首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
将活性炭(AC)应用于烟气脱硝中,其自身损耗和脱硝效率是关注焦点。采用不同氧化剂(KMnO4、HNO3、(NH4)2S2O8和H2O2)对AC进行氧化改性,对所得催化剂进行了TG、FTIR、H2-TPR和XPS表征,并对其脱NO活性进行了评价。对AC进行浸渍回流处理,可使AC表面含氧官能团增加,尤其是羧基和羰基等酸性含氧官能团。TG分析结果表明:在没有O2存在时,催化剂表面的O会与NO发生反应,导致催化剂自身损耗;在O2存在时,NO主要与O2中的O反应,因而在一定温度范围内不会发生催化剂自身损耗;同时AC表面的含氧官能团能加速NO的化学吸附活化,从而提高催化剂的脱NO活性。KMnO4改性的AC在180 ℃具有高催化活性,这归因于催化剂表面丰富的含氧官能团以及高价态Mn的存在。  相似文献   

2.
The chemical modification of Acrylamidomethyl Cellulose Acetate Propionate (AMCAP) was carried out by radical addition of acrylic acid. The structural modification was confirmed with the aid of FTIR, MS and NMR techniques. Thermal properties of hydrophilic cellulose derivative (AMCAP–H2O2) such as glass transition (Tg 153 °C) and thermal stability (372.7 °C) were determined by DSC and TGA techniques, respectively. These thermal properties confirmed the introduction of carboxylic groups into AMCAP structure, which causes an impact in their properties. The AMCAP–H2O2 shows minor contact angle compared to AMCAP, giving a more hydrophilic characteristic, due to acrylic acid addition into the side chains of AMCAP polymer.  相似文献   

3.
In the present work the photo-degradation of polychloroprene (PCP) in toluene solution catalyzed by FeCl3·6H2O and polychromatic light was investigated based on FTIR and 13C NMR spectroscopies, on conductivity measurements and DSC technique. The band in the 1700–1790 cm−1 range in the FTIR spectrum characterized the presence of carbonyl products due to the degradation of the PCP on the solution exposed to polychromatic light. The formation of carbonyl on degraded PCP was confirmed by the presence of signal on 13C NMR at δ 203.5. Products of PCP degradation, such as acid chlorides, generated in the toluene solution migrate to the aqueous phase (in contact with toluene phase) and the conductivity of aqueous phase increased as the time is elapsed. The area related to the PCP melting-peak on the DSC (film casted after the PCP-FeCl3·6H2O toluene solution has been exposed to polychromatic light) significantly decreased in comparison to that in the DSC of the raw PCP cast film.  相似文献   

4.
A new bio-based non-isocyanate urethane was obtained by the reaction of a cyclic carbonate synthesized from a modified linseed oil and an alkylated phenolic polyamine (Phenalkamine) from cashew nut shell liquid. The incorporation of functional cyclic carbonate groups to the triglyceride units of the oil was done by reacting epoxidized linseed oil with carbon dioxide in the presence of a catalyst. Structural changes and changes in molar mass during the carbonation reaction were characterized using infrared spectrometry (FTIR) and chromatography. The aminolysis reaction of the cyclic carbonate with phenalkamine was monitored using real-time FTIR at 80 and 100?°C, respectively. The decay of the carbonate groups and the appearance of the newly built C=O groups of the urethane linkages were measured in situ through real-time FTIR spectra in dependence on the reaction time. Oscillatory time sweep measurements were used to monitor the viscoelastic properties of the system at 80 and 100?°C. The time of gelation was determined from rheometric measurements. Changes of the apparent activation energy with respect to the conversion of the reaction were calculated from isothermal measurements using Vyazovkin??s free kinetic model.  相似文献   

5.
Estimates of ozone concentration and deposition flux to coniferous and deciduous forest in the Czech Republic on a 1 × 1 km grid during growing season (April–September) of the year 2001 are presented. Ozone deposition flux was derived from ozone concentrations in the atmosphere and from its deposition velocities. To quantify the spatial pattern in surface concentrations at 1 km resolution incorporating topography, empirical methods are used. The procedure maps ozone concentrations from the period of the day when measurements are representative for the forest areas of countryside. The effects of boundary layer stability are quantified using the observed relationship between the diurnal variability of surface ozone concentration and altitude. Ozone deposition velocities were calculated according to a multiple resistance model incorporating aerodynamic resistance (R a ), laminar layer resistance (R b ) and surface resistance (R c ). Surface resistance (R c ) comprises stomatal resistance (R sto ). R sto was calculated with respect to global radiation, surface air temperature and land cover. Modelled total and stomatal ozone fluxes are compared with the maps describing equivalent values of AOT40 (accumulated exposure over threshold of 40 ppb). For forests, the critical level (9,000 ppbh May–July daylight hours) is exceeded over 50% of forested territory. This indicates the potential for effects on large areas of forest. There is significiant correspondence between the exposure index AOT40 and the total ozone flux, but the relation between the total ozone flux and AOT40 exposure index is not clear in all parts of the forest territory.  相似文献   

6.
王秀军  张健  翟磊  靖波  檀国荣 《化工环保》2016,36(4):364-369
采用红外光谱、光电子能谱、扫描电子显微镜等方法对聚合物驱油(聚驱)油田采出液处理过程中生成的两种物理性质存在明显差异的油泥(黏弹油泥和非黏弹油泥)进行组成分析及生成机理分析。实验结果表明:黏弹油泥的FTIR谱图、XPS谱图与实验室模拟生成的黏弹油泥对照样的谱图高度相似,证明黏弹油泥是聚季铵盐型清水剂与阴离子聚丙烯酰胺生成的高含油阴阳离子复合物;非黏弹油泥不含季铵盐成分,而含有酰胺和醚官能团,推测有可能来源于采出液处理剂中的聚醚成分。  相似文献   

7.
Air-sea exchange rates for ozone were measured by the eddy correlation technique at a site on the north Norfolk coast in the UK. The average surface resistance to ozone uptake was found to be, rs(O3) = 1,000 ± 100 s m-1. Micrometeorological measurements of trace gas fluxes to ocean surfaces are rare but a review of available measurements suggests that we can constrain sea water surface resistance for ozone to between 1,000 (Regener (1974), and this work) and 1,890 s m-1 (Lenschow et al., 1982), yielding surface deposition velocities between 0.53 and 1.0 mm s-1. These values are more than an order of magnitude greater than can be explained by laboratory determined mass accommodation coefficients for ozone to water. The importance of dry deposition with respect to process air-sea exchange models is highlighted. A trend in surface deposition velocity with wind speed was also observed supporting a surface chemical enhancement mechanism of ozone uptake which in turn is enhanced by near surface mixing processes.  相似文献   

8.
A lysimeter study was performed to monitor effects of elevated ozone on juvenile trees of Fagus sylvatica L. as well as on the plant–soil system. During a fumigation period over almost three growing seasons, parameters related to plant growth, phenological development and physiology as well as soil functions were studied. The data analyses identified elevated ozone to delay leaf phenology at early and to accelerate it at late developmental stages, to reduce growth, some leaf nutrients (Ca, K) as well as some soluble phenolics (hydroxycinnamic acid derivatives, total flavonol glycosides). No or very weak ozone effects were found in mobile carbon pools of leaves (starch, sucrose), and other phenolic compounds (flavans). Altered gene expression related to stress and carbon cycling corresponded well with findings from leaf phenology and chemical composition analyses indicating earlier senescence and oxidative stress in leaves under elevated ozone. Conversely in the soil system, no effects of ozone were detected on soil enzyme activities, rates of litter degradation and lysimeter water balances. Despite the fact that the three reported years 2003–2005 were climatically very contrasting including a hot and dry as well as an extremely wet summer, and also mild as well as cold winters, the influence of ozone on a number of plant parameters is remarkably consistent, further underlining the phytotoxic potential of elevated tropospheric ozone levels.  相似文献   

9.
Delignification from the cell walls with a combination of ozone oxidation and dioxane–water extraction using thin sections of a softwood, Japanese cypress (Chamaecyparis obtusa Endl.), was studied to determine its suitability for the production of recyclable cellulose-based materials from wood waste. The visible-light absorption spectra of treated wood sections revealed that delignification from the cell walls with ozone increased with increasing ozonization time. Ozone delignification proceeded from the lumen side toward the middle lamella within the secondary wall of a cell, and it proceeded faster in early wood than in late wood within an annual ring. Mild ozonization for 10–30 min was sufficient for the removal of lignin from the cell walls when sections were extracted with dioxane after ozonization. The results obtained here demonstrate that microspectrometry coupled with the Wiesner reaction is useful for the quantitative analysis of lignin in cell walls.  相似文献   

10.
Natural weathering was performed on poly(butylene succinate) (PBS) and its kenaf bast fibre (KBF) filled composites by exposing the specimens to a tropical climate for a period of 6 months (max–min temperature: 31.5–23.9 °C; relative humidity: 78.9%). The aim of this study was to investigate the effects of KBF loading and the addition of maleated PBS compatibiliser (PBSgMA) on the performance of the composites under natural weathering. As expected, the flexural properties of both the uncompatibilised and compatibilised composites dropped with increasing exposure time. The weathered specimens were also assessed by colour change analysis, FTIR spectroscopy analysis and SEM examination. The total colour change, ΔE ab , of both the uncompatibilised and compatibilised composites increased with weathering time. FTIR spectroscopy analysis confirmed the presence of oxidation products such as hydroxyl, carbonyl and vinyl species in the weathered uncompatibilised and compatibilised composites. SEM examination revealed the presence of surface defects such as cracking, tiny holes and degraded fibre, which explain the poor performance of the composites upon weathering.  相似文献   

11.
Polyurethane (PUR) plastic sheets were prepared by reacting hydroxylated polymeric soybean oil (PSbOH) synthesized from autoxidized soybean oil with polyethylene glycol (PEG) in the presence of isophorone diisocyanate (IPDI). FTIR technique was used to identify of chemical reactions. These polyurethanes have different valuable properties, determined by their chemical composition. The effect of stoichiometric balance (i.e., PSbOH/PEG-2000/IPDI weight ratio) on the final properties was evaluated. The polyurethane plastic sheets with the PSbOH/PEG-2000/IPDI weight ratio 1.0/1.0/0.67 and 1.0/0.3/0.3 had excellent mechanical properties indicating elongation at break more than 200%. Increase in IPDI and decrease in PEG weight ratio cause the higher stress–strain value. The properties of the materials were measured by differential scanning calorimetry (DSC), thermo gravimetric analysis (TGA), stress–strain measurements and FTIR technique.  相似文献   

12.
The feasibility of the selective surface hydrophilization of poly vinyl chloride (PVC) using microwave treatment to facilitate the separation of PVC via froth flotation from automobile shredder residue (ASR) and electronic waste shredder residue (ESR) was evaluated. In the presence of powder-activated carbon (PAC), 60-s microwave treatment selectively enhanced the hydrophilicity of the PVC surface (i.e., the PVC contact angle decreased from 86.8° to 69.9°). The scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) results are consistent with increased hydrophilic functional groups (i.e., ether, hydroxyl, and carboxyl), amounting to significant changes in the morphology and roughness of the PVC surface after treatment. After only 60 s of microwave treatment, 20 % of the PVC was separated in virgin and ASR/ESR plastics with 33 and 29 % purity, respectively, as settled fractions by froth flotation at a 150 rpm mixing speed. The microwave treatment with the addition of PAC had a synergetic effect with the froth flotation, which brought about 100 and 90 % selective separation of PVC from the other virgin and ASR/ESR plastics, with 91 and 82 % purity. The use of the combined froth flotation and microwave treatments is an effective technology for separating PVC from hazardous waste plastics.  相似文献   

13.
Soybean polyols prepared by ring opening reactions of epoxidized soybean oil with hydrogen active compounds (water, alcohols, organic or inorganic acids, thiols, hydrogen etc.) have a low reactivity in the reaction with isocyanates because the hydroxyl groups are secondary. This paper presents a simple and convenient method to increase the reactivity of soybean polyols with secondary hydroxyl groups by ethoxylation reactions with the preservation of triglyceride ester bonds. The method uses mild reaction conditions: low alkoxylation temperature of 35–45 °C, low pressure of 0.1–0.2 MPa (15–30 p.s.i.) and a superacid as catalyst (HBF4). The new soybean polyols have a higher reactivity toward isocyanates in polyurethane formation due to the high percentage of primary hydroxyl groups. The primary hydroxyl content was determined by the second order kinetics of polyol reaction with phenyl isocyanate.  相似文献   

14.
Solid and soft forms of waste polystyrene have been treated with coumarone–indene resin and benzene to produce a new adhesive. The adhesive is prepared from various compositions of polystyrene (13–38 wt%), coumarone-indene resin (5–7%) and benzene (57–80%). Viscosity, peel strength and tensile shear strength of the adhesive is determined by a HAAKE Rotary Viscometer, Lloyd Adhesion Tester and Instron machine, respectively. Rolling ball technique was used to measure the tackiness of the adhesive. Results show that the adhesion property increases with increase in polystyrene composition and coating thickness. This observation is attributed to the increasing wettability of adhesive on the substrate.  相似文献   

15.
The aim of this study was to produce renewable energy from exhausted coffee residue, which is a form of biomass. As coffee preference continues to increase, the importation of coffee beans has been increasing sharply. However, the amount of coffee that is actually consumed is only about 0.2% of coffee beans, while the spent coffee beans are discarded in the form of exhausted coffee residue. Hydrothermal carbonization is a method of producing an improved fuel from renewable energy sources by changing the physical and chemical properties of biochars. Biochars were obtained from a variety of reaction temperatures during hydrothermal carbonization and analyzed using elemental analysis, ultimate analysis, and calorific value measurement. The atomic C/O and C/H ratios of all obtained biochars decreased and were found to be similar to those of lignite and sub-bituminous coal. The highest energy recovery efficiency of biochar indicates that the optimum reaction temperature for hydrothermal carbonization was between 210 and 240 °C, which produced biochars with calorific value of approximately 26–27 MJ/kg. The spectra of biochars obtained from Fourier transform infrared spectroscopy (FTIR) showed fewer C–O and aliphatic C–H functional groups, but more carbonyl C=O functional groups and aliphatic CH x groups. The results of this study indicate that hydrothermal carbonization can be used as an effective means to generate highly energy-efficient renewable fuel resources from coffee residue. The thermogravimetric analysis provided the changing combustion characteristics due to increased fixed carbon content.  相似文献   

16.
Soybean polyols prepared by ring opening reactions of epoxidized soybean oil with hydrogen active compounds (water, alcohols, organic or inorganic acids, thiols, hydrogen etc.) have a low reactivity in the reaction with isocyanates because the hydroxyl groups are secondary. This paper presents a simple and convenient method to increase the reactivity of soybean polyols with secondary hydroxyl groups by ethoxylation reactions with the preservation of triglyceride ester bonds. The method uses mild reaction conditions: low alkoxylation temperature of 35–45 °C, low pressure of 0.1–0.2 MPa (15–30 p.s.i.) and a superacid as catalyst (HBF4). The new soybean polyols have a higher reactivity toward isocyanates in polyurethane formation due to the high percentage of primary hydroxyl groups. The primary hydroxyl content was determined by the second order kinetics of polyol reaction with phenyl isocyanate.  相似文献   

17.
In the present work, sawdust reinforced polypropylene composites were fabricated using an extruder and an injection molding machine. Raw sawdust was chemically treated with benzene diazonium salt in order to improve the mechanical properties of the composites. The effect of the chemically treated sawdust reinforced PP composites was evaluated from their mechanical and surface morphological properties. The values of the mechanical properties of the chemically treated sawdust–PP composites were found to be significantly higher than those of the raw ones. Water uptake tests revealed that composites prepared from the chemically treated sawdust absorb lower amount of water compared to the ones prepared from raw sawdust, suggesting that hydrophilic nature of the cellulose in the sawdust has significantly decreased upon chemical treatment. The surface morphology obtained from scanning electron microscopy (SEM) showed that raw sawdust–PP composites possess surface roughness with extruded filler moieties, and weak interfacial adhesion between the matrix and the filler while the chemically treated one showed improved filler–matrix interaction. This indicates that better dispersion of the filler with the PP matrix has occurred upon chemical treatment of the filler.  相似文献   

18.
Effects of UV/photo-initiator treatments on crystal formation and properties of polylactide (PLLA) films are investigated. Camphorquinone and riboflavin photo-initiator solutions in methanol are employed in the treatment of amorphous quenched PLLA films. Results from FTIR, ATR-FTIR, DSC, XRD, and SEM show evidence of crystalline domain formation dispersed throughout the film. 1H NMR and GPC results suggest that the molecular weights of the polymer slightly decrease after the treatment. This indicates that the treatment leads to a diffusion of the photo-initiators molecules through the film matrix, resulting in a low degree of PLLA chain scissions, and formation of carboxylic acid and hydroxyl polar end groups. This, in turn, induces PLLA crystallization, which imposes profound effects on surface wettability and physical and mechanical properties of the samples. The process can be applied in optimizing properties of PLLA films with shorter treatment times, compared to other methods, which is suitable for use in various fields; especially those that require specific characteristics like biomedical, packaging and environmental applications.  相似文献   

19.
In this paper cellulose nanocrystals were prepared by treating microcrystalline cellulose with 1-butyl-3-methylimidazolium hydrogen sulphate ionic liquid. Cellulose nanocrystals, after separation from ionic liquid, were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), Field emission scanning electron microscopy (FESEM) Transmission Electron Microscope (TEM) and Thermogravimetric analysis. XRD results showed no changes in type of cellulose after the treatment with ionic liquid, however, high crystallinity index was observed in the ionic liquid treated sample. Cellulose nanocrystals, having length around 50–300 nm and diameter around 14–22 nm were observed in the ionic liquid treated sample under FESEM and TEM, and similar patterns of peaks as that of microcrystalline cellulose were observed for cellulose nanocrystals in the FTIR spectra. The thermal stability of the cellulose nanocrystals was measured low as compare to microcrystalline cellulose.  相似文献   

20.
Reliable information regarding release characteristics of nutrients from a polymer-coated controlled release fertilizer (CRF) is essential for beneficial agronomic and environmental results. Significant knowledge regarding nitrogen release from polymer-coated urea was gained while the information regarding the release of the different nutrients contained in polymer-coated compound N–P–K CRF remains limited. An experiment in which major factors affecting the differential release of nutrients from two coated compound CRF was performed in free water, water saturated sand and sand at field capacity. In general, nitrate release was the fastest, followed by ammonium and potassium whereas phosphate was significantly slower, with a rate of linear release in free water 45–70% slower than that of nitrate. Little differences were obtained for the lag periods of nitrate, ammonium and potassium release (2–10 days) under the experimental conditions, whereas for P they were one order of magnitude larger. The main factor slowing the release was assumed to be the lower solubility of ions with P being the least soluble. Release into free water was, expectedly, somewhat faster than that into saturated sand and significantly faster as compared to sand at field capacity and particularly so for P. Raising the temperature from 20 °C to 40 °C increased the rate of linear release of the different nutrients. The energy of activation, EArel, estimated for the linear release, of the different nutrients, was narrow ranging between 37 to 46 (KJ mol−1) whereas the mean values obtained for the two CRF, differing by 50% in coating thickness, was non-significant. However, EArel was significantly different in different media. The complex effect of temperature on the lag period and nutrient interactions during release deserve further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号