首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Social parasites exploit the behaviours of other social species. Infiltration of host systems involves a variety of mechanisms depending on the conditions within the host society and the needs of the social parasite. For many species of socially parasitic ants, colony establishment entails the usurpation of colonies of other species. This frequently involves the eviction or death of the host colony queen and the subsequent adoption of the invading queen. The social parasite queen achieves host worker acceptance by either manipulating the nest-mate recognition processes of the host or undergoing chemical modification. Little is known, however, about how host workers respond to social parasite eggs or whether host species defend against brood parasitism during parasite invasions. Host species are believed to adopt social parasite offspring because the recent common ancestry between many social parasites and their hosts may grant the sharing of certain characteristics such as chemical cues. Use of multiple host species, however, suggests other processes are needed for the social bond between host and parasite young to form. This study reports the findings of adoption bioassays in which eggs from a slave-maker ant, Polyergus breviceps, were offered to workers of two of its host species from unparasitised or newly parasitised nests to determine whether P. breviceps eggs generally elicit rearing behaviours from multiple host species. Comparisons of parasite egg survival until adulthood with conspecific egg survival reveal that workers of both host species, free-living or newly enslaved, do not typically accept slave-maker eggs. Both host species thus have sufficient discriminatory power to reject social parasite eggs although our hydrocarbon analysis indicates parasite eggs may be adapted to their local host species. Combined these results suggest that host rearing of P. breviceps eggs may reflect an evolutionary equilibrium that is maintained by probability and cost of recognition errors.Communicated by L. Sundström  相似文献   

2.
Ant social parasites use chemical warfare to facilitate host colony takeover, which is a critical but recurring step in their life cycle. Many slave-making ants use the secretion of the Dufour gland to manipulate host behaviour during parasitic nest foundation and slave raids. Harpagoxenus sublaevis applies this chemical weapon onto defending Leptothorax host workers, which elicits deadly fights amongst them. Host species are expected to evolve counter-adaptations against this behavioural manipulation and in this study we investigated the geographic structure of this co-evolving trait. We compared the effectiveness of the parasitic gland secretion from different H. sublaevis populations in host colonies from various sites and analysed the occurrence of local adaptation. The two host species L. muscorum and L. acervorum generally showed different responses to the parasites’ chemical weapon: L. acervorum attacked nestmates treated with Dufour gland secretion, while L. muscorum workers fled. Flight, instead of intraspecific fights, is an adaptive host reaction as it results in fewer host fatalities during raids. Beside interspecific host differences, we found a geographic mosaic of host resistance: parasites from a German population strongly manipulated the behaviour of both sympatric Leptothorax populations. Russian or Italian hosts instead did not react with intracolonial aggression, but fled when confronted with the gland secretion of their sympatric parasite. Not only variation in host resistance explains differences in the effectiveness of the parasitic gland secretion but also interpopulational differences in its chemical composition, which were revealed by gas chromatography and mass spectrometry.  相似文献   

3.
Parasite-induced alterations in host behaviour have been reported in a large number of taxa. However, some parasites are better than others to exploit the resources offered by their hosts. To date, our understanding of the extent to which some obligate parasites exploit social insect colonies is still limited. In this study, we examined parasite-mediated behavioural alterations of Polistes biglumis wasps parasitized by the obligate social parasite Polistes atrimandibularis by comparing host female-activity in parasitized and non-parasitized colonies. Host foundresses foraged more and rested less in parasitized than in non-parasitized colonies (controlling for the number of larvae in the nest, the time of day, and the day in the season). Next, we used short-term parasite removal experiments to investigate how social parasites manipulate their hosts. We found that parasitized hosts foraged more and rested less when social parasites were on the nest rather than after their removal, and we tested which kind of interactions occurred between parasites and hosts. P. atrimandibularis parasites may use mainly non-aggressive interactions (such as antennation and trophallaxis) to manipulate host activities, rather than visual, acoustic or chemical signals as other parasites do.  相似文献   

4.
A challenge for parasites is how to evade the sophisticated detection and rejection abilities of potential hosts. Many studies have shown how insect social parasites overcome host recognition systems and successfully enter host colonies. However, once a social parasite has successfully usurped an alien nest, its brood still face the challenge of avoiding host recognition. How immature stages of parasites fool the hosts has been little studied in social insects, though this has been deeply investigated in birds. We look at how larvae of the paper wasp obligate social parasite Polistes sulcifer fool their hosts. We focus on cuticular hydrocarbons (CHCs), which are keys for adult recognition, and use behavioral recognition assays. Parasite larvae might camouflage themselves either by underproducing CHCs (odorless hypothesis) or by acquiring a chemical profile that matches that of their hosts. GC/MS analyses show that parasite larvae do not have lower levels of CHCs and that their CHCs profile is similar to the host larval profile but shows a reduced colony specificity. Behavioral tests show that the hosts discriminate against alien conspecific larvae from different colonies but are more tolerant towards parasite larvae. Our results demonstrate that parasite larvae have evolved a host larval profile, which overcomes the host colony recognition system probably because of the lower proportion of branched compounds compared to host larvae. In some ways, this is a similar hypothesis to the odorless hypothesis, but it assumes that the parasite larvae are covered by a chemical blend that is not meaningful to the host.  相似文献   

5.
The geographic mosaic theory of coevolution states that variation in species interactions forms the raw material for coevolutionary processes, which take place over large geographic scales. One key assumption underlying the process of coevolution in plant-herbivore interactions is that herbivores exert selection on their host plants and that this selection varies among plant populations. We examined spatial variation in the existence and strength of phenotypic selection on host plant resistance exerted by specialist herbivores in 17 archipelago populations of the perennial herb Vincetoxicum hirundinaria (Asclepiadaceae). In these highly fragmented populations, V. hirundinaria is consumed by the larvae of two specialist herbivores: the folivorous moth Abrostola asclepiadis and the seed predator Euphranta connexa. Selection imposed on host plants by these herbivores was examined by analyzing the associations between levels of herbivory, plant fitness, and contents of a number of leaf chemicals reflecting plant resistance to and quality for the herbivores. We found extensive spatial variation in the levels of herbivory and in plant fitness. More importantly, the impact of both leaf herbivory and seed predation on plant fitness varied among plant populations, indicating spatial variation in phenotypic selection. In addition, leaf chemistry varied widely among plant populations, reflecting spatial variation in plant quality as food for the herbivores. However, leaf compounds influenced folivory similarly in all the studied plant populations, and interestingly, some of the compounds were associated with the intensity of seed predation. Finally, some of the leaf compounds were associated with plant fitness, and the strength and direction of these associations varied among plant populations. The observed spatial variation in the strength of the interactions between V. hirundinaria and its specialist herbivores suggests a geographic selection mosaic. Because the occurrence and strength of spatial variation varied between the two specialist herbivores, our results highlight the importance of considering multiple enemies when trying to understand evolution of interactions between plants and their herbivores.  相似文献   

6.
Insect social parasites, like other parasites, may benefit from inhibiting their host from reproducing (complete or partial parasitic castration) because they can then exploit more of the host’s resources for their own reproduction. In particular, social parasites that kill or expel the host queen need to prevent host workers from reproducing; this is a common worker response to the absence of their queen. Indeed, host workers would benefit from detecting the presence of the parasite and investing in direct and indirect fitness. Studying whether and how social parasites control host worker reproduction can provide information about the degree of integration of the parasite in the host colony and help identify factors regulating workers’ reproductive decisions in social insects. We investigated whether the paper wasp social parasite, Polistes sulcifer, suppresses Polistes dominula (host) worker reproduction as efficiently as the dominant host female does in queen-right colonies by comparing worker reproductive efforts in parasitized and non-parasitized (control) colonies. Our results show that 6 weeks after usurpation of their colony by the social parasite, parasitized workers (1) had more developed ovaries than control workers and (2) laid more eggs as soon as the opportunity arose. This reproductive readiness of parasitized workers was not apparent 2 weeks after colony usurpation. This suggests that P. dominula workers have evolved means to react to social parasitism, as occurs in some ants, and that the parasite has only limited control over host reproduction.  相似文献   

7.
Summary In a population of the monogynous slave-making ant Harpagoxenus sublaevis in S.E. Sweden, the mean proportion of dry weight investment in queens was 0.54. This result differed significantly from 0.75 but not from 0.5, matching the prediction from the genetic relatedness hypothesis of sex ratio applied to slave-makers, given (as confirmed by this study) single mating of queens, population-wide mate competition, and relatively low levels of worker male production. Sex investment appeared unaffected by resource availability. In the same 47 colony population sample, fertile slave-maker workers were found in every queenless colony (ca. 30% of all colonies), and in 58% of queen-right colonies. Fertile workers occurred at a significantly higher frequency in the queenless colonies (19.2%) than in the queenright ones (9.8%), confirming that queenless conditions promote worker fertility. Fertile and sterile workers were similar in size. Electrophoretic allozyme analysis of ants from 49 colonies showed that: 1) queens mated singly; 2) female nestmates were full sisters (their regression coefficient of relatedness (±SE) was 0.735±0.044); 3) inbreeding did not occur; 4) queen and worker siblings were not genetically differentiated. Worker male production in queenright colonies was neither confirmed nor ruled out by the genetic data. However, production data indicated that queenless workers produced between 4.4 and 21.6% of all males. Overall colony productivity was largely determined by slave number, itself positively correlated with the number of slave-maker workers. There was an abrupt switch from all worker to all sexual production as colony size rose, as predicted by life history models. In queenright colonies, fertile slave-makers did not discernibly reduce colony productivity. Such workers occurred in queenright colonies with most slaves, suggesting they exploited energetic surpluses. Worker reproduction in H. sublaevis therefore appears to have greater influence at the level of individual behaviour than at colony or population level.  相似文献   

8.
Many organisms live in crowded groups where social density affects behavior and fitness. Social insects inhabit nests that contain many individuals where physical interactions facilitate information flow and organize collective behaviors such as foraging, colony defense, and nest emigration. Changes in nest space and intranidal crowding can alter social interactions and affect worker behavior. Here, I examined the effects of social density on foraging, scouting, and polydomy behavior in ant colonies—using the species Temnothorax rugatulus. First, I analyzed field colonies and determined that nest area scaled isometrically with colony mass—this indicates that nest area changes proportionally with colony size and suggests that ants actively control intranidal density. Second, laboratory experiments showed that colonies maintained under crowded conditions had greater foraging and scouting activities compared to the same colonies maintained at a lower density. Moreover, crowded colonies were significantly more likely to become polydomous. Polydomous colonies divided evenly based on mass between two nests but distributed fewer, heavier workers and brood to the new nests. Polydomous colonies also showed different foraging and scouting rates compared to the same colonies under monodomous conditions. Combined, the results indicate that social density is an important colony phenotype that affects individual and collective behavior in ants. I discuss the function of social density in affecting communication and the organization of labor in social insects and hypothesize that the collective management of social density is a group level adaptation in social insects.  相似文献   

9.
Colonies of the slave-making ant, Harpagoxenus sublaevis, may simultaneously contain workers of several Leptothorax slave species. We observed aggressive interactions among slave-makers, between slavemakers and slaves, and among slaves in 11 mixed colonies. The first two types of aggression appear to be correlated with reproductive competition for the production of males. Aggressive interactions among slaves, however, occurred mainly between slaves belonging to different species. In two colonies, in which one slave species clearly outnumbered the other, the majority attacked and finally expelled all nestmates belonging to the minority species. Our observations thus suggest that in Harpagoxenus colonies a homogeneous colony odor is not always achieved and that heterospecific slaves may occasionally be mistaken for alien ants. Gas chromatographic analyses of ants from mixed colonies similarly show that cuticular hydrocarbon profiles may differ strongly between heterospecific nestmate slaves.  相似文献   

10.
Social parasitism has evolved at least ten times in the allodapine bees but studies that explore the parasite’s integration and exploitation of host colonies are lacking. Using colony content and dissection data, we examine how Inquilina schwarzi affects the social organisation of its host Exoneura robusta. Our samples include three critical periods in the host life cycle: initial formation of dominance hierarchies in late autumn, commencement of oviposition by host queens in late winter, and development of secondary reproductives in late spring. I. schwarzi preferentially parasitises larger host colonies in autumn, but during autumn and winter, the parasite appears to be socially invisible, living in the nest without disrupting the normal functioning of these colonies. Inquilines begin egg laying much later than their hosts, and by late spring, they have disrupted host reproductive hierarchies, leading to lower skew in ovarian sizes of their host nestmates. Living invisibly within the host nest for the first 6 months and waiting until well after host reproduction has begun before disrupting their social organisation appear to be unique among social insects. Such a change in strategy may be facilitated by the different social systems found in allodapine bees, with the social parasites possibly disrupting the reproductive hierarchies during spring to prevent or reduce the normal dispersal of some host females from their natal nests.  相似文献   

11.
Social parasites exploit the socially managed resources of social insect colonies in order to maximise their own fitness. The inquilines are among the most specialised social parasites, because they are dependent on being fully integrated into their host's colony throughout their lives. They are usually relatives of their host and so share ancestral characteristics (Emery's rule). Closely related inquiline-host combinations offer a rare opportunity to study trade-offs in natural selection. This is because ancestral adaptations to a free-living state (e.g. the production of a worker caste) become redundant and may be replaced by novel, parasitic traits as the inquiline becomes more specialised. The dynamics of such processes are, however, unknown as virtually all extant inquiline social parasites have completely lost their worker caste. An exception is Acromyrmex insinuator, an incipient permanent social parasite of the leaf-cutting ant Acromyrmex echinatior. In the present study, we document the size distribution of parasite and host workers and infer how selection has acted on A. insinuator to reduce, but not eliminate, its investment in a worker caste. We show that the antibiotic producing metapleural glands of these parasite workers are significantly smaller than in their host counterparts and we deduce that the metapleural gland size in the host represents the ancestral state. We further show experimentally that social parasite workers are more vulnerable to the general insect pathogenic fungus Metarhizium than are host workers. Our findings suggest that costly disease resistance mechanisms are likely to have been lost early in inquiline evolution, possibly because active selection for maintaining these traits became less when parasite workers had evolved the ability to exploit the collective immune system of their host societies.  相似文献   

12.
Bumblebees of the subgenus Psithyrus are obligate social parasites of Bombus colonies. Parasitic females enter host colonies and replace the host queen. The offspring of the parasite is reared by the host workers. Females locate host colonies by nest searching flights and recognition of species-specific nest odours at the entrance. We investigated inter- and intraspecific odour variation of 45 hydrocarbons of nests of potential hosts by coupled gas chromatography/mass spectrometry and tested the preferences of the parasite females of B. bohemicus and B. rupestris for these mixtures in Y-olfactometer choice tests. Interspecific and intracolonial differences in the odour bouquets of the host species were found to be predominantly due to different patterns of alkenes. Furthermore, we found intercolonial differences within the single species. In behavioural assays, females of the two species showed different preferences for the offered nest odours, implicating different host spectra. Bombus rupestris showed a clear preference for the scent of its host, B. lapidarius. Bombus bohemicus females were attracted by B. terrestris, B. lucorum, and B. cryptarum in a similar manner. The results show that volatile signals enable parasite females to discriminate between potential host species.  相似文献   

13.
Malaria and risk of predation: a comparative study of birds   总被引:5,自引:0,他引:5  
Møller AP  Nielsen JT 《Ecology》2007,88(4):871-881
Predators have been hypothesized to prey on individuals in a poor state of health, although this hypothesis has only rarely been examined. We used extensive data on prey abundance and availability from two long-term studies of the European Sparrowhawk (Accipiter nisus) and the Eurasian Goshawk (Accipiter gentilis) to quantify the relationship between predation risk of different prey species and infection with malaria and other protozoan blood parasites. Using a total of 31 745 prey individuals of 65 species of birds from 1709 nests during 1977-1997 for the Sparrowhawk and a total of 21 818 prey individuals of 76 species of birds from 1480 nests for the Goshawk during 1977-2004, we show that prey species with a high prevalence of blood parasites had higher risks of predation than species with a low prevalence. That was also the case when a number of confounding variables of prey species, such as body mass, breeding sociality, sexual dichromatism, and similarity among species in risk of predation due to common descent, were controlled in comparative analyses of standardized linear contrasts. Prevalence of the genera Haemoproteus, Leucocytozoon, Plasmodium, and Trypanosoma were correlated with each other, and we partitioned out the independent effects of different protozoan genera on predation risk in comparative analyses. Prevalence of Haemoproteus, Leucocytozoon, and Plasmodium accounted for interspecific variation in predation risk for the two raptors. These findings suggest that predation is an important factor affecting parasite-host dynamics because predators tend to prey on hosts that are more likely to be infected, thereby reducing the transmission success of parasites. Furthermore, this study demonstrates that protozoan infections are a common cause of death for hosts mediated by increased risk of predation.  相似文献   

14.
Ant colonies are factories within fortresses (Oster and Wilson 1978). They run on resources foraged from an outside world fraught with danger. On what basis do individual ants decide to leave the safety of the nest? We investigated the relative roles of social information (returning nestmates), individual experience and physiology (lipid stores/corpulence) in predicting which ants leave the nest and when. We monitored Temnothorax albipennis workers individually using passive radio-frequency identification technology, a novel procedure as applied to ants. This method allowed the matching of individual corpulence measurements to activity patterns of large numbers of individuals over several days. Social information and physiology are both good predictors of when an ant leaves the nest. Positive feedback from social information causes bouts of activity at the colony level. When certain social information is removed from the system by preventing ants returning, physiology best predicts which ants leave the nest and when. Individual experience is strongly related to physiology. A small number of lean individuals are responsible for most external trips. An individual’s nutrient status could be a useful cue in division of labour, especially when public information from other ants is unavailable.  相似文献   

15.
Social parasites exploit the worker force of colonies of other social insects to rear their own young. Social parasitism occurs in several Hymenoptera and is particularly common in several tribes of the ant subfamilies Myrmicinae and Formicinae. Here, we document the occurrence of miniaturized queens (microgynes) in colonies of Ectatomma tuberculatum, an ant belonging to the subfamily Ectatomminae. Behavioral observations and genetic analyses show that microgynes concentrate their reproductive efforts almost exclusively on the production of sexual offspring (microgynes and males), whereas the regular, large queens (macrogynes) produce workers in addition to sexuals. According to mitochondrial and nuclear markers, gene flow between microgynes and macrogynes is extremely limited. Whereas the co-occurrence of microgynes and macrogynes in the related species Ectatomma ruidum constitutes an intraspecific polymorphism associated with alternative dispersal tactics, microgynes found in colonies of E. tuberculatum appear to be a distinct species and to represent the first case of social parasitism in the poneromorph subfamilies of ants.  相似文献   

16.
Animals frequently have to decide between alternative resources and in social insects these individual choices produce a colony-level decision. The choice of nest site is a particularly critical decision for a social insect colony to make, but the decision making process has still only been studied in a few species. In this study, we investigated nest selection by the Pharaoh’s ant, Monomorium pharaonis, a species renowned for its propensity to migrate and its use of multi-component trail pheromones to organise decision-making in other contexts. When presented with the choice of familiar and novel nests of equal quality in a Y set-up, colonies preferentially migrated towards the familiar nest, suggesting a form of colony-level ‘memory’ of potential nest sites. However, if the novel nest was superior to the familiar nest, then colonies began migrating initially to the familiar nest, but then redirected their migration to the superior quality novel nest. This may be an effective method of reducing colony exposure while searching for an optimum nest site. Branches that had previously led to a selected nest were attractive to ants in subsequent migrations, suggesting that trail pheromones mediate the decision making process. The adaptive, pheromone-based organisation of nest-site selection by Pharaoh’s ants matches their ephemeral environment and is likely to contribute to their success as a 'tramp' species.  相似文献   

17.
In bumblebees all species of the subgenus Psithyrus are social parasites in the nests of their Bombus hosts. In the bumblebee B. terrestris we investigated how colony size influences survival rates of nest entering females of the social parasite Psithyrus vestalis. Furthermore, we studied whether the host worker’s dominance status and age are reflected in its individual scent and whether Psithyrus females use volatiles to selectively kill host workers. The survival rate of Psithyrus vestalis females drops from 100%, when entering colonies with five workers, to 0% for colonies containing 50 host workers. Older host workers, born before the nest invasion, were selectively killed when Psithyrus females entered the nest. In contrast, all workers born after the nest invasion survived. The host workers’ dominance status and age are reflected by their individual odours: newly emerged workers produced a significantly lower total amount of secretions than 4-day-old workers. In chemical analyses of female groups we identified saturated and unsaturated hydrocarbons, aldehydes, and unsaturated wax-type esters of fatty acids. In a discriminant function analysis different worker groups were mainly separated by their bouquets of hydrocarbons. Killed workers release significantly more scent and of a different chemical composition, than survivors. Survivors alter scent production and increase it beyond the level of the killed workers within 1 day of the invasion. The Psithyrus female clearly maintains reproductive dominance utilizing these differences in the odour bouquets as criteria for killing workers that compete for reproduction.  相似文献   

18.
In a long-term field manipulation, we demonstrate strong reactions of Leptothorax longispinosus ant colonies to food- and nest-site supplementation. Demographic and genetic responses varied over small geographic scales, and the two ecological factors interacted with the presence of the social parasite Protomognathus americanus. We conducted a 2×2 experiment in three blocks and found that the blocks, which were less than 100 m apart, reacted very differently to the treatments. Blocks differed in degree of polygyny, intranest relatedness, colony size, productivity, and sexual investment. Furthermore, these differences were associated with the presence of slave-making ants and the local availability of nest sites. Nest-site supplementation had a strong effect only in the site with the highest prevalence of social parasites, influencing there the density and investment patterns of colonies. L. longispinosus ants in the least parasitized area were strongly affected by both food- and nest-site supplementation. There, food supplementation led to a decrease in the number of queens per colony and consequently to an increase in intranest relatedness, while colonies in nest-site-supplemented areas invested fewer resources in males and produced a female-biased allocation ratio. By contrast, in a third block with a very low intracolonial relatedness, food supplementation induced an absolute and relative higher investment in males. We conclude that ecological factors influencing social organization in insect societies cannot be studied in isolation, because the interactions among factors produce far richer responses than any one variable.Communicated by L. Sundström  相似文献   

19.
Translocation, introduction, reintroduction, and assisted migrations are species conservation strategies that are attracting increasing attention, especially in the face of climate change. However, preventing the extinction of the suite of dependent species whose host species are threatened is seldom considered, and the effects on dependent species of moving threatened hosts are unclear. There is no published guidance on how to decide whether to move species, given this uncertainty. We examined the dependent-host system of 4 disparate taxonomic groups: insects on the feather-leaf banksia (Banksia brownii), montane banksia (B. montana), and Stirling Range beard heath (Leucopogon gnaphalioides); parasites of wild cats; mites and ticks on Duvaucel's gecko (Hoplodactylus duvaucelii) and tuatara (Sphenodon punctatus); and internal coccidian parasites of Cirl Bunting (Emberiza cirlus) and Hihi (Notiomystis cincta). We used these case studies to demonstrate a simple process for use in species- and community-level assessments of efforts to conserve dependents with their hosts. The insects dependent on Stirling Range beard heath and parasites on tigers (Panthera tigris) appeared to represent assemblages that would not be conserved by ex situ host conservation. In contrast, for the cases of dependent species we examined involving a single dependent species (internal parasites of birds and the mite Geckobia naultina on Duvaucel's gecko), ex situ conservation of the host species would also conserve the dependent species. However, moving dependent species with their hosts may be insufficient to maintain viable populations of the dependent species, and additional conservation strategies such as supplementing populations may be needed.  相似文献   

20.
Behavior in eusocial insects likely reflects a long history of selection imposed by parasites and pathogens because the conditions of group living often favor the transmission of infection among nestmates. Yet, relatively few studies have quantified the effects of parasites on both the level of individual colony members and of colony success, making it difficult to assess the relative importance of different parasites to the behavioral ecology of their social insect hosts. Colonies of Polybia occidentalis, a Neotropical social wasp, are commonly infected by gregarines (Phylum Apicomplexa; Order Eugregarinida) during the wet season in Guanacaste, Costa Rica. To determine the effect of gregarine infection on individual workers in P. occidentalis, we measured foraging rates of marked wasps from colonies comprising both infected and uninfected individuals. To assess the effect of gregarines on colony success, we measured productivity and adult mortality rates in colonies with different levels of infection prevalence (proportion of adults infected). Foraging rates in marked individuals were negatively correlated with the intensity of gregarine infection. Infected colonies with high gregarine prevalence constructed nests with fewer brood cells per capita, produced less brood biomass per capita, and, surprisingly, experienced lower adult mortality rates than did uninfected or lightly infected colonies. These data strongly suggest that gregarine infection lowers foraging rates, thus reducing risk to foragers and, consequently, reducing adult mortality rates, while at the same time lowering per-capita input of materials and colony productivity. In infected colonies, queen populations were infected with a lower prevalence than were workers. Intra-colony infection prevalence decreased dramatically in the P. occidentalis population during the wet season.An erratum to this article can be found at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号