首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 906 毫秒
1.
锈层对船体钢耐腐蚀性能影响研究   总被引:3,自引:2,他引:1  
选择5种不同类型的船体钢,在3%(质量分数)NaCl溶液中浸泡1 a,用金相显微镜观察内、外锈层形貌特征和腐蚀形貌,分析锈层下钢的腐蚀特征;记录自腐蚀电位(OCP)的变化,评价锈层对腐蚀倾向性的影响;利用电子探针(EMPA)分析锈层的形貌和内锈层元素分布;通过计算质量损失得到钢的平均腐蚀速率。结果表明,外锈层对钢腐蚀的影响较小;内锈层的缺陷与钢腐蚀形貌中的腐蚀坑对应;当钢中的Ni和Cr元素含量较高时,由于Cr元素在其内锈层和基体交界面富集,其平均腐蚀速率最小。  相似文献   

2.
Si对低合金钢耐海水腐蚀性能影响的电化学研究   总被引:1,自引:0,他引:1  
目的研究Si对低合金钢耐海水腐蚀性能的影响。方法采用真空电弧炉冶炼了不同硅含量的低合金钢,通过极化试验研究钢在海水中的腐蚀特性。采用交流阻抗和线性极化研究锈层对钢的保护作用,并对夹杂物进行SEM及EDAX分析。结果当硅的质量分数小于0.9%时,其在海水中的腐蚀速度随硅的质量分数增加而增加;当硅的质量分数大于0.9%时,其在海水中的腐蚀速度随硅含量的增加而减小。随浸泡时间延长,钢的耐蚀性降低。结论 Si的质量分数为0.9%时,钢耐蚀性的最好,锈层对钢的腐蚀不具有保护作用。  相似文献   

3.
目的 明晰流场、传质和锈层在EH32钢流动加速腐蚀过程中的协同作用机理。方法 利用射流喷射系统研究EH32钢的流动加速腐蚀行为,并基于CFD仿真模拟流场分布情况,最后通过微观形貌表征分析EH32钢的腐蚀形貌。结果 在射流喷射系统中,试样表面的流场分布不均匀,根据锈层的颜色可分为不同区域,喷嘴正对区域锈层最厚,但疏松多孔,形成凹坑,腐蚀最严重。远离喷嘴区域锈层逐渐减薄,但更致密,腐蚀形貌转变为“flow mark”和点蚀。结论 流场严重影响着腐蚀产物的分布,正应力高、剪切应力低的区域形成的锈层厚且疏松多孔,正应力低、剪切应力高的区域形成的锈层薄,但更致密。反应生成的阳极液随流体的转移过程导致了“flowmark”损伤形貌的形成,致密的锈层抑制了阳极液的转移,导致了点蚀坑的损伤形貌。锈层和阳极液的累积使得喷嘴中心区域表现为主要阳极区,腐蚀损伤最为严重,而远离中心区域由于致密的腐蚀产物抑制了传质过程,腐蚀速率较低。流场、锈层以及传质三者的协同作用决定了流动加速腐蚀行为。  相似文献   

4.
30CrMnSiA高强钢在北京地区的大气腐蚀研究   总被引:1,自引:3,他引:1  
利用失重分析、形貌观察、断面分析和电化学交流阻抗谱等研究了30CrMnSiA高强钢在北京地区大气腐蚀的动力学规律和腐蚀特征。结果表明,30CrMnSiA高强钢在北京的大气腐蚀速率经历了腐蚀初期由快到慢和腐蚀3 a后由慢到快的过程。在大气暴露1,2,3,5 a的30CrMnSiA样品中,暴露3 a的样品锈层最致密,对侵蚀性离子的阻挡作用最强,相应腐蚀速率最低;30CrMnSiA高强钢在大气腐蚀的锈层既可以生长得非常致密,也可因为过厚产生内应力,从而导致锈层破裂;3 a后,30CrMnSiA样品锈层的开裂加速了腐蚀。  相似文献   

5.
目的对Cl~-作用下AerMet100钢在盐雾环境中的腐蚀和微区电化学行为进行研究。方法通过开展盐雾腐蚀试验,对AerMet100钢的腐蚀形貌和腐蚀产物进行研究分析。盐雾试验不同时间后,通过SKP测试,得到试样的表面电位分布,通过Gauss拟合,对试样表面扫描开尔文电位的分布和变化情况进行分析。结果 AerMet100钢在盐雾腐蚀试验过程中的腐蚀行为从点蚀开始,逐渐发展为均匀腐蚀。腐蚀产物分为内外两层,外层疏松,内层致密。由于腐蚀反应过程中生成大量铁的氧化物及羟基氧化物,因此,内外层腐蚀产物中含有大量的Fe、O元素;内外锈层中均含有少量的Cl元素,表明Cl~-参与了腐蚀反应过程;内外锈层中Cr、Co、Ni等合金元素的存在,使得锈层具有离子选择性、致密性,加速了锈层的产生。未腐蚀的试样表面电位分布比较均匀,集中程度较高,即电位差较小,总体电位差为152 mV,有少量表面活性点随机分布,此时试样表面阴极和阳极分布不规则。盐雾试验3天后,试样表面电位正移,分布趋于分散,电位差增大,总体电位差为270m V,产生较为明显的阴极区和阳极区,由于吸附在试样表面活性点附近的Cl~-破坏了表面的氧化膜,腐蚀情况逐渐发生。盐雾试验6天后,试样表面电位进一步升高,分布更为分散,电位差略有减小,总体电位差为180 mV,由于腐蚀产物层的不断扩展,试样表面已经分为明显的较大面积的阴极区和阳极区。结论 Cl~-的侵蚀作用破坏了基体表面的氧化膜,使得AerMet100钢的腐蚀在夹杂物处发生。腐蚀产物能够阻碍Cl~-的渗透,对基体具有保护作用。  相似文献   

6.
目的 探究 A517 海工钢在海洋全浸区环境下的腐蚀机理。方法 通过模拟海洋全浸区腐蚀环境,利用失重法、SEM、EDS、XRD、电化学等测试技术,分析A517钢的腐蚀行为历程,并探讨其在全浸区的腐蚀机理。结果A517钢在厚度方向上的最大电位差为 13 mV,小于发生电偶腐蚀的最小电位差50mV,说明材料在厚度方向上的腐蚀敏感性一致。随浸泡时间的延长,腐蚀质量损失量逐渐增加,平均腐蚀速率先降低、后升高、最后趋于稳定,腐蚀速率约为 0.127 mm/a。结论 腐蚀动力初期主要是由溶解氧的极限扩散控制,后期则是腐蚀产物的氧化还原电荷转移控制。腐蚀首先在 Al2O3、MgO 等夹杂物处萌生扩展,腐蚀产物出现明显的分层现象,外锈层主要是疏松易脱落的γ-FeOOH,内锈层主要是致密均匀的 Fe3O4,同时锈层中还检测到了β-FeOOH和α-FeOOH的存在。锈层中存在大量微裂纹,削弱了产物膜的保护作用,促进了腐蚀的进行。  相似文献   

7.
目的 研究不锈钢与船体钢在天然海水中的电偶腐蚀行为,为不锈钢的应用提供数据支撑。方法 利用电化学设备研究不锈钢与船体钢在天然海水中的自腐蚀和电偶腐蚀行为,并结合质量损失和腐蚀形貌研究阴阳极面积比对电偶腐蚀敏感性的影响。结果 2种金属的自腐蚀电位相差600 mV,电偶腐蚀倾向严重。当二者发生电偶腐蚀时,不锈钢作阴极,船体钢作阳极。随着不锈钢与船体钢阴阳极面积比的减小,船体钢的腐蚀速率和平均腐蚀深度减小,不锈钢的腐蚀形貌则不受面积比的影响。结论 在实际工程中,可通过增加阳极材料面积的方法来降低电偶腐蚀效应的影响。  相似文献   

8.
Q235钢在模拟自然环境下失效行为的电化学研究   总被引:7,自引:3,他引:4  
采用电化学阻抗谱(EIS)和阴极极化曲线研究了Q235钢在薄液膜条件下的大气腐蚀过程,探讨了液膜厚度、Cl-和腐蚀产物对Q235钢失效过程的影响.结果表明液膜厚度会影响O2的扩散过程,并进一步影响腐蚀速率;C1~环境下,Q235钢腐蚀产物分成2层,外层为多孔疏松层,内层主要为α-FeOOH和γ -FeOOH组成的锈层,...  相似文献   

9.
目的研究两种低合金钢材料在不同深度海水环境下的腐蚀行为规律。方法通过深海实海试验,研究10CrNi3MoV与E47两种船用低合金钢在1200、2000、3000 m深度海水环境下暴露0.5、2 a的腐蚀行为规律。借助于三维视频显微镜和XRD等技术,分别进行腐蚀形貌观察与腐蚀产物成分分析,结合腐蚀动力学数据,对比研究两者深海环境耐蚀性能的优劣。结果不同深度环境下,腐蚀产物分内外两层,锈层下表面形态相对平整,存在大量细小点蚀坑。随深度的增加,点蚀坑数量呈增加趋势。腐蚀初期,2000m腐蚀速率和点蚀深度最低,随暴露时间的推移,锈层中α-FeOOH的含量明显提升,腐蚀速率均呈下降趋势。结论10CrNi3MoV深海耐蚀性劣于E47,初期2000 m深海腐蚀性略差,深度增加有利于两者点蚀形核过程。随着时间的推移,锈层对基体具有一定的保护作用,点蚀纵深发展阻力增大。  相似文献   

10.
目的研究普通耐候钢和含稀土耐候钢(Cu-P-RE钢)的耐蚀性能。方法通过腐蚀速率测试、电子探针、金相制作等技术手段探讨稀土对耐候钢耐蚀性能的影响。结果在耐候钢中加入稀土后,含稀土耐候钢比普通耐候钢的锈层更加连续致密、裂纹孔洞数量减少。结论含稀土锈层对腐蚀介质的物理阻挡作用相应改善,可有效抑制腐蚀介质对钢基体的进一步腐蚀,对基体的保护能力增强。稀土元素的存在有利于降低耐候钢在青岛海洋大气环境下的腐蚀速率,改善耐候钢的耐大气腐蚀性能。  相似文献   

11.
热镀锌板表面硅烷处理耐蚀性能的研究   总被引:4,自引:0,他引:4  
将镀锌钢板经表面处理后涂覆硅烷,研究成膜后的耐蚀性能。在3.5%NaCl溶液中的电化学极化曲线测试和交流阻抗表明,涂覆硅烷膜后,硅烷膜的存在能够明显地抑制腐蚀过程中的阴极和阳极反应,使电荷转移阻力大增,显著降低了锌的腐蚀速率,耐蚀效果较好。初步讨论了硅烷膜的成膜及耐蚀机理。  相似文献   

12.
目的 研究服役于海洋大气环境中的几种典型钢材的耐腐蚀性能.方法 通过酸性盐雾?湿热?酸性大气等试验方法研究钢材在海洋大气环境服役过程中的耐腐蚀性能.结果 在海洋大气环境中,通常含铬量较高的不锈钢耐腐蚀性能较为优异,含铬量较低的不锈钢材料耐腐蚀性能较差.结构钢在海洋大气环境下易腐蚀.钝化处理能明显提高不锈钢的耐腐蚀性能,...  相似文献   

13.
目的研究不同腐蚀环境条件下,封闭处理对铝合金硬质阳极氧化膜防护性能的影响规律。方法采用中性盐雾、酸性盐雾试验方法进行加速试验,对无划痕试样腐蚀外观和附着力以及有划痕试样的腐蚀形貌等进行检测和考核分析。结果获得了4种铝合金材料硬质阳极氧化膜层在不同试验环境条件下的防护性能、腐蚀失效、附着力变化以及抗腐蚀扩展性能等试验数据。结论封闭处理能够提高铝合金硬质阳极氧化膜层的耐蚀性,改善硬质阳极氧化膜层的耐腐蚀扩展性,同时有助于解决硬质阳极氧化膜层与有机涂层附着力降低的问题。  相似文献   

14.
316L与X65在模拟流动地层水中电偶腐蚀行为   总被引:1,自引:1,他引:0  
目的研究316L与X65在模拟流动地层水中电偶腐蚀行为,方法进行复合管材料X65和316L耦合在模拟流动地层水饱和CO2环境中的浸泡实验,通过电化学工作站测量电偶电流、电偶电位、开路电位及试样在不同温度和流速下极化曲线和交流阻抗图谱,另外通过电子扫描显微镜观察腐蚀形貌,对复合管电偶腐蚀行为进行分析。结果在模拟流速为0,0.2 m/s地层水中,X65耦合后的腐蚀速率分别为0.883,1.169 mm/a。结论 X65阳极反应极化程度较小,316L的阴极反应过程是整体反应速度的控制步骤。X65表面不仅发生阳极溶解,还伴随阴极反应。  相似文献   

15.
天然海水中碳钢缓蚀剂吸附和阳极脱附行为的研究   总被引:1,自引:0,他引:1  
以锌盐、葡萄糖酸盐为主要缓蚀成分复配的适用于天然海水中碳钢的高效缓蚀剂,采用极化曲线、循环伏安曲线和交流阻抗谱图分析了该缓蚀剂的阳极脱附行为.结果表明,碳钢在海水中的零电荷电位约为-0.6 V;缓蚀剂的吸附电位区间为-0.5~-0.8 V,缓蚀剂在该区间内存在特性吸附.当阳极极化电位超过-0.45 V时,极化电流迅速增大,缓蚀剂因发生大量脱附而失去对阳极过程的控制.  相似文献   

16.
模拟南海大气环境下耐候钢腐蚀性能研究   总被引:1,自引:1,他引:0       下载免费PDF全文
目的通过室内模拟南海大气环境加速腐蚀试验,对比分析几种钢腐蚀性能优劣,为开发耐南海大气腐蚀用钢提供数据支撑和理论依据。方法分别选用Q235B,Q355和Q500q E三种材料作为研究对象,采用中性盐雾试验方法模拟南海苛刻大气环境对试样进行耐蚀性测试,通过试样表面形貌观察、腐蚀质量损失计算和电化学分析等手段研究其腐蚀行为机制。结果 Q235B表面最先被腐蚀产物完全覆盖,腐蚀速率始终大于另外两种材料。Q355和Q500q E表面膜初期起到延缓腐蚀作用,其中以Q500q E极化阻抗最大,腐蚀表面最为平整。结论模拟南海大气环境下三种试验钢耐蚀性能排序为Q500q EQ355Q235B。  相似文献   

17.
目的研究几种典型金属材料在西沙海洋飞溅区的腐蚀行为规律。方法通过外场暴露试验,分析3种钢、1种铜和3种铝合金材料暴露0.5,1,2 a后的腐蚀形貌与动力学规律。结果 3种钢的腐蚀质量损失与点蚀均较为严重,T2整个表面均匀减薄的同时,会产生大量微小的腐蚀坑,3种铝合金发生以点蚀为主的局部腐蚀,伴随有晶间腐蚀、选择性腐蚀等。结论试验条件下,3种钢中Q235耐蚀性最差,T2整体耐蚀性较好,3种铝合金中5083耐点蚀性能最差,5052略优于6063。  相似文献   

18.
浸水率对低合金钢海水腐蚀行为的影响   总被引:1,自引:1,他引:0  
目的计算不同浸水率试样的平均腐蚀速率,并与全浸条件下的腐蚀行为进行对比研究。方法采用电化学测量技术,测量不同干湿循环后试样在海水中的开路电位、极化电阻和电化学交流阻抗,分析不同浸水率对低合金钢电化学性能的影响。利用三维视频显微镜观察不同浸水率试样的腐蚀形貌,采用X射线分析仪分析锈层组成。结果干湿交替条件下低合金钢的腐蚀速率比全浸条件下增大1个数量级,自腐蚀电位正移150 mV左右,极化电阻增大2个数量级;且随着浸水率增大,腐蚀速率减小,自腐蚀电位无明显变化,试验初期电阻增大,但是试验后期无明显变化。结论观察腐蚀形貌和锈层组成,全浸条件下以FeOOH为主,干湿交替条件下出现较多的Fe3O4。  相似文献   

19.
目的研究阳极氧化膜破损的航空铝合金试件在实验室加速腐蚀条件下的腐蚀行为和疲劳性能退化规律,并和阳极氧化膜完好的试件进行对比。方法以不同表面状态的2024-T3铝合金试件为研究对象,进行不同时长的实验室加速腐蚀试验和与加速腐蚀后的DFR试验。通过观察腐蚀形貌,测量腐蚀坑深度和孔蚀率来观测腐蚀行为,通过计算腐蚀后的DFR来研究DFR退化规律。结果阳极氧化膜完好、破损的2024-T3铝合金试件分别在加速腐蚀180、36 h后出现点蚀坑,平均点蚀坑深度与加速腐蚀时间符合幂函数关系。试件在实验室加速腐蚀条件下,DFR的退化规律符合指数函数关系。结论与阳极氧化膜完好试件相比,阳极氧化膜破损会导致2024-T3铝合金试件的耐腐蚀性降低,加速试件疲劳性能退化的速率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号