首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The present study evaluates the tolerance and accumulation potential of Vitis vinifera ssp. sylvestris under moderate and high external Cu levels. A greenhouse experiment was conducted in order to investigate the effects of a range of external Cu concentrations (0–23 mmol L−1) on growth and photosynthetic performance by measuring gas exchange, chlorophyll fluorescence parameters and photosynthetic pigments. We also measured the total copper, nitrogen, phosphorus, sulphur, calcium, magnesium, iron, potassium and sodium concentrations in the plant tissues. All the experimental plants survived even with external Cu concentrations as high as 23 mmol L−1 (1500 mg Cu L−1), although the excess of metal resulted in a biomass reduction of 35%. The effects of Cu on growth were linked to a reduction in net photosynthesis, which may be related to the effect of the high concentration of the metal on photosynthetic electron transport. V. vinifera ssp. sylvestris survived with leaf Cu concentrations as high as 80 mg kg−1 DW and growth parameters were unaffected by leaf tissue concentrations of 35 mg Cu kg−1 DW. The results of our study indicate that plants of V. vinifera ssp. sylvestris from the studied population are more tolerant to Cu than the commercial varieties of grapevine that have been studied in the literature, and could constitute a basis for the genetic improvement of Cu tolerance in grapevine.  相似文献   

2.
The aim of this study was to investigate the effects of metal mobilizing plant-growth beneficial bacterium Phyllobacterium myrsinacearum RC6b on plant growth and Cd, Zn and Pb uptake by Sedum plumbizincicola under laboratory conditions. Among a collection of metal-resistant bacteria, P. myrsinacearum RC6b was specifically chosen as a most favorable metal mobilizer based on its capability of mobilizing high concentrations of Cd, Zn and Pb in soils. P. myrsinacearum RC6b exhibited a high degree of resistance to Cd (350 mg L−1), Zn (1000 mg L−1) and Pb (1200 mg L−1). Furthermore, P. myrsinacearum RC6b showed multiple plant growth beneficial features including the production of 1-aminocyclopropane-1-carboxylic acid deaminase, indole-3-acetic acid, siderophore and solubilization of insoluble phosphate. Inoculation of P. myrsinacearum RC6b significantly increased S. plumbizincicola growth and organ metal concentrations except Pb, which concentration was lower in root and stem of inoculated plants. The results suggest that the metal mobilizing P. myrsinacearum RC6b could be used as an effective inoculant for the improvement of phytoremediation in multi-metal polluted soils.  相似文献   

3.
Hyperaccumulation of zinc by Corydalis davidii in Zn-polluted soils   总被引:1,自引:0,他引:1  
Lin W  Xiao T  Wu Y  Ao Z  Ning Z 《Chemosphere》2012,86(8):837-842
A field survey was conducted to identify potential Zn accumulators from an artisanal Zn smelting area in southwest China’s Guizhou Province. Hydroponic and soil culture experiments were performed to investigate the accumulation ability of Zn in Corydalis davidii. Zn concentrations in roots, stems and leaves of C. davidii in the smelting site were 1.1-3.5, 1.2-11.2, and 3.3-14 mg g1, respectively, whereas Zn concentrations in roots, stems and leaves of C. davidii in the contaminated site impacted by the Zn smelting were 1.0-2.4, 1.9-6.5, and 3.0-1.1 mg g−1, respectively. Zn concentrations in leaves and stems of C. davidii were observed at above 10 mg g−1 that refers to the threshold of Zn hyperaccumulator. The concentration distribution of Zn in C. davidii was leaf > stem > root, and the Zn bioaccumulation factors of C. davidii were above 1. It is concluded that C. davidii has high tolerance to concentrate Zn stress, and that C. davidii is a newly discovered Zn-hyperaccumulator with high biomass in the aboveground parts. Based on the cultivation experiments, C. davidii could reduce Zn concentration by 26.6, 21.2, and 10.2 mg kg−1yr−1 by phytoextraction from the smelting slag, Zn-contaminated soil, and background soil, respectively.  相似文献   

4.
The effects of increasing Cu, Ni and Cr concentrations (0.5, 5, 10, 20 and 40 mg L−1) on microtubule organization and the viability of leaf cells of the seagrass Cymodocea nodosa for 13 consecutive days were investigated under laboratory conditions. Increased oblique microtubule orientation, microtubule depolymerization at the 5–40 mg L−1 Ni treatments after 3 d of exposure, and a complete microtubule depolymerization at all Ni treatments after 5 d were observed. Cu depolymerised microtubules after three to 7 d of exposure, while Cr caused an extensive microtubule bundling after 9 or 11 d of exposure, depending on metal dosage. Fluorescence intensity measurements further consolidated the above phenomena. Cell death, occurring at later time than microtubule disturbance, was also observed at all Cu and Ni treatments and at the 10–40 mg L−1 Cr treatments and adding to the above quantification of the number of dead cells clearly showed that only a portion of the cell population studied died. The data presented, being the first assessment of microtubule disturbance in seagrasses, indicate that microtubules in seagrass leaf cells could be used as a valuable and early marker of metal-induced stress in biomonitoring programmes.  相似文献   

5.
We conducted acute toxicity tests and sediment toxicity tests for copper pyrithione (CuPT) and a metal pyrithione degradation product, 2,2′-dipyridyldisulfide [(PS)2], using a marine polychaete Perinereis nuntia. The acute toxicity tests yielded 14-d LC50 concentrations for CuPT and (PS)2 of 0.06 mg L−1 and 7.9 mg L−1, respectively. Sediment toxicity tests resulted in 14-d LC50 concentrations for CuPT and (PS)2 of 1.1 mg kg−1 dry wt. and 14 mg kg−1 dry wt., respectively. In addition to mortality, sediment avoidance behavior and decreases in animal growth rate were observed; growth rate was the most susceptible endpoint in the sediment toxicity tests of both toxicants. Thus, we propose lowest observed effect concentrations of 0.3 mg kg−1 dry wt. and 0.2 mg kg−1 dry wt. for CuPT and (PS)2, respectively, and no observed effect concentrations of 0.1 mg kg−1 dry wt. for both CuPT and (PS)2. The difference in the toxicity values between CuPT and (PS)2 observed in the acute toxicity test was greater than the difference in these values in the sediment toxicity test, and we attribute this to (PS)2 being more hydrophilic than CuPT. In addition to the toxicity tests, we analyzed conjugation activity of several polychaete enzymes to the toxicants and marked activity of palmitoyl coenzyme-A:biocides acyltransferase and UDP-glucuronosyl transferase was observed.  相似文献   

6.
Short-term 48, 72 and 96-h aquatic toxicity tests were conducted to evaluate the acute toxicity of eight fluorinated acids to the cladoceran, Daphnia magna, the green alga, Pseudokirchneriella subcapitata, and the rainbow trout, Oncorhynchus mykiss or the fathead minnow, Pimephales promelas. The eight fluorinated acids studied were tridecafluorohexyl ethanoic acid (6:2 FTCA), heptadecafluorooctyl ethanoic acid (8:2 FTCA), 2H-dodecafluoro-2-octenoic acid (6:2 FTUCA), 2H-hexadecafluoro-2-decenoic acid (8:2 FTUCA), 2H,2H,3H,3H-undecafluoro octanoic acid (5:3 acid), 2H,2H,3H,3H-pentadecafluoro decanoic acid (7:3 acid), n-perfluoropentanoic acid (PFPeA) and n-perfluorodecanoic acid (PFDA). The results of the acute toxicity tests conducted during this study suggest that the polyfluorinated acids, 8:2 FTCA, 8:2 FTUCA, 6:2 FTCA, 6:2 FTUCA, 7:3 acid and 5:3 acid, and the perfluorinated acids PFPeA and PFDA, are generally of low to medium concern based on evaluation of their acute freshwater toxicity (EC/LC50s typically between 1 and >100 mg L−1) using the USEPA TSCA aquatic toxicity evaluation paradigm. For the polyfluorinated acids, aquatic toxicity generally decreased as the number of fluorinated carbons decreased and as the overall carbon chain length decreased from 12 to 8. Acute aquatic toxicity of the 5 and 10 carbon perfluorocarboxylic acids (EC/LC50s between 10.6 and >100 mg L−1) was greater or similar to that of the 6-9 carbon perfluorocarboxylic acids (EC/LC50s > 96.5 mg L−1). This study also provides the first report of the acute aquatic toxicity of the 5:3 acid (EC/LC50s of 22.5 to >103 mg L−1) which demonstrated less aquatic toxicity than the 7:3 acid (EC/LC50s of 0.4-32 mg L−1). The cladoceran, D. magna and the green alga, P. subcapitata had generally similar EC50 values for a given substance while fish were typically equally or less sensitive with the exception that PFPeA was most toxic to fish. Predicted no-effect concentrations (PNECs) were estimated using approaches consistent with REACH guidance and when compared with available environmental concentrations, these PNECs suggest that the fluorinated acids tested pose little risk for aquatic organisms.  相似文献   

7.
Kim P  Park Y  Ji K  Seo J  Lee S  Choi K  Kho Y  Park J  Choi K 《Chemosphere》2012,89(1):10-18
Chronic toxicity of acetaminophen and lincomycin were evaluated using freshwater organisms including two crustaceans (Daphnia magna and Moina macrocopa) and a fish (Oryzias latipes). H295R, a human adrenal cell was also used to understand the effects on steroidogenesis. In 21 d D. magna exposure, survival NOEC was found at 5.72 mg L−1 and no reproduction related effects were noted at this level of exposure to acetaminophen, while 21 d survival or growth effects were not observed even at the highest exposure levels (153 mg L−1) for lincomycin. In the chronic fish toxicity test, significant reduction in juvenile survival was observed at 30 d post-hatch (dph) at 95 mg L−1 of acetaminophen, and 0.42 mg L−1 of lincomycin. After the exposure to both pharmaceuticals, vitellogenin levels tended to increase in male fish at 90 dph. In the eggs which were prenatally exposed to 9.5 mg L−1 of acetaminophen, reduced hatchability was observed. The results of H295R cell assay showed that both pharmaceuticals could alter steroidogenic pathway and increase estrogenicity. Endocrine disruption potentials and their ecological implication may deserve further studies. Our observations suggest however that ecological risks of both pharmaceuticals are negligible at the concentrations currently found in the environment.  相似文献   

8.
Glyphosate use has increased over the last decades for the control of invasive plant species in wetland ecosystems. Although glyphosate has been considered ‘environmentally’ safe, its repeated use could increase the toxicological risk derived from diffuse pollution of surface and groundwater on non-target vegetation. A glasshouse study was designed to determine the effect produced by the addition of different sub-lethal doses of glyphosate herbicides (5–30 mg L−1) to the nutrient solution on the growth and photosynthetic apparatus of Bolboschoenus maritimus. Although B. maritimus plants were able to grow and survive after 20 d of exposure to glyphosate, the presence of this herbicide affected their growth, through a direct interaction with the root system. Particularly, at 30 mg L−1 glyphosate, B. maritimus showed ca. 30% of biomass decrease. The reduction in B. maritimus growth was due to a decrease in net photosynthetic rate (A), which ranged between values ca. 11.5 and 5.5 μmol m−2 s−1 CO2 for the control and the highest glyphosate treatment, respectively. The response of A to glyphosate could be largely accounted for by non-stomatal limitations, since stomatal conductance was similar in all glyphosate treatments. Thus, A decrease was prompted by the negative impact of herbicide on photochemical (PSII) apparatus, the reduction in the absorption of essential nutrients, the reduction of photosynthetic pigments and possibly the reduction in Rubisco carboxilation capacity. Moreover, glyphosate excess caused photoinhibitory damage. In conclusion, in this study we have shown that herbicide water pollution could be a source of indirect phytotoxicity for B. maritimus.  相似文献   

9.
Limited information is available on the environmental behavior and associated potential risk of manufactured oxide nanoparticles (NPs). In this research, toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 were examined to the nematode Caenorhabditis elegans with Escherichia coli as a food source. Parallel experiments with dissolved metal ions from NPs were also conducted. The 24-h median lethal concentration (LC50) and sublethal endpoints were assessed. Both NPs and their bulk counterparts were toxic, inhibiting growth and especially the reproductive capability of the nematode. The 24-h LC50 for ZnO NPs (2.3 mg L−1) and bulk ZnO was not significantly different, but significantly different between Al2O3 NPs (82 mg L−1) and bulk Al2O3 (153 mg L−1), and between TiO2 NPs (80 mg L−1) and bulk TiO2 (136 mg L−1). Oxide solubility influenced the toxicity of ZnO and Al2O3 NPs, but nanoparticle-dependent toxicity was indeed observed for the investigated NPs.  相似文献   

10.
Metal uptake and its effect on foliar metallothionein 2b (MT2b) mRNA levels were studied in hybrid aspen (Populus tremula × tremuloides) in field conditions. The trees were planted on a site contaminated with several metals, including cadmium (mean 5.1 mg kg−1), chromium (80 mg kg−1), copper (180 mg kg−1), nickel (81 mg kg−1), vanadium (240 mg kg−1) and zinc (520 mg kg−1). Of the ten trace elements analyzed, only Cd and Zn accumulated in the leaves with maximal foliar concentrations of 35 and 2400 mg kg−1 (dry weight), respectively. There was a strong correlation between Cd and Zn concentrations and bioaccumulation factors (concentration in plant/soil) in the leaves, branches and roots, suggesting similar transport mechanisms for these two metals. The levels of MT2b correlated with Cd and Zn concentrations in the leaves, demonstrating that increased MT2b expression is one of the responses of hybrid aspen to chronic metal exposure.  相似文献   

11.
Cr(VI), a mutagenic and carcinogenic pollutant in industrial effluents, was effectively reduced by an indigenous tannery effluent isolate Staphylococcus arlettae strain Cr11 under aerobic conditions. The isolate could tolerate Cr(VI) up to 2000 and 5000 mg L−1 in liquid and solid media respectively. S. arlettae Cr11 effectively reduced 98% of 100 mg L−1 Cr(VI) in 24 h. Reduction for initial Cr(VI) concentrations of 500 and 1000 mg L−1 was 98% and 75%, respectively in 120 h. The isolate was also positive for siderophore, indole acetic acid, ammonia and catalase production, phosphate solubilization and biofilm formation in the presence and absence of Cr(VI). The isolate showed halotolerance (10% NaCl) and cross tolerance to other toxic heavy metals such as Hg2+, Ni2+, Cd2+ and Pb2+. Bacterial inoculation of Triticum aestivum in controlled petri dish and soil environment showed significant increase in percent germination, root and shoot length as well as dry and wet weight in Cr(VI) treated and untreated samples. This is the first report of simultaneous Cr(VI) reduction and plant growth promotion for a S. arlettae strain.  相似文献   

12.
Yan S  Zhou Q 《Chemosphere》2011,85(6):1088-1094
Little information is available about the toxicity of toluene, ethylbenzene and xylene acting on macrophytes, and their toxicity data are rarely used in regulation and criteria decisions. The results extended the knowledge on toxic effects of toluene, ethylbenzene and xylene on aquatic plants. The responses of Hydrilla verticillata to these pollutants were investigated. Chlorophyll levels, lipid peroxidation, and antioxidant enzymes (superoxide dismutase and guaiacol peroxidase) showed diverse responses at different concentrations of toluene, ethylbenzene and xylene. The linear regression analyses were performed respectively, suggesting the concentrations of toluene, ethylbenzene and xylene expected to protect aquatic macrophytes were 7.30 mg L−1, 1.15 mg L−1 and 2.36 mg L−1, respectively. This study emphasized that aquatic plants are also sensitive to organic pollutants as fishes and zooplanktons, indicating that macrophytes could be helpful in predicting the toxicity of these pollutants and should be considered in regulation and criteria decisions for aquatic environment protection.  相似文献   

13.
UV filters are increasingly used in sunscreens and other personal care products. Although their residues have been widely identified in aquatic environment, little is known about the influences of UV filters to protozoan. The growth inhibition effects, cell viability and oxidative stress responses of four commonly used UV filters, 2-ethylhexyl 4-methoxycinnamate (EHMC), benzophenone-3 (BP-3), 4-methyl-benzylidene camphor (4-MBC) and octocrylene (OC), to protozoan Tetrahymena thermophila were investigated in this study. The 24-h EC50 values with 95% confidence intervals for BP-3 and 4-MBC were 7.544 (6.561–8.675) mg L−1 and 5.125 (4.874–5.388) mg L−1, respectively. EHMC and OC did not inhibit the growth of T. thermophila after 24 h exposure at the tested concentrations. The results of cell viability assays with propidium iodide (PI) staining were consistent with that of the growth inhibition tests. As for BP-3 and 4-MBC, the relatively higher concentrations, i.e. of 10.0 and 15.0 mg L−1, could lead to the cell membranes impairment after 4 h exposure. With the increase of the exposure time to 6 h, their adverse effects on cell viability of T. thermophila were observed at the relatively lower concentration groups (1.0 mg L−1 and 5.0 mg L−1). In addition, it is noticeable that at environmentally relevant concentration (1.0 μg L−1), BP-3 and 4-MBC could lead to the significant increase of catalase (CAT) activities of the T. thermophila cells. Especially for the BP-3, the oxidative injuries were further confirmed by the reduction of glutathione (GSH) content. It is imperative to further investigate the additive action of UV filters and seek other sensitive endpoint, especially at environmentally relevant concentration.  相似文献   

14.
Molting in crustaceans is an important endocrine-controlled biological process that plays a critical role in growth and reproduction. Many factors can affect this physiological cycle in crustaceans including environmental stressors and disease agents. For example the pathology of Taura Syndrome Virus (TSV) of shrimp is closely related to molting cycle. Similarly, endosulfan, a commonly used pesticide is a potential endocrine disruptor. This study explores interrelationships between pesticide exposure, virus infection and their interactions with physiology and susceptibility of the shrimp. Litopenaeus vannamei (Pacific white shrimp) were challenged with increasing doses of endosulfan and TSV (TSV-C, a Belize reference strain) to determine the respective median lethal concentrations (LC50s). The 96-h endosulfan LC50 was 5.32 μg L−1, while the 7-d TSV LC50 was 54.74 mg L−1. Subsequently, based on their respective LC50 values, a 20-d interaction experiment with sublethal concentrations of endosulfan (2 μg L−1) and TSV (30 mg L−1) confirmed a significant interaction (p < 0.05, χ2 = 5.29), and thereby the susceptibility of the shrimp. Concurrently, molt-stage of animals, both at the time of exposure and death, was compared with mortality. For animals challenged with TSV, no strong correlation between molt-stage and mortality was observed (p > 0.05). For animals exposed to endosulfan, animals in the postmolt stage were shown to be more susceptible to acute toxicity (p < 0.05). For animals exposed to both TSV and endosulfan, interference of endosulfan-associated stress lead to increasingly higher susceptibility at postmolt (p < 0.05) during the acute phase of the TSV disease cycle.  相似文献   

15.
We used Caenorhabditis elegans to investigate whether acute exposure to TiO2-NPs at the concentration of 20 μg L−1 reflecting predicted environmental relevant concentration and 25 mg L−1 reflecting concentration in food can cause toxicity on nematodes with mutations of susceptible genes. Among examined mutants associated with oxidative stress and stress response, we found that genes of sod-2, sod-3, mtl-2, and hsp-16.48 might be susceptible for TiO2-NPs toxicity. Mutations of these genes altered functions of both possible primary and secondary targeted organs in nematodes exposed to 25 mg L−1 of TiO2-NPs for 24-h. Mutations of these genes caused similar expression patterns of genes required for oxidative stress in TiO2-NPs exposed mutant nematodes, implying their similar mechanisms to form the susceptible property. Nevertheless, acute exposure to 20 μg L−1 of TiO2-NPs for 24-h and 25 mg L−1 of TiO2-NPs for 0.48-h or 5.71-h did not influence functions of both possible primary and secondary targeted organs in sod-2, sod-3, mtl-2, and hsp-16.48 mutants. Therefore, our results suggest the relatively safe property of acute exposure to TiO2-NPs with certain durations at predicted environmental relevant concentrations or concentrations comparable to those in food in nematodes with mutations of some susceptible genes.  相似文献   

16.
Oil sands mining in the Athabasca region of northern Alberta results in the production of large volumes of oil sands process-affected water (OSPW). We have evaluated the effects of OSPW, the acid extractable organic (AEO) fraction of OSPW, and individual naphthenic acids (NAs) on the germination and development of the model plant, Arabidopsis thaliana (Arabidopsis). The surrogate NAs that were selected for this study were petroleum NAs that have been used in previous toxicology studies and may not represent OSPW NAs. A tricyclic diamondoid NA that was recently identified as a component of OSPW served as a model NA in this study. Germination of Arabidopsis seeds was not inhibited when grown on medium containing up to 75% OSPW or by 50 mg L−1 AEO. However, simultaneous exposure to three simple, single-ringed surrogate NAs or a double-ringed surrogate NA had an inhibitory effect on germination at a concentration of 10 mg L−1, whereas inhibition of germination by the diamondoid model NA was observed only at 50 mg L−1. Seedling root growth was impaired by treatment with low concentrations of OSPW, and exposure to higher concentrations of OSPW resulted in increased growth inhibition of roots and primary leaves, and caused bleaching of cotyledons. Treatment with single- or double-ringed surrogate NAs at 10 mg L−1 severely impaired seedling growth. AEO or diamondoid NA treatment was less toxic, but resulted in severely impaired growth at 50 mg L−1. At low NA concentrations there was occasionally a stimulatory effect on root and shoot growth, possibly owing to the broad structural similarity of some NAs to known plant growth regulators such as auxins. This report provides a foundation for future studies aimed at using Arabidopsis as a biosensor for toxicity and to identify genes with possible roles in NA phytoremediation.  相似文献   

17.
Chen H  Jiang JG 《Chemosphere》2011,84(5):664-670
Dunaliella salina, a unicellular green alga of environmental tolerance, was employed as test organism to investigate the toxicity effects of trichlorfon and dimehypo widely used in agriculture and veterinary as pesticides. The influences of trichlorfon and dimehypo on cell growth, β-carotene level, cell morphology changes, and activities of superoxide dismutase (Sod) and catalase (Cat) were investigated. At the concentrations less than 0.050 g L−1 trichlorfon or 0.0005 g L−1 dimehypo, cell responses were similar to control. When treated with 0.075-0.100 g L−1 trichlorfon or 0.001-0.004 g L−1 dimehypo, cell growth and β-carotene levels declined at first and then revived. When concentrations were higher than 0.125 g L−1 trichlorfon or 0.005 g L−1 dimehypo, both cell growth and β-carotene levels decreased until they were undetectable. The 10-d IC50 of trichlorfon and dimehypo on D. salina were 0.179 g L−1 and 0.032 g L−1. Both pollutants could stimulate the increase of Cat activity at a low concentration. Tolerance of D. salina to trichlorfon was obviously higher than that of dimehypo.  相似文献   

18.
Okorie A  Entwistle J  Dean JR 《Chemosphere》2012,86(5):460-467
The pseudo-total and oral bioaccessible concentration of six potentially toxic elements (PTEs) in urban street dust was investigated. Typical pseudo-total concentrations across the sampling sites ranged from 4.4 to 8.6 mg kg−1 for As, 0.2-3.6 mg kg−1 for Cd, 25-217 mg kg−1 for Cu, 14-46 mg kg−1 for Ni, 70-4261 mg kg−1 for Pb, and, 111-652 mg kg−1 for Zn. This data compared favourably with other urban street dust samples collected and analysed in a variety of cities globally; the exception was the high level of Pb determined in a specific sample in this study. The oral bioaccessibility of PTEs in street dust is also assessed using in vitro gastrointestinal extraction (Unified Bioaccessibility Method, UBM). Based on a worst case scenario the oral bioaccessibility data estimated that Cd and Zn had the highest % bioaccessible fractions (median >45%) while the other PTEs i.e. As, Cu, Ni and Pb had lower % bioaccessible fractions (median <35%). The pseudo-total and bioaccessible concentrations of PTEs in the samples has been compared to estimated tolerable daily intake values based on unintentional soil/dust consumption. Cadmium, Cu and Ni are well within the oral tolerable daily intake rates. With respect to As and Pb, only the latter exceeds the TDIoral if we model ingestion rate based on atmospheric ‘dustiness’ rather than the US EPA (2008) unintentional soil/dust consumption rate of 100 mg d−1. We consider it unlikely that even a child with pica tendencies would ingest as much as 100 mg soil/dust during a daily visit to the city centre, and in particular to the sites with elevated Pb concentrations observed in this study.  相似文献   

19.
Pharmaceuticals, including the lipid regulator gemfibrozil and the non-steroidal anti-inflammatory drug diclofenac have been identified in waste water treatment plant effluents and receiving waters throughout the western world. The acute and chronic toxicity of these compounds was assessed for three freshwater species (Daphnia magna,Pseudokirchneriella subcapitata, Lemna minor) using standardised toxicity tests with toxicity found in the non-environmentally relevant mid mg L−1 concentration range. For the acute endpoints (IC50 and EC50) gemfibrozil showed higher toxicity ranging from 29 to 59 mg L−1 (diclofenac 47-67 mg L−1), while diclofenac was more toxic for the chronic D. magna 21 d endpoints ranging from 10 to 56 mg L−1 (gemfibrozil 32-100 mg L−1). These results were compared with the expression of several biomarkers in the zebra mussel (Dreissena polymorpha) 24 and 96 h after exposure by injection to concentrations of 21 and 21,000 μg L−1 corresponding to nominal concentrations of 1 and 1000 μg L−1. Exposure to gemfibrozil and diclofenac at both concentrations significantly increased the level of lipid peroxidation, a biomarker of damage. At the elevated nominal concentration of 1000 μg L−1 the biomarkers of defence glutathione transferase and metallothionein were significantly elevated for gemfibrozil and diclofenac respectively, as was DNA damage after 96 h exposure to gemfibrozil. No evidence of endocrine disruption was observed using the alkali-labile phosphate technique. Results from this suite of biomarkers indicate these compounds can cause significant stress at environmentally relevant concentrations acting primarily through oxidation pathways with significant destabilization of the lysosomal membrane and that biomarker expression is a more sensitive endpoint than standardised toxicity tests.  相似文献   

20.
Jin X  Zha J  Xu Y  Giesy JP  Richardson KL  Wang Z 《Chemosphere》2012,86(1):17-23
2,4,6-Trichlorophenol (2,4,6-TCP) is a common chemical intermediate and a by-product of water chlorination and combustion processes, and is a priority pollutant of the aquatic environment in many countries. Although information on the toxicity of 2,4,6-TCP is available, there is a lack of information on the predicted no-effect concentration (PNEC) of 2,4,6-TCP, mainly due to the shortage of chronic and site-specific toxicity data. In the present study, acute and sub-chronic toxicity of 2,4,6-TCP on six different resident Chinese aquatic species were determined. PNEC values were calculated and compared by use of two approaches: assessment factor (AF) and species sensitivity distribution (SSD). Values for acute toxicity ranged from 1.1 mg L−1 (Plagiognathops microlepis) to 42 mg L−1 (Corbicula fluminea) and the sub-chronic no observed effect concentrations (NOECs) ranged from 0.05 mg L−1 (Mylopharyngodon piceus) to 2.0 mg L−1 (C. fluminea). PNECs obtained by the assessment factor approach with acute (AF = 1000, 0.001 mg L−1) or chronic (AF = 10, 0.005 mg L−1) toxicity data were one order of magnitude less than those from SSD methods (0.057 mg L−1). PNEC values calculated using SSD methods with a 50% certainty for 2,4,6-TCP was less than those obtained by use of the USEPA recommend final chronic value (FCV) method (0.097 mg L−1) and the one obtained by use of the USEPA recommend acute-to-chronic (ACR) methods (0.073 mg L−1). PNECs derived using AF methods were more protective and conservative than that derived using SSD methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号