首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the effect of subsample size on the accuracy of information obtained from aquatic macroinvertebrate assemblage samples. Subsamples containing 100 organisms or 300 organisms were compared on the bases of processing time and the ability to discern ecological differences among samples. Independently of subsample size, assemblages differed between study streams, primarily reflecting an intermittent vs. permanent stream difference, and between seasons at most streams. It required, on average, two additional hours to process the larger subsamples. Larger subsamples gave significantly higher estimates of total richness and Ephemeroptera, Plecoptera, and Trichoptera (EPT) richness, but the relative abundances of many assemblage subsets (e.g., EPT organisms and most functional feeding groups) were similar using both subsample sizes. Larger subsamples did not typically enhance the ability to discriminate between samples from different seasons, but did more accurately distinguish among streams when differences were subtle. They also appeared to avoid Type I error in comparisons of compositionally similar reaches within a study stream.  相似文献   

2.
Standard protocols are critical for maximizing data comparability and aggregation in national monitoring programs, and taxa richness is a common indicator of site condition and biological diversity. There are two general approaches for sampling stream macroinvertebrate assemblages: targeted richest habitat and site wide. At seven sites, we compared three methods: Ontario Benthic Biomonitoring Network (OBBN), Environmental Monitoring and Assessment Program (EMAP), and Rapid Bioassessment Protocol (RBP). The OBBN method produced a biased sample at a site with a single small riffle, the RBP method produced the most total taxa, and the EMAP method produced the most taxa at four sites and the most individuals at six sites. The RBP method produced asymptotes for percent tolerant individuals, percent chironomid individuals, and Hilsenhoff Biotic Index score after five to ten stations. The EMAP method produced asymptotes for those metrics after 10 to 20 stations per site. The EMAP method typically required half the number of stations as the RBP method to obtain 70–90% of true taxa richness as estimated by the Jaccard coefficient. We conclude that the EMAP method is preferable because of its greater precision in taxa richness estimates.  相似文献   

3.
The relationship between benthic macroinvertebrate assemblages and cattle density was assessed from fall 2002 through spring 2004 in five small streams that represented a gradient of cattle grazing intensity. All study stream reaches were in pasture with no woody riparian vegetation, but varied in the intensity of cattle grazing (0 cattle ha−1 at site 1 to 2.85 cattle ha−1 at site 5). Regression analysis indicated highly significant and strong macroinvertebrate metric responses to cattle density during most sampling periods. The majority of metrics responded negatively to increased grazing, while a few (total taxa richness, number of sensitive taxa, and % collector filterers) increased along the gradient before declining at the most heavily grazed sites. Total number of sensitive taxa and % Coleoptera had the strongest relationship with cattle density throughout the study period. During some sampling periods, nearly 80% of the variation in these metrics was explained by cattle density. The elmid beetle, Oulimnius, had a particularly strong negative response to the grazing gradient. Study site groupings based on taxa composition, using detrended correspondence analysis (DCA), indicated that benthic samples collected from the reference site and light rotational grazing site were more similar in macroinvertebrate taxa composition than samples collected from the intermediate grazing and heavy grazing sites. Our findings demonstrate that biological integrity, as measured by benthic macroinvertebrate metrics and assemblage composition, is highly related to cattle density in small streams in the Blue Ridge mountains, Virginia, USA. This suggests that the degree of agricultural intensity should be given consideration in stream assessments, as well as land use planning and regulatory decisions.  相似文献   

4.
We compared naturally alkaline streams with limestone lithology to freestone streams with and without acid mine drainage (AMD) to predict benthic macroinvertebrate community recovery from AMD in limestone-treated watersheds. Surrogate-recovered (limestone) and, in many cases, freestone systems had significantly higher macroinvertebrate densities; diversity; taxa richness; Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa; EPT/chironomid ratios; scraper/collector-gatherer ratios; herbivores; collector-filterers; and scrapers. AMD-influenced systems had significantly greater numbers of Diptera and collector-gatherers. An entire trophic level (herbivores) was "restored" in surrogate-recovered streams, which also showed greater trophic specialization. Indicator analysis identified seven taxa (within Crustacea, Diptera, Nematoda, Trichoptera, and Ephemeroptera) as significant indicators of limestone systems and six taxa (within Ephemeroptera, Plecoptera, Tricoptera, Coleoptera, and Mollusca) as significant freestone indicators, all useful as biological indicators of recovery from AMD.  相似文献   

5.
6.
The influence of urbanization on stream insect communities was determined by comparing physical, chemical, and biological characteristics of streams draining 20 catchments with varyinglevels of urban land-cover in Maine (U.S.A). Percent total impervious surface area (PTIA), which was used to quantify urbanland-use, ranged from 1–31% among the study catchments.Taxonomic richness of stream insect communities showed an abruptdecline as PTIA increased above 6%. Streams draining catchmentswith PTIA < 6% had the highest levels of both total insect and EPT (Ephemeroptera + Plecoptera + Trichoptera) taxonomic richness. These streams contained insect communities with a totalrichness averaging 33 taxa in fall and 31 taxa in spring; EPT richness ranged from an average of 15 taxa in fall and 13 taxa inspring. In contrast, none of the streams draining catchments with6–27% PTIA had a total richness > 18 taxa or an EPT richness> 6 taxa. Insect communities in streams with PTIA > 6% were characterized by the absence of pollution-intolerant taxa. The distribution of more pollution-tolerant taxa (e.g.Acerpenna (Ephemeroptera); Paracapnia, Allocapnia (Plecoptera); Optioservus, Stenelmis (Coleoptera); Hydropsyche, Cheumatopsyche (Trichoptera)), however, showed little relation to PTIA. In contrast to the apparent threshold relationship between PTIA and insect taxonomic richness, both habitat qualityand water quality tended to decline as linear functions of PTIA.Our results indicate that, in Maine, an abrupt change in stream insect community structure occurs at a PTIA above a threshold ofapproximately 6% of total catchment area. The measurement of PTIA may provide a valuable tool for predicting thresholds for adverse effects of urbanization on the health of headwater streams in Maine.  相似文献   

7.
Thailand currently lacks formal bioassessment approaches and protocols to assist management decisions for water quality. The aim of this research is to develop a practical method of rapid bioassessment for a professional level by using benthic macroinvertebrate assemblages for streams in Thailand. Eleven reference and nine test sites were sampled in the headwater streams of the Loei River and adjacent areas to explore the development of a practical protocol. Specific physico-chemical parameters were selected to provide ecological information supplemental to the biological indicators. The biological research was designed around the USEPA Rapid Bioassessment Protocols (RBPs) using the multi-habitat approach. Four fixed-count subsamplings (100, 200, 300 and 500 organisms) were randomly conducted using a standardized gridded pan to evaluate an appropriate level for bioassessment in Thai streams. A 300 organism subsample is adequate for bioassessment purposes in Thai stream (evaluated by calculating dissimilarity values and ordination techniques). A systematic selection of candidate reference sites, metric selection, and index calibration was part of this research. Multimetric and multivariate analyses were examined as a foundation for bioassessment in Thailand. The multimetric approach appears to be more practical for a rapid bioassessment technique. Nine core metrics were identified for biological index score including number of total taxa, Diptera taxa, Ephemeroptera, Plecoptera, Trichoptera, and Coleoptera taxa, (%) Plecoptera, (%) Tolerant organisms, Beck's Biotic Index, (%) Intolerant organisms, Shredders taxa and Clingers taxa were calibrated for the final index. As a result of multimetric and multivariate analyses, family level identification data effectively discriminated reference condition and broad-scale environmental gradients. Hampered by incomplete taxonomic knowledge of benthic macroinvertebrates in Thailand, family-level identification may be sufficient taxonomic resolution for rapid bioassessment in Thailand.  相似文献   

8.
The Mid-Atlantic Highlands Assessment (MAHA) included the sampling of macroinvertebrates from 424 wadeable stream sites to determine status and trends, biological conditions, and water quality in first through third order streams in the Mid-Atlantic Highlands Region (MAHR) of the United States in 1993–1995. We identified reference and impaired sites using water chemistry and habitat criteria and evaluated a set of candidate macroinvertebrate metrics using a stepwise process. This process examined several metric characteristics, including ability of metrics to discriminate reference and impaired sites, relative scope of impairment, correlations with chemical and habitat indicators of stream disturbance, redundancy with other metrics, and within-year variability. Metrics that performed well were compared with metrics currently being used by three states in the region: Pennsylvania, Virginia, and West Virginia. Some of the metrics used by these states did not perform well when evaluated using regional data, while other metrics used by all three states in some form, specifically number of taxa, number of EPT taxa, and Hilsenhoff Biotic Index, performed well overall. Reasons for discrepancies between state and regional evaluations of metrics are explored. We also provide a set of metrics that, when used in combination, may provide a useful assessment of stream conditions in the MAHR.  相似文献   

9.
Based upon ecological data provided by a 6-year study of native species assemblage structure and function in near-pristine Limahuli Stream (Kauai), The Hawaii Stream Index of Biological Integrity (HS-IBI) incorporates 11 metrics covering five ecological categories (taxonomic richness, sensitive species, reproductive capacity, trophic–habitat capacity, and tolerance capacity). The HS-IBI was shown to effectively distinguish stream biological condition on a continuum from undisturbed (near-pristine) to severely impaired in sampling of 39 sites (6 estuarine reaches) on 18 Hawaiian streams located on all major islands. A significant relationship was validated between relative levels of human impact occurring within-watersheds (determined through use of a landscape indicator) and IBI ratings with metrics responding predictably to gradients of human influence. For management interpretation of HS-IBI results, a framework comprised of five “integrity classes” (excellent–good–fair–poor–impaired) is provided which can be used to operationalize HS-IBI results obtained through standardized sampling of stream sites that “…translates into a verbal and visual portrait of biological condition.” Through its focus on native species, the HS-IBI incorporates evolutionary and biogeographic variation for the region with biological expectations based upon reference condition benchmarks established in near-pristine stream environments where ecological functioning is naturally self-sustaining and resilient to normal environmental variation. The methods and tools described in this study are appropriate for application in all perennial streams in Hawaii and may be adapted for use in streams on other tropical Pacific islands where native species assemblages persist in near-pristine stream environments.  相似文献   

10.
The Maryland Department of Natural Resources is conducting the Maryland Biological Stream Survey, a probability-based sampling program, stratified by river basin and stream order, to assess water quality, physical habitat, and biological conditions in first through third order, non-tidal streams. These streams comprise about 90% of all lotic water miles in the state. About 300 sites (75 m segments) are being sampled during spring and summer each year. All basins in the state will be sampled over a three-year period, 1995-97. MBSS developments in 1995-96 included (1) an electrofishing capture efficiency correction method to improve the accuracy of fish population estimates, (2) two indices of biotic integrity (IBI) for fish assemblages to identify degraded streams, and (3) land use information for catchments upstream of sampled sites to investigate associations between stream condition and anthropogenic stresses. Based on fish IBI scores at 270 stream sites in six basins sampled in 1995, 11% of non-tidal stream miles in Maryland were classified as very poor, 15% as poor, 24% as fair, and 27% as good. IBIs have not yet been developed for stream sites with catchment areas less than 120 hectares (23% of non-tidal stream miles). IBI scores declined with stream acid neutralizing capacity (ANC) and pH, an association that was also evident for fish species richness, biomass, and density. Low IBI scores were associated with several measures of degraded stream habitat, but not with local riparian buffer width. There was a significant negative association between IBI scores and urban land use upstream of sampled sites in the only extensively urbanized basin assessed in 1995. Future plans for the MBSS include (1) identifying all benthic macroinvertebrate samples to genus, (2) developing benthic macroinvertebrate, herpetofaunal, and physical habitat indicators, and (3) enhancing the analysis of stream condition-stressor associations by refining landscape metrics and using multi-variate techniques.  相似文献   

11.
The effects of the Maine Turnpike (Interstate 95) on leaf litter processing were examined in five first- and second-order coastal plain streams in southern Maine, U.S.A. Invertebrate assemblages and red maple leaf softening and loss rates were compared at 53 stations arrayed upstream and downstream of the turnpike. Litter softening rate was not affected by the roadway. Litter loss rate was significantly faster at downstream stations (-0.0024 degree-day(-1)) than at upstream stations or at stations nearest the roadway, which were not different from each other (-0.0022 degree-day(-1)). Litter softening and loss rates were more strongly related to physical and chemical habitat variables than to shredder assemblage characteristics. Significant among-stream differences were observed in most community structural metrics and in biomass of important shredder taxa, but effects of the roadway were rarely consistent among streams. This is attributed in part to habitat variation, which was greater among streams than within streams. This study suggests that while the presence of the Maine Turnpike may influence stream water quality and habitat structure, the relatively subtle effects of roadway runoff and associated habitat modifications on stream ecosystem processes are masked by within- and among-stream variability in litter processing and leaf pack invertebrate assemblage structure.  相似文献   

12.
The development of biomonitoring programs based on the macroinvertebrate community requires the understanding of species distribution patterns, as well as of the responses of the community to anthropogenic stressors. In this study, 49 metrics were tested as potential means of assessing the condition of 29 first- and second-order streams located in areas of differing types of land use in São Paulo State, Brazil. Of the sampled streams, 15 were in well-preserved regions in the Atlantic Forest, 5 were among sugarcane cultivations, 5 were in areas of pasture, and 4 were among eucalyptus plantations. The metrics were assessed against the following criteria: (1) predictable response to the impact of human activity; (2) highest taxonomic resolution, and (3) operational and theoretical simplicity. We found that 18 metrics were correlated with the environmental and spatial predictors used, and seven of these satisfied the selection criteria and are thus candidates for inclusion in a multimetric system to assess low-order streams in São Paulo State. These metrics are family richness; Ephemeroptera, Plecoptera and Trichoptera (EPT) richness; proportion of Megaloptera and Hirudinea; proportion of EPT; Shannon diversity index for genus; and adapted Biological Monitoring Work Party biotic index.  相似文献   

13.
Stream macroinvertebrate communities vary naturally among types of habitats where they are sampled, which affects the results of environmental assessment. We analyzed macroinvertebrates collected from riffle and snag habitats to evaluate influences of habitat-specific sampling on taxon occurrence, assemblage measures, and biotic indices. We found considerably more macroinvertebrate taxa unique to snags (143 taxa) than to riffles (75 taxa), and the numbers of taxa found in both riffles and snags (149 taxa) were similar to that found in snags. About 64% of the 47 macroinvertebrate measures we tested differed significantly between riffles and snags. Eighty percent intercepts of regressions between biotic indices and urban or agricultural land uses differed significantly between riffles and snags. The Hilsenhoff biotic index calculated from snag samples explained 69% of the variance of riffle samples and classified 66% of the sites into the same stream health group as the riffle samples. However, four multimetric indices for snag samples explained less than 50% of the variance of riffle samples and classified less than 50% of the sites into the same health group as the riffle samples. We concluded that macroinvertebrate indices developed for riffle/run habitat should not be used for snag samples to assess stream impairment. We recommend developing an index of biotic integrity specifically for snags and using snags as an alternate sampling substrate for streams that naturally lack riffles.  相似文献   

14.
Multimetric indices (MMIs) are routinely used by federal, state, and tribal entities to assess the quality of aquatic resources. Because of their diversity, abundance, ubiquity, and sensitivity to environmental stress, benthic macroinvertebrates are well suited for MMIs. West Virginia has used a statewide family-level stream condition index (WVSCI) since 2002. We describe the development, validation, and application of a geographically- and seasonally partitioned genus-level index of most probable stream status (GLIMPSS) for West Virginia wadeable streams. Natural classification strata were evaluated with reference site communities using mean similarity analysis and non-metric multidimensional scaling ordination. Forty-one metrics spanning six ecological categories (richness, composition, tolerance, dominance, trophic groups, and habits) were evaluated for sensitivity, responsiveness, redundancy, range and variability across seasonal (spring and summer) and regional (mountains and plateau) strata. Through a step-wise metric selection process, 8–10 metrics were aggregated to comprise four stratum-specific GLIMPSS models (mountain/plateau and spring/summer). A comparison of GLIMPSS with WVSCI exhibited marked improvements where GLIMPSS detecting greater stream impacts. A variation of the GLIMPSS, which differs only in the family-level taxonomic identification of Chironomidae (GLIMPSS (CF)), was comparable to the full GLIMPSS. These MMIs are robust yet practical tools for evaluating impacts to water quality, instream and riparian habitat, and aquatic wildlife in wadeable riffle-run streams based on sensitivity, responsiveness, precision, and independent validation. These models may be used effectively to detect degradation of the naturally occurring benthic community, assess causes of biological degradation, and plan and evaluate remediation of damaged stream ecosystems.  相似文献   

15.
We investigated the effect of different subsample fractions on the variability of benthic invertebrate metrics. The results of six fractions 1/12, 1/6, 1/4, 1/3, 5/12 and 1/2 were compared to the results of the whole samples. Over 120 metrics were tested using five datasets: ecoregion Alps and four river types. In general, variability of metrics decreased with increasing subsample size, but variability varied greatly with the selected metric group and river type. Independent of river type, the highest variation was observed for the composition/abundance group metrics and the richness metrics, whereas it was low for the diversity indices and for the metrics of the sensitivity/tolerance group and intermediate for the functional metric group. For all metric groups independent of river type, the main decrease in variability occurs up to 1/4 subsample. We suggest that the effect of subsample size on variability of metrics should be tested prior to selecting potential assessment metrics.  相似文献   

16.
The purpose of this article is to report on the testing of responses of multimetric macroinvertebrate and habitat indices to common disturbances to streams: stream habitat alteration, excessive sediment, and elevated metals concentrations. Seven macroinvertebrate community metrics were combined into a macroinvertebrate biotic index (MBI), and 11 channel morphology, riparian, and substrate features were combined into a habitat index. Indices were evaluated by comparing the habitat results to fish population surveys and comparing the macroinvertebrate results to habitat ratings, percent fine sediments measured by Wolman pebble counts, and copper concentrations. Macroinvertebrate scores decreased with increasing percentages of fine sediments measured either across the bankfull or instream channel widths. Macroinvertebrate scores decreased with increasing copper. One metric, richness of Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa, was more responsive to both copper and sediment than was the multimetric MBI. Habitat scores corresponded well with the age class structure of salmonids, but not with that of benthic sculpins. Both salmonid and sculpin age classes declined with increasing percentages of fine sediments. The decline was graded with the sculpin age classes, whether fine sediments were measured across the instream or bankfull channel, whereas salmonids consistently responded only to the instream fine sediments.  相似文献   

17.
为支撑流域水生态目标的业务化管理,提高水生态监测和评价的可操作性,突破物种分类鉴定的技术瓶颈,以大型底栖无脊椎动物为研究对象,在江苏省太湖流域布设120个采样点,于2013年1—3月、7—8月和10—11月开展3次监测。以最小干扰为参照状态,对涉及物种丰度、物种多度组成、耐污能力和摄食类群的72个候选指数进行分布范围、判别能力及相关性分析,结合指数获取的便利性及物种分类的难易程度,最终筛选出3个核心指数构成大型底栖无脊椎动物完整性业务化评价指数,其中湖荡、河流和水库的指数为软体动物分类单元数、优势分类单元相对多度和BMWP指数,溪流的指数为ETO分类单元数、前三位优势分类单元相对多度和BMWP指数。经验证,业务化指数与环境梯度有较好的响应关系,且可操作性强,具备开展业务化应用的前景。但目前的流域水生态目标管理尚处于摸索阶段,技术体系还须在业务化过程中不断修正和完善。  相似文献   

18.
Investigating relationships of benthic invertebrates and sedimentation is challenging because fine sediments act as both natural habitat and potential pollutant at excessive levels. Determining benthic invertebrate sensitivity to sedimentation in forested headwater streams comprised of extreme spatial heterogeneity is even more challenging, especially when associated with a background of historical and intense watershed disturbances that contributed unknown amounts of fine sediments to stream channels. This scenario exists in the Chattahoochee National Forest where such historical timber harvests and contemporary land-uses associated with recreation have potentially affected the biological integrity of headwater streams. In this study, we investigated relationships of sedimentation and the macroinvertebrate assemblages among 14 headwater streams in the forest by assigning 30, 100-m reaches to low, medium, or high sedimentation categories. Only one of 17 assemblage metrics (percent clingers) varied significantly across these categories. This finding has important implications for biological assessments by showing streams impaired physically by sedimentation may not be impaired biologically, at least using traditional approaches. A subsequent multivariate cluster analysis and indicator species analysis were used to further investigate biological patterns independent of sedimentation categories. Evaluating the distribution of sedimentation categories among biological reach clusters showed both within-stream variability in reach-scale sedimentation and sedimentation categories generally variable within clusters, reflecting the overall physical heterogeneity of these headwater environments. Furthermore, relationships of individual sedimentation variables and metrics across the biological cluster groups were weak, suggesting these measures of sedimentation are poor predictors of macroinvertebrate assemblage structure when using a systematic longitudinal sampling design. Further investigations of invertebrate sensitivity to sedimentation may benefit from assessments of sedimentation impacts at different spatial scales, determining compromised physical habitat integrity of specific taxa and developing alternative streambed measures for quantifying sedimentation.  相似文献   

19.
Canopy cover is well known to influence the distribution of macroinvertebrates in temperate streams. Very little is known about how this factor influences stream communities in Afrotropical streams. The effects and possible interactions of environmental factors and canopy cover on macroinvertebrate community structure (abundance, richness, and diversity) were examined in four stations in Eriora River, southern Nigeria bimonthly from May to November 2010. The river supported diverse macroinvertebrates in which the upstream sampling stations with dense canopy cover were dominated by Decapoda, Ephemeroptera, Odonata, Gastropoda, Trichoptera, and Coleoptera while Diptera and Coleoptera were the benthic organisms found predominant at downstream stations with less canopy cover. Some caddisfly species such as Agapetus agilis, Trichosetodes species and the stonefly Neoperla species were present upstream and were found to be potential bioindicators for a clean ecosystem. The blood worm Chironomus species and Tabanus sp. were abundant at the downstream of the river and are considered potential bioindicators for an organically degrading ecosystem. Some environmental factors varied temporally with significantly higher macroinvertebrate abundance and richness in May. We found out that canopy cover and environmental factors affected macroinvertebrates abundance, diversity, and richness and that the individual taxon had varying responses to these factors. These results help identify the mechanisms underlying the effects of canopy cover and other environmental factors on Afrotropical stream invertebrate communities.  相似文献   

20.
In an ongoing effort to propose biologically protective nutrient criteria, we examined how total nitrogen (TN) and its forms were associated with macroinvertebrate communities in wadeable streams of Maryland. Taxonomic and functional metrics of an index of biological integrity (IBI) were significantly associated with multiple nutrient measures; however, the highest correlations with nutrients were for ammonia-N and nitrite-N and among macroinvertebrate measures were for Beck’s Biotic Index and its metrics. Since IBI metrics showed comparatively less association, we evaluated how macroinvertebrate taxa related to proposed nutrient criteria previously derived for those same streams instead of developing nutrient–biology thresholds. We identified one tolerant and three intolerant taxa whose occurrence appeared related to a TN benchmark. Individually, these taxa poorly indicated whether streams exceeded the benchmark, but combining taxa notably improved classification rates. We then extracted major physiochemical gradients using principal components analysis to develop models that assessed their influence on nutrient indicator taxa. The response of intolerant taxa was predominantly influenced by a nutrient-forest cover gradient. In contrast, habitat quality had a greater effect on tolerant taxa. When taxa were aggregated into a nutrient sensitive index, the response was primarily influenced by the nutrient-forest gradient. Multiple lines of evidence highlight the effects of excessive nutrients in streams on macroinvertebrate communities and taxa in Maryland, whose loss may not be reflected in metrics that form the basis of biological criteria. Refinement of indicator taxa and a nutrient-sensitive index is warranted before thresholds in aquatic life to water quality are quantified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号