首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An investigation on the abundance and distribution of trace metals (Fe, Cu, Zn, Mn, Cr, Cd and Pb) in water, and nine species of fish samples from Calabar river was carried out in 1992. The concentrations of iron (6000–7240gl–1), zinc (4910–7230gl–1), and cadmium (3–7gl–1) showed moderate pollution while those of copper (420–630gl–1), manganese (23–48gl–1), chromium (<10–20gl–1) and lead (<1–10gl–1) in water were well below WHO permissible levels. Significant seasonal changes (0.001p0.25) were obtained for iron, copper, zinc, manganese and cadmium in water. Furthermore, iron, zinc and cadmium showed statistically significant spatial changes (0.005p0.10). Of the nine fish species studied, no statistically significant relationship between body weight and the concentrations of the metals was observed. The concentrations of the metals per mean total body weight apparently decreases in the order Fe>Zn>Cu>Mn>Pb>Cd=Cr and were within the limits that were safe for consumption.  相似文献   

2.
The feeding behaviors of Acartia clausi and A. tonsa were measured in samples of water containing low levels of a water-accommodated fraction of No. 2 fuel oil. The copepods fed normally at a hydrocarbon concentration of 70 g l-1, but their feeding behavior was altered both quantitatively and qualitatively at a concentration of 250 g l-1. Three types of response to the higher oil level were found. The first was total suppression of feeding. Both other types involved suppression of feeding on particles between 7 and 15 m diameter, but one showed no change in the ingestion of larger particles, whereas the other displayed increased feeding on particles larger than 15 m diameter. These results suggest that the species of Acartia studied use three different modes of feeding, each on a different size range of particulate material. Low-level hydrocarbon pollution affects each feeding mode differently.Contribution No. 973, Center for Environmental and Estuarine Studies of the University of Maryland  相似文献   

3.
Solemya reidi Bernard 1980 is a gutless protobranch bivalve known to possess intracellular chemoautotrophic bacterial symbionts in its gill. A light and electron microscope study on the embryology and larval development of S. reidi provides data for the bivalve Subclass Cryptodonta. S. reidi spontaneously spawned large eggs (271 m in diameter), which developed within individual gelatious egg capsules. The first several cleavages were equal and a distinct molluscan cross was formed at the animal pole of the embryo, features previously unreported in bivalve development. Lecithotrophic pericalymma larvae (similar to the larvae of paleotaxodont protobranch bivalves and aplacophoran molluscs) hatched at 18 to 24 h and remained in the water column for a further 5 d at 10°C. At hatching, larvae measured from 360 to 440 m in length and from 225 to 265 m in cross-sectional diameter. Definitive adult structures developed within an epithelial locomotory test entirely covered with compound cilia. The test histolysed at metamorphosis and was ingested throught the mouth into the perivisceral cavity. Length and height of the shell following metamorphosis was 433 m (±42 m, n=16) and 282 m (± 29 m, n=13), respectively. Primary data and data from the literature show that the type of larval development in both paleotaxodont and cryptodont bivalves cannot be reliably estimated from egg or prodissoconch sizes.  相似文献   

4.
Two studies were conducted to observe effects of dibutyltin (DBT) and tributyltin (TBT) on larvae of Mytilus edulis for an exposure period of 25 d. Endpoints for evaluation were shell growth and mortality measured at 33 d. Larvae were cultured in a new laboratory assay chamber in a recirculating static test. The control, 2, 20, and 200 g/l DBT-treated populations had mean shell lengths of 527, 523, 417, and 180 m, respectively. Survival was 1% for the 200 g/l DBT-treated population, but ranged from 73 to 83% for controls, 2, and 20 g/l treatments. The no-observed-effect concentration (NOEC) was 2 g/l for DBT, while the lowest-observed-effect concentration (LOEC) was 20 g/l. The chronic toxicity value was 6.3 g/l. In the TBT bioassay, mean shell lengths for the control, 0.006, 0.050, and 0.130 g/l-treated populations were 565, 437, 385, and 292 m, respectively. Control survival was 74%, whereas TBT-treated populations survival ranged from 52 to 58%. The NOEC for TBT was 0.006 g/l TBT and the LOEC was 0.050. A chronic toxicity value of 0.017 g/l was calculated. The results of this study indicated that the toxicity of DBT was less than that of TBT. It was concluded that shell length was inversely related to exposure level in both DBT and TBT bioassays. In this study, we have observed TBT effects at lower exposure levels in the laboratory than previously reported, and also report the first data for DBT effects on mussel larvae.  相似文献   

5.
A distinctive chlorophyll maximum was detected around 60-m depth in the western North Pacific Ocean and the South China Sea, and almost 55% of the total chlorophyll in the entire water column was found within 50 m around the subsurface chlorophyll maximum (SCM) layer. More than 70% of the chlorophyll was contained in picoplankton which passed through a 3-m Nuclepore but retained on 0.22-m Millipore filters at the SCM as well as the surface layers. By transmission electron microscopic observations, the picoplankton were identified as aChlorella-like coccoid green alga having a section size of 1.2 to 1.5 m and cyanobacteria of 0.5 to 2 m. No obvious difference in these two dominant groups was observed in the SCM and the surface samples except in numerous and heavily stacked thylakoids in the former samples.  相似文献   

6.
Specimens of the oceanic decapod Systellaspis debilis were collected from six sites in the East Atlantic Ocean between 1970 and 1984, and were analysed for Mn, Fe, Cu, Zn and Cd. The data confirm that there are small but significant differences in mean metal concentrations from some sites which showed no obvious pattern in relation to geographic location of the samples. As a result, ranges of site means are quoted as baseline levels for each metal (g g-1 dry wt): 2.3 to 2.9 g Mn g-1, 31.2 to 77.8 g Fe g-1, 25.9 to 83.4 g Cu g-1, 41.9 to 92.9 gZn g-1, 11.1 to 31.8 g Cd g-1. The concentration of cadmium in S. debilis from all sites was raised relative to cadmium concentrations reported for coastal decapods, perhaps as a result of dietary enrichment. Metal accumulation may provide useful information for understanding the complex feeding behaviour of many oceanic animals.  相似文献   

7.
The levels of organochlorine compounds in eggs of water birds from the colony on Tai Lake in China were studied. The eggs were collected in 2000 and belonged to the following species: 65 samples of black-crowned night heron (Nycticorax nycticorax), 36 samples of little egret (Egretta garzetta), 26 samples of cattle egret (Bubulcus ibis) from 13 clutches and 43 samples of Chinese pond heron (Ardeola bacchus) from 17 clutches. Dichlorodiphenyltrichloroethane (DDT) and its derivates (DDE and DDD), hexachlorocyclohexane (HCH) and its isomers (-HCH, -HCH, -HCH, -HCH), heptachlor, heptachlor epoxide, aldrin, dieldrin, endrin, endrin aldehyde, -endosulfan, -endosulfan, and endosulfan sulfate were determined in the laboratory by gas chromatography. The data showed that DDE had the highest levels in all the samples, followed by -HCH. The mean levels of DDE among the water bird species were in the order as follows: black-crowned night heron (5464.26ng/g, dry weight) > Chinese pond heron (2791.12ng/g, dry weight) > little egret (1979.97ng/g, dry weight) > cattle egret (660.11ng/g, dry weight). DDT and its metabolites accounted for 90% of the total organochlorines, except that it was only 73% for cattle egret. The differences of the residue among the bird species were statistically significant and could be attributed to their variations in prey and habitat. Although the DDE burdens in Tai Lake were much lower than 8 g/g (wet weight) which are thought to have significant adverse effects on black-crowned night herons, they would be expected to increase the risk of adverse effects on survival of chicks of herons and egrets, particularly black-crowned night heron, based on the critical value of 1 g/g (wet weight) DDE. The burdens of HCHs in this study were higher and the cyclodienes were lower than those found elsewhere.  相似文献   

8.
We estimated primary productivity and distributions of carbon in the phytoplankton, micro-zooplankton, and suspended and dissolved matter in various areas of the World Ocean to increase our information about the organic carbon cycle in the surface layer of the sea. Primary productivity ranged from about 0.1 gC m–2 day–1 in the Gulf of Mexico to 9 gC m–2 day–1 in nutrient-rich water off Peru. Phytoplankton carbon ranged from less than 10 g/l in the former to 750 g/l in the latter and in nutrient-rich water off southwest Africa. Micro-zooplankton carbon usually was less than 50 g/l in all waters, and was dominated by ciliates, copepodids, and copepod nauplii in all areas. Concentrations of particulate carbon ranged from 12 g/l off the east coast of South America to 850 g/l off southwest Africa. Concentrations of dissolved organic carbon varied between 0.5 and 1.5 mg/l in all areas except off Peru, where maximum values of 4.5 mg/l were observed. Turnover rates of carbon by small standing crops of micro-flagellates (1 to 5 longest dimension) and dinoflagellates in nutrient-poor waters were lower than those by large standing crops of diatoms and micro-flagellates in nutrient-rich waters. Concentrations of phytoplankton usually accounted for 20 to 55% and micro-zooplankton for 2 to 30% of the particulate carbon in the surface layer of the sea. Concentrations of dissolved organic carbon were not related to concentrations of particulate carbon in most waters except off Peru, where they appear to be directly related.  相似文献   

9.
The average grazing and ingestion rates of all stages of the marine planktonic copepod Calanus helgolandicus (Calanoida) from nauplius stage IV to adults were measured experimentally at 15°C in agitated cultures. The chain-forming diatom Lauderia borealis and the unarmoured dinoflagellate Gymnodinium splendens were offered as food. The food concentrations were close to natural conditions and ranged from 36 to 101 g of organic carbon per liter. The medium body weights expressed in g of organic carbon of almost all larval stages raised at 49 g C/1 were identical with the weight of the same stages caught in the Pacific Ocean off La Jolla, California, USA. In a log-log system, grazing and ingestion rates increased almost linearly with increasing body weight. Grazing rates ranged from 4 to 21 ml/day/nauplius stage IV to 286 ml to 773 ml/day/female. Ingestion rates increased from 0.2 g to 0.8 g C/day/nauplius stage IV to 18 g to 69 g C/day/female. Grazing and ingestion rates per unit body weight decreased gradually with increasing body weight. The daily ingested amount of food decreased from 292 to 481% of the body weight (g C) of nauplius stage V to 28–85% of the body weight of adult females. Grazing and ingestion performances of all stages increased with increasing particle size. Grazing rates decreased and ingestion rates increased with increasing food concentrations. The published data on food intake of the different age groups of C. helgolandicus show that the young stages of herbivorous planktonic copepods can play a major part in the consumption of phytoplankton in the sea due to their high grazing and ingestion rates.  相似文献   

10.
The structure of the coxal gills and coxal plates of the semi-terrestrial beachflea Orchestia gammarellus (Pallas) (Crustacea: Amphipoda: Talitridae) is described in relation to their possible use for aerial gas exchange and ion exchange. Anatomical evidence is presented to support the hypothesis that the medial surface of the coxal plates functions as an extrabranchial aerial gas-exchange site in O. gammarellus. Thus, the effective diffusion distance across the medial (or inside-facing) surface of O. gammarellus coxal plates (mean±SD=5.4±0.3 m; n=9, cuticle thickness 4.4±0.5 m, n=21) is only a third of the equivalent distance across both the coxal gills (18.4±6.0 m, n=10; cuticle thickness 1.7±0.6 m, n=7) and the lateral (or external) surface of the coxal plates (19.4±0.7 m, n=5; cuticle thickness 8.7±0.8 m, n=7). Chloride-ion-permeable areas were located using a silver-staining technique. All ten coxal gills appeared to be equally permeable to chloride ions after examination with a light microscope. However, the coxal plates and the rest of the integument do not appear to be chloride-permeable.  相似文献   

11.
The spermatozoa of four species of the patellogastropod family Lottiidae (Lottia pelta, L. digitalis, L. strigatella, Tectura scutum) and one species of the archaeogastropod family Fissurellidae (Diodora aspera) were examined in 1990 using transmission electron microscopy. All have primitive or ect-aquasperm, typical of invertebrates using external fertilization. Sperm of the lottiid limpets are characterized by a 5 to 9 m-long head composed of a conical acrosome which constitutes >50% of the head length, and a cylindrical nucleus. The acrosome of all species of lottiids is differentiated internally, and has a posterior invagination 0.9 to 1 m in depth, into which an elongate acrosomal lobe protrudes. Between the posterior acrosomal lobe and the nucleus, the subacrosomal material is aggregated as a fibrous column. The midpiece of the sperm has a ring of 4 to 5 spherical mitochondria of 0.6 m diam, posterior to which is a collar of cytoplasm 1 m long, which sheaths the anterior portion of the axoneme. The size and morphology of the acrosome and large cytoplasmic collar clearly distinguish the spermatozoa of the Lottiidae from other families of Patellogastropoda. The sperm of D. aspera (Fissurellidae) is typical of the family of archaeogastropod; the head has a length to breadth ratio of 4:1, and the cylindrical nucleus is capped by a small acrosome, <25% of the total head length, which is deeply invaginated.  相似文献   

12.
The photosynthetic characteristics of prokaryotic phycoerythrin-rich populations of cyanobacteriaSynechococcus spp. and larger eukaryotic algae were compared at a neritic frontal station (Pl), in a warm-core eddy (P2), and at Wilkinson's Basin (P3) during a cruise in the Northwest Atlantic Ocean in the summer of 1984.Synechococcus spp. numerically dominated the 0.6 to 1 m fraction, and to a lesser extent the 1 to 5 m size fractions, at most depths at all stations. At P2 and P3, all three size categories of phytoplankton (0.6 to 1 m, 1 to 5 m, and >5 m) exhibited similar depth-dependent chages in both the timing and amplitude of diurnal periodicities of chlorophyllbased and cell-based photosynthetic capacity. Midday maxima in photosynthesis were observed in the upper watercolumn which damped-out in all size fractions sampled just below the thermocline. For all size fractions sampled near the bottom of the euphotic zone, the highest photosynthetic capacity was observed at dawn. At all depths, theSynechococcus spp.-dominated size fractions had lower assimilation rates than larger phytoplankton size fractions. This observation takes exception with the view that there is an inverse size-dependency in algal photosynthesis. Results also indicated that the size-specific contribution to potential primary production in surface waters did not vary appreciably over the day. However, estimates of the percent contribution ofSynechococcus spp. to total primary productivity in surface waters at the neritic front were significantly higher when derived from short-term incubator measurements of photosynthetic capacity rather than from dawn-to-duskin situ measurements of carbon fixation. The discrepancy was not due to photoinhibitory effects on photosynthesis, but appeared to reflect increased selective grazing pressure onSynechococcus spp. in dawn-to-dusk samples. Low-light photoadaptation was evident in analyses of the depth-dependency ofP-I parameters (photosynthetic capacity,P max; light-limited slope, alpha;P max alpha,I k ; light-intensity beyond which photoinhibition occurs,I b ) of the > 0.6 m communities at all three stations and was attributable to stratification of the water column. There was a decrease in assimilation rates andI k with depth that was associated with increases in light-limited rates of photosynthesis. No midday photoinhibition ofP max orI b was observed in any surface station. Marked photoinhibition was detected only in the chlorophyll maximum at the neritic front and below the surface mixed-layer at Wilkinson's Basin, where susceptibility to photoinhibition increased with the depth of the collected sample. The 0.6 to 1 m fraction always had lower light requirements for light-saturated photosynthesis than the > 5 m size fraction within the same sample. Saturation intensities for the 1 to 5 m and 0.6 to 1 m size fractions were more similar whenSynechococcus spp. abundances were high in the 1 to 5 m fraction. The > 5 m fraction appeared to be the prime contributor to photoinhibitory features displayed in mixed samples (> 0.6 m) taken from the chlorophyll maxima. InSynechococcus spp.-dominated 0.6 to 1 and 1 to 5 m size fractions, cellular chlorophylla content increased 50- to 100-fold with depth and could be related to increases in maximum daytime rates of cellularP max at the base of the euphotic zone. Furthermore, the 0.6 to 1 m and > 5 m fractions sampled at the chlorophyll maximum in the warm-core eddy had lower light requirements for photosynthesis than comparable surface samples from the same station. Results suggest that photoadaptation in natural populations ofSynechococcus spp. is accomplished primarily by changing photosynthetic unit number, occuring in conjuction with other accommodations in the efficiency of photosynthetic light reactions.  相似文献   

13.
The distribution of cyanobacteria in the surface waters of the North Sea was measured during July 1987. Numbers of cyanobacteria ranged from 2.5x106 to 1.7x108 cells 1-1. In the majority of stations, cyanobacterial numbers were highest in the near-surface water and a subsurface maximum was found at only one station. The distribution of 14C among the end-products of photosynthesis was determined for picoplankton (<1 m) and other phytoplankton >1 m throughout the North Sea. The majority of label was found in the protein fraction of both picoplankton and >1 m phytoplankton; incorporation into lipids and polysaccharides plus nucleic acids was much lower. We interpret the large incorporation into protein to be a consequence of nutrient limitation of these natural assemblages. Photosynthetic parameters of the two size fractions were also determined. Assimilation number (P m B ) and initial slope were greater for the picoplankton fraction than for phytoplankton >1 m but there was no evidence of significant photoinhibition of either fraction at irradiances up to 1 000 E m-2 s-1.  相似文献   

14.
The effects of residing in a polycyclic aromatic hydrocarbon (PAH) contaminated environment on the cytometric characteristics of hemocytes from the American oyster Crassostrea virginica (collected from the Rappahannock River, Virginia, USA in Spring 1991) were analyzed using a multichannel Coulter counter (10000 hemocytes oyster-1). The percentage and relative volume of small-sized hemocytes (>2.5 to 5.1 m) was higher (P<0.01) in oysters from Hospital Point (HP, a PAH contaminated site) in the Elizabeth River (ER), Virginia, compared to oysters from the relatively unpolluted Rappahannock River (RR). On the contrary, a decrease (P<0.001) in the percentage and volume of larger hemocytes (>6.2 to 10 m) was observed in the HP-oysters. Maintaining the RR-oysters at the HP site for 8 wk induced statistically significant increases in the number and relative volume contribution of the >2.5 to 5.1 m hemocytes and sharp decreases in the occurrence and relative volume of >6.2 to 13 m cells (P<0.01). By depurating the HP-oysters in the York River (the control site), the number of, and volume contributed by the small hemocytes (>2.5 to 5.1 m) showed a significant decrease over time as compared to the baseline values. On the other hand, the relative number of >6.2 to 13 m hemocytes increased sharply within 8 wk (P<0.001). This indicates that these changes are both inducible and reversible and, at least in part, due to exposure to the ER-sediment. Based on these studies, oyster hemocyte cytometric characteristics could be developed as a sensitive biomarker of exposure to PAH.  相似文献   

15.
Michaelis-Menten uptake kinetics were observed at all light intensities. With constant illumination, the Vmax and K1 in nitrate uptake over the natural light intensity range of 0 to 2000 E were 0.343 g-at NO3–N(g)-1 at protein-N h-1 and 26 E, respectively. Nitrate uptake was inhibited at higher light intensities. The Ks for nitrate uptake did not vary as a function of light intensity remaining relatively constant at 0.62 g-at NO3–N 1-1. With intermittent illumination, the Vmzx for light intensity in nitrate uptake over a light intensity range of 0 to 5000 E was 0.341 g-at NO3–N(g)-1-at protein-N h-1. No inhibition of nitrate uptake was observed at higher than natural light intensities. Chaetoceros curvisetus will probably never experience light inhibition of nitrate uptake under natural conditions.  相似文献   

16.
Quantitative measurements have been made on the ultra-structure and capillary supply to the axial muscles of the mesopelagic hatchet fish Argyropelecus hemigymnus (Cocco, 1829). Fish were collected at Eastern North Atlantic Ocean Station 10244, 32°48N; 31°15W during November 1980, from a depth of 480 to 550 m. Mitochondria with densely packed cristae occupy 44.3% of slow-fibre volume. Each myofibril is in direct contact with a mitochondrion. Compared with other fishes studied, the capillary supply to A. hemigymnus slow fibres is poorly developed. The average number of capillaries per fibre is 0.9, such that each m of capillary contact supplies 0.011 m2 of fibre cross-sectional area. The capillary surface area (m2) supplying 1 m3 of slow-fibre mitochondria is 0.17 in anchovy (Engraulis encrasicolus), 0.14 in rat-fish (Chimaera monstrosa), 0.14 in tench (Tinca tinca), 0.16 in catfish (Clarias mossambica), and only 0.025 for A. hemigymnus. It is suggested that, relative to the former species, some modifications in factors determining tissue oxygenation (e.g. myoglobin concentrations, blood flow, perfusion distribution or haemoglobin) and/or mitochondrial respiration rate are required in order to match oxygen supply and demand to the slow muscle in A. hemigymnus.  相似文献   

17.
The reef coral Pocillopora damicornis (Linnaeus) was grown for 8 wk in four nutrient treatments: control, consisting of ambient, unfiltered Kaneohe Bay seawater [dissolved inorganic nitrogen (DIN, 1.0 M) and dissolved inorganic phosphate (DIP, 0.3 M)]; nitrogen enrichment (15 M DIN as ammonium); phosphorus enrichment (1.2 M DIP as inorganic phosphate); and 15 M DIN+1.2 M DIP. Analyses of zooxanthellae for C, N, P and chlorophyll a after the 8 wk experiment indicated that DIN enrichment increased the cellular chlorophyll a and excess nitrogen fraction of the algae, but did not affect C cell-1. DIP enrichment decreased both C and P cell-1, but the decrease was proportionally less for C cell-1. the response of cellular P to both DIN and DIP enrichment appeared to be in the same direction and could not be explained as a primary effect of external nutrient enrichment. The observed response of cellular P might be a consequence of in situ CO2 limitation. DIN enrichment could increase the CO2 (aq) demand by increasing the net production per unit area. DIP enrichment could slow down calcification, thus decreasing the availability of CO2 (aq) in the coral tissue.Hawaii Institute of Marine Biology Contribution No. 920  相似文献   

18.
Clearance rates on different sizes of spherically shaped algae were determined in uni-algal experiments for all developmental stages (NII through adult) of the copepodAcartia tonsa, and used to construct food size spectra. Growth and developmental rates were determined at 7 food levels (0 to 1 500 g C l-1 ofRhodomonas baltica). The lower size limit for particle capture was between 2 and 4 m for all developmental stages. Optimum particle size and upper size limit increased during development from 7 m and 10 to 14 m for NII to NIII to 14 to 70 m and 250 m for adults, respectively. When food size spectra were normalized (percent of maximum clearance in a particular stage versus particle diameter/prosome length) they resembled log-normal distributions with near constant width (variance). Optimum, relative particle sizes corresponded to 2 to 5% of prosome length independent of developmental stage. Since the biomass of particulate matter is approximately constant in equal logarithmic size classes in the sea, food availability may be similar for all developmental stages in the average marine environment. Juvenile specific growth rate was exponential and increased hyperbolically with food concentration. It equaled specific female egg-production rate at all food concentrations. The efficiency by which ingested carbon in excess of maintenance requirements was converted into body carbon was 0.44, very similar to the corresponding efficiency of egg-production in females. On the assumptions that food availability is similar for all developmental stages, and that juvenile and female specific growth/egg-production rates are equal, female egg-production rates are representative of turnover rates (production/biomass) of the entireA. tonsa population and probably in other copepod species as well. Therefore, in situ estimates of female fecundity may be used for a rapid time- and site-specific field estimate of copepod production. This approach is shown to be fairly robust to even large deviations from the assumptions.  相似文献   

19.
Feeding, growth and bioluminescence of the thecate heterotrophic dinoflagellate Protoperidinium huberi were measured as a function of food concentration for laboratory cultures grown on the diatom Ditylum brightwellii. Ingestion of food increased with food concentration. Maximum ingestion rates were measured at food concentrations of 600 g C l-1 and were 0.7 g C individual-1 h-1 (1.8 D. brightwelli cells individual-1 h-1). Clearance rates decreased asymptotically with increasing food concentration. Maximum clearance rates at low food concentration were ca. 23 l ind-1 h-1, which corresponds to a volume-specific clearance rate of 5.9x105 h-1. Cell size of P huberi was highly variable, with a mean diameter of 42 m, but no clear relationship between cell size and food concentration was evident. Specific growth rates increased with food concentration until maximum growth rates of 0.7 d-1 were reached at a food concentration of 400 g C l-1 (1000 cells ml-1). Food concentrations as low as 10 g C l-1 of D. brightwellii (25 cells ml-1) were able to support growth of P. huberi. The bioluminescence of P. huberi varied with its nutritional condition and growth rate. Cells held without food lost their bioluminescence capacity in a matter of days. P. huberi raised at different food concentrations showed increased bioluminescence capacity, up to food concentration that supported maximum growth rates. The bioluminescence of P. huberi varied over a diel cycle, and these rhythmic changes persisted during 48 h of continuous darkness, indicating that the rhythm was under endogenous control.  相似文献   

20.
E. Paasche 《Marine Biology》1973,19(3):262-269
The variation of the rate of silicate uptake with varying silicate concentration in the medium was investigated in short-term experiments with the following marine diatom species:Skeletonema costatum, Thalassiosira pseudonana, T. decipiens, Ditylum brightwellii, andLicmophora sp. The uptake conformed to Michaelis-Menten kinetics only after a correction had been made for reactive silicate that apparently could not be utilized by the diatoms. The magnitude of this correction was in the range of 0.3 to 1.3 g-at Si/l. Mean values of the half-saturation constant of silicate uptake were calculated for the different species. The lowest value was found inS. costatum (0.80 g-at Si/l) and the highest inT. decipiens (3.37 g-at Si/l). Growth limitation by low silicate concentrations could be a cause of species succession in marine plankton-diatom blooms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号