information is limited.  相似文献   

3.
ABSTRACT: The Central Nebraska Basins (NAWQA) study unit includes the Platte River and two major tributaries, the Loup and Elkhorn Rivers. Platte River flows are variable in the western part of the study unit because of diversions, but the Loup and Elkhorn Rivers originate in an area of dune sand covered by grassland that generates consistent base flows. More frequent runoff in the eastern part of the study unit also sustains stream flow. Ground water in the study unit has no regional confining units and the system is a water table aquifer throughout. Macroinvertebrate and fish taxa at biological sampling sites in the state were related to stream flow. One of the four wetland complexes identified in the study unit includes habitat for threatened and endangered bird species. The study unit is an agricultural area that includes row crops, both irrigated and nonirrigated in the eastern and southern parts, and rangeland in the Sand Hills of the western part. A water quality assessment will be based on the differences in environmental setting in each of four subunits within the study unit.]  相似文献   

4.
Monitoring is essential to track the long-term recovery of endangered species. Greater emphasis on habitat monitoring is especially important for taxa whose populations may be difficult to quantify (e.g., insects) or when true recovery (delisting) requires continuous species-specific habitat management. In this paper, we outline and implement a standardized framework to facilitate the integration of habitat monitoring with species recovery efforts. The framework has five parts: (1) identify appropriate sample units, (2) select measurable indicators of habitat requirements, (3) determine rating categories for these indicators, (4) design and implement appropriate data collection protocols, and (5) synthesize the ratings into an overall measure of habitat potential. Following these steps, we developed a set of recovery criteria to estimate habitat potential and initially assess restoration activities in the context of recovering an endangered insect, the Karner blue butterfly (Lycaeides melissa samuelis). We recommend basing the habitat potential grading scheme on recovery plan criteria, the latest information on species biology, and working hypotheses as needed. The habitat-based assessment framework helps to identify which recovery areas and habitat patches are worth investing in and what type of site-specific restoration work is needed. We propose that the transparency and decision-making process in endangered insect recovery efforts could be improved through adaptive management that explicitly identifies and tracks progress toward habitat objectives and ultimate population recovery.  相似文献   

5.
ABSTRACT: Today most rivers are not freely flowing but are highly regulated to meet both human and wildlife needs. Several models allow the determination of instream flows that are needed to meet wildlife demands. However, these models are based on assumptions that limit their applicability to certain types of rivers. While these limitations do not preclude the use of the models on other types of rivers, like the Platte River in Nebraska, their limitations should be considered and accommodated by those making instream flow planning and management decisions. Other factors affecting channel morphology and its associated wildlife habitat, such as threshold values and vegetation are not adequately considered by current concepts. If rivers are to be managed to provide wildlife habitat, these factors will have to be addressed.  相似文献   

6.
The lower Roanoke River in North Carolina, USA, has been regulated by a series of dams since the 1950s. This river and its floodplain have been identified by The Nature Conservancy, the US Fish and Wildlife Service, and the State of North Carolina as critical resources for the conservation of bottomland hardwoods and other riparian and in-stream biota and communities. Upstream dams are causing extended floods in the growing season for bottomland hardwood forests, threatening their survival. A coalition of stakeholders including public agencies and private organizations is cooperating with the dam managers to establish an active adaptive management program to reduce the negative impacts of flow regulation, especially extended growing season inundation, on these conservation targets. We introduce the lower Roanoke River, describe the regulatory context for negotiating towards an active adaptive management program, present our conservation objective for bottomland hardwoods, and describe investigations in which we successfully employed a series of models to develop testable management hypotheses. We propose adaptive management strategies that we believe will enable the bottomland hardwoods to regenerate and support their associated biota and that are reasonable, flexible, and economically sustainable.  相似文献   

7.
Ecological restoration is increasingly becoming a primary component of broader environmental and water resources management programs throughout the world. The New Zealand Department of Conservation implemented Project River Recovery (PRR) in 1991 to restore unique braided gravel-bed river and wetland habitat in the Upper Waitaki Basin in New Zealand’s high country of the South Island, which has been severely impacted by hydroelectric power development. These braided rivers are highly dynamic, diverse, and globally important ecosystems and provide critical habitat to numerous native wading and shore bird species, including several threatened species such as the black stilt. The objective of this study was to review and summarize PRR after more than 10 years of implementation to provide information and transfer knowledge to other nations and restoration programs. Site visits were conducted, discussions were held with key project staff, and project reports and related literature were reviewed. Primary components of the program include pest plant and animal control, wetland construction and enhancement, a significant research and monitoring component, and public awareness. The study found that PRR is an excellent example of an ecological restoration program focusing on conserving and restoring unique habitat for threatened native bird species, but that also includes several secondary objectives. Transfer of knowledge from PRR could benefit ecological restoration programs in other parts of the world, particularly riverine floodplain and braided river restoration. PRR could achieve even greater success with expanded goals, additional resources, and increased integration of science with management, especially broader consideration of hydrologic and geomorphologic effects and restoration opportunities.  相似文献   

8.
9.
10.
ABSTRACT: The technocratic approach for managing the Missouri River and other large rivers is not effective in resolving conflicts among competing uses of water and dealing with uncertainty about how river ecosystems respond to alternative management actions. Adaptive management offers an alternative way to address these and other issues. It has the potential to alleviate management gridlock and provide lasting solutions to management of the Missouri River and other large river ecosystems. In passive adaptive management, simulation models and expert judgment are combined to select a preferred management action. While passive adaptive management is relatively simple and inexpensive to use, it does not necessarily provide reliable information for making management decisions. Active adaptive management uses statistically designed experiments to test assumptions or hypotheses about ecosystem responses to management actions. It is best carried out by a collaborative working group. Active adaptive management has several advantages, but the inability to satisfy certain prerequisites for successful application makes it more difficult to implement in large river ecosystems. A second‐best approach is proposed here to select, implement, monitor, and evaluate a preferred management action and retain that action provided ecological conditions improve and socioeconomic indicators do not fall below established acceptability limits.  相似文献   

11.
In order for habitat restoration in regulated rivers to be effective at large scales, broadly applicable frameworks are needed that provide measurable objectives and contexts for management. The Ecological Limits of Hydrologic Alteration (ELOHA) framework was created as a template to assess hydrologic alterations, develop relationships between altered streamflow and ecology, and establish environmental flow standards. We tested the utility of ELOHA in informing flow restoration applications for fish and riparian communities in regulated rivers in the Upper Tennessee River Basin (UTRB). We followed the steps of ELOHA to generate univariate relationships between altered flows and ecology within the UTRB. By comparison, we constructed multivariate models to determine improvements in predictive capacity with the addition of non-flow variables. We then determined whether those relationships could predict fish and riparian responses to flow restoration in the Cheoah River, a regulated system within the UTRB. Although ELOHA provided a robust template to construct hydrologic information and predict hydrology for ungaged locations, our results do not suggest that univariate relationships between flow and ecology (step 4, ELOHA process) can produce results sufficient to guide flow restoration in regulated rivers. After constructing multivariate models, we successfully developed predictive relationships between flow alterations and fish/riparian responses. In accordance with model predictions, riparian encroachment displayed consistent decreases with increases in flow magnitude in the Cheoah River; however, fish richness did not increase as predicted 4 years after restoration. Our results suggest that altered temperature and substrate and the current disturbance regime may have reduced opportunities for fish species colonization. Our case study highlights the need for interdisciplinary science in defining environmental flows for regulated rivers and the need for adaptive management approaches once flows are restored.  相似文献   

12.
Generalizable methods that identify suitable aquatic habitat across large river basins and regions are needed to inform resource management. Habitat suitability models intersect environmental variables to predict species occurrence, but are often data intensive and thus are typically developed at small spatial scales. This study estimated mean monthly aquatic habitat suitability throughout Utah (USA) for Bonneville Cutthroat Trout (Oncorhynchus clarkii utah) and Bluehead Sucker (Catostomus discobolus) with publicly available, geospatial datasets. We evaluated 15 habitat suitability models using unique combinations of percent of mean annual discharge, velocity, gradient, and stream temperature. Environmental variables were validated with observed conditions and species presence observations to verify habitat suitability estimates. Stream temperature, gradient, and discharge best predicted Bonneville Cutthroat Trout presence, and gradient and discharge best predicted Bluehead Sucker presence. Simple aquatic habitat suitability models outperformed models that used only streamflow to estimate habitat for both species, and are useful for conservation planning and water resources decision-making. This modeling approach could enable resource managers to prioritize stream restoration across vast regions within their management domain, and is potentially compatible with water management modeling to improve ecological objectives in management models.  相似文献   

13.
Abstract: Spatio‐temporal linkages between hydrologic and ecologic dimensions of watersheds play a critical role in conservation policies. Habitat potential is influenced by variation along longitudinal and lateral gradients and land use disturbance. An assessment of these influences provides critical information for protecting watershed ecosystems and in making spatially explicit, conservation decisions. We use an ecohydrologic approach that focuses on interface between hydrological and ecological processes. This study focuses on changes in watershed habitat potentials along lateral (riparian), and longitudinal (stream order) dimensions and disturbance (land use). The habitat potentials were evaluated for amphibians, reptiles, mammals, and birds in the Westfield River Watershed of Massachusetts using geographic information systems and multivariate analysis. We use a polynomial model to study nonlinear effects using robust regression. Various spatial policies were modeled and evaluated for influence on species diversity. All habitat potentials showed a strong influence along spatial dimensions and disturbance. The habitat potential for all vertebrate groups studied decreased as the distance from the riparian zone increased. Headwaters and lower order subwatersheds had higher levels of species diversity compared to higher order subwatersheds. It was observed that locations with the least disturbance also had higher habitat potential. The study identifies three policy criteria that could be used to identify critical areas within a watershed to conserve habitat suitable for various species through management and restoration activities. A spatially variable policy that is based on stream order, riparian distance, and land use can be used to maximize watershed ecological benefits. Wider riparian zones with variable widths, protection of headwaters and lower order subwatersheds, and minimizing disturbance in riparian and headwater areas can be used in watershed policy. These management objectives could be achieved using targeted economic incentives, best management practices, zoning laws, and educational programs using a watershed perspective.  相似文献   

14.
Adaptive management (AM) is a rigorous approach to implementing, monitoring, and evaluating actions, so as to learn and adjust those actions. Existing AM projects are at risk from climate change, and current AM guidance does not provide adequate methods to deal with this risk. Climate change adaptation (CCA) is an approach to plan and implement actions to reduce risks from climate variability and climate change, and to exploit beneficial opportunities. AM projects could be made more resilient to extreme climate events by applying the principles and procedures of CCA. To test this idea, we analyze the effects of extreme climatic events on five existing AM projects focused on ecosystem restoration and species recovery, in the Russian, Trinity, Okanagan, Platte, and Missouri River Basins. We examine these five case studies together to generate insights on how integrating CCA principles and practices into their design and implementation could improve their sustainability, despite significant technical and institutional challenges, particularly at larger scales. Although climate change brings substantial risks to AM projects, it may also provide opportunities, including creating new habitats, increasing the ability to quickly test flow‐habitat hypotheses, stimulating improvements in watershed management and water conservation, expanding the use of real‐time tools for flow management, and catalyzing creative application of CCA principles and procedures.  相似文献   

15.
ABSTRACT: This paper presents hydraulic conductivities of streambeds measured in three rivers in south‐central Nebraska: the Platte, Republican, and Little Blue Rivers. Unlike traditional permeameter tests in streams that determine only the vertical hydraulic conductivity (Kv), the extended permeameter methods used in this study can measure K in both vertical and horizontal as well as oblique directions. As a result, the anisotropy of channel sediments can be determined from streambed tests of similar sediment volumes. Sandy streambeds with occasional silt/clay layers exist in the Republican and Platte Rivers. The average Kv values range from about 15 to 47 m/day for the sandy streambed and about 1.6 m/day for the silt/clay layers. Statistical analyses indicated that the Kv values of sand and gravel in the Platte and Republican Rivers essentially have the same mean; but the Kv values from the Little Blue River have a statistically different mean. Kv is about four times smaller than the horizontal hydraulic conductivity (Kh) for the top 40 cm of sandy streambed. Measured Kh values of the sandy streambed are in the same magnitude as the Kh of the alluvial aquifer determined using pumping tests. The smaller Kv value in the whole aquifer is the result of interbedded layers of silt and clay within the sand and gravel sediments.  相似文献   

16.
Nine sites on streams in the Platte River Basin in central Nebraska were sampled as part of the US Geological Survey's National Water-Quality Assessment Program during 1993–1994. A combination of canonical correspondence analysis and an index of biotic integrity determined from fish community data produced complementary evaluations of water-quality conditions. Results of the canonical correspondence analysis were useful in showing which environmental variables were significant in differentiating fish communities at the nine sites. Five environmental variables were statistically significant in the analysis. Median specific conductance of water samples collected at a site accounted for the largest amount of variability in the species data. Although the percentage of the basin as cropland was not the first variable chosen in a forward selection process, it was the most strongly correlated with the first ordination axis. A rangeland-dominated site was distinguished from all others along that axis. Median orthophosphate concentration of samples collected in the year up to the time of fish sampling was most strongly correlated with the second ordination axis. The index of biotic integrity produced results that could be interpreted in terms of the relative water quality between sites. Sites draining nearly 100% cropland had the lowest scores for two individual metrics of the index of biotic integrity that were related to species tolerance. Effective monitoring of water quality could be achieved by coupling methods that address both the ecological components of fish communities and their statistical relationships to environmental factors.  相似文献   

17.
Learning and adaptation in the management of waterfowl harvests   总被引:1,自引:0,他引:1  
A formal framework for the adaptive management of waterfowl harvests was adopted by the U.S. Fish and Wildlife Service in 1995. The process admits competing models of waterfowl population dynamics and harvest impacts, and relies on model averaging to compute optimal strategies for regulating harvest. Model weights, reflecting the relative ability of the alternative models to predict changes in population size, are used in the model averaging and are updated each year based on a comparison of model predictions and observations of population size. Since its inception the adaptive harvest program has focused principally on mallards (Anas platyrhynchos), which constitute a large portion of the U.S. waterfowl harvest. Four competing models, derived from a combination of two survival and two reproductive hypotheses, were originally assigned equal weights. In the last year of available information (2007), model weights favored the weakly density-dependent reproductive hypothesis over the strongly density-dependent one, and the additive mortality hypothesis over the compensatory one. The change in model weights led to a more conservative harvesting policy than what was in effect in the early years of the program. Adaptive harvest management has been successful in many ways, but nonetheless has exposed the difficulties in defining management objectives, in predicting and regulating harvests, and in coping with the tradeoffs inherent in managing multiple waterfowl stocks exposed to a common harvest. The key challenge now facing managers is whether adaptive harvest management as an institution can be sufficiently adaptive, and whether the knowledge and experience gained from the process can be reflected in higher-level policy decisions.  相似文献   

18.
Substantial conflict exists over water management and allocation in the Platte River Basin of Nebraska. An interdisciplinary computer simulation model, representing the water quantity, water quality, environmental, and economic dimensions of the conflict, was developed in order to analyze the tradeoffs among allocation scenarios. Most importantly, decisionmakers and interest groups were involved in model development. Simulation results for a base case and two scenarios are presented. One scenario favors protection of instream flow for wildlife; the other favors water diversions for agriculture. Impacts of the instream flow scenario, as measured by the amount of land irrigated, groundwater levels, the amount of wildlife habitat for cranes and catfish, and net agricultural benefits did not differ greatly from those of the base case. However, impacts of the diversion scenario were substantial. On the negative side, instream flows and wildlife habitat declined an average of 39 percent; while, on the positive side, groundwater levels and net agricultural benefits each increased 6 percent. The modeling process was successful insofar as it promoted an understanding among the highly diverse interest groups of the systems nature of the Basin. One agreement on a water diversion schedule among three of the parties has been reached, partly as a result of this process. More comprehensive compromises have not yet been forged. Our experience, however, indicates that modeling success at the policymaking level depends more on the extent to which the policymakers understand the model than it does on model sophistication.  相似文献   

19.
ABSTRACT: Two case studies highlighting the institutional arrangements and decision-making processes used to attempt to allocate water on large scale river systems in two countries are presented. In both cases the implementation of river plans has been blocked by conflicts between those who wish to use water for irrigation, hydropower, or municipal purposes and those who wish to maintain instream flows for fish and wildlife. To date conflict has blocked the implementation of a large hydropower scheme on the Danube River, downstream from Vienna, Austria, and the construction of municipal and agricultural projects, as well as the relicensing of an existing hydropower facility on the Platte River in Nebraska. Analysis of the decision-making processes and institutional settings of both cases led to the identification of problem areas and development of recommendations that would support the achievement of compromise solutions for management.  相似文献   

20.
Sage Creek in south‐central Wyoming is listed as impaired by the U.S. Environmental Protection Agency (USEPA) due to its sediment contribution to the North Platte River. Despite the magnitude of sediment impacts on streams, little research has been conducted to characterize patterns of sediment transport or to model suspended sediment concentration in many arid western U.S. streams. This study examined the relationship between stream discharge and suspended sediment concentration near the Sage Creek and North Platte River confluence from 1998 through 2003. The objectives were to determine patterns of stream discharge and suspended sediment concentration, produce a sediment prediction model, and compare sediment concentrations for the six‐year period. Stream discharge and suspended sediment transport responded rapidly to convective storms and spring runoff events. During the study period, events exceeding 0.23 m3/s accounted for 92 percent of the sediment load, which is believed to originate from erodible headwater uplands. Further analysis of these data indicates that time series modeling is superior to simple linear regression in predicting sediment concentration. Significant increases in suspended sediment concentration occurred in all years except 2003. This analysis suggests that a six‐year monitoring record was insufficient to factor out impacts from climate, geology, and historical sediment storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号