首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
岷江上游干旱河谷地区的植被恢复是目前急需解决的问题,小马鞍羊蹄甲(Bauhinia faberi var. microphylla)是干旱河谷地区的优势乡土灌木,并作为当地植被恢复过程中的重要备选物种,因而进行小马鞍羊蹄甲种群在土壤贫瘠的干旱河谷的养分限制研究十分必要。针对性地进行施肥将影响到小马鞍羊蹄甲幼苗存活、生长和定殖,而如何有效提高该物种的存活和生长速率对于干旱河谷植被恢复将具有重要的意义。采用野外调查与模拟实验相结合的方法,分别研究了干旱河谷地区3个典型群落(干旱河谷的核心区——飞虹,干旱河谷灌丛与亚高山森林的过渡区——北部的石大关、干旱河谷灌丛与温性森林的过渡区——南部的蓝新镇)中小马鞍羊蹄甲幼苗叶片的化学计量特征,和施肥试验[w(有效氮)分别为100、280、460 mg·kg–1、w(有效磷)分别为12、24、48 mg·kg–1、w(氮)分别为40、70、100 mg·kg–1、w(磷)分别为12和24 mg·kg–1]中叶片化学计量特征及幼苗生长参数(叶片数、基径和株高)和各器官(根茎叶)生物量。结果表明:在野外各演替阶段的小马鞍羊蹄甲幼苗生物量和营养元素质量分数都随着磷肥的增加而增加,表明磷素是植物生长的限制因子,同时N∶P比均大于16,也暗示其受到P养分的限制;在室内施肥试验中,施加N肥没有促进小马鞍羊蹄甲生物量的积累,反而抑制了幼苗生长;施加P肥促进了幼苗生物量的积累,表明幼苗缺乏P元素,养分限制类型为P限制。  相似文献   

2.
McGuire KL 《Ecology》2007,88(3):567-574
Most tropical rain forests contain diverse arrays of tree species that form arbuscular mycorrhizae. In contrast, the less common monodominant rain forests, in which one tree species comprises more than 50% of the canopy, frequently contain ectomycorrhizal (ECM) associates. In this study, I explored the potential for common ECM networks, created by aggregations of ECM trees, to enhance seedling survivorship near parent trees. I determined the benefit conferred by the common ECM network on seedling growth and survivorship of an ECM monodominant species in Guyana. Seedlings with access to an ECM network had greater growth (73% greater), leaf number (55% more), and survivorship (47% greater) than seedlings without such access, suggesting that the ECM network provides a survivorship advantage. A survey of wild seedlings showed positive distance-dependent distribution and survival with respect to conspecific adults. These experimental and survey results suggest that the negative distance-dependent mechanisms at the seedling stage thought to maintain tropical rain forest diversity are reversed for ECM seedlings, which experience positive feedbacks from the ECM network. These results may in part explain the local monodominance of an ECM tree species within the matrix of high-diversity, tropical rain forest.  相似文献   

3.
Trees in the subalpine environment, a particularly vulnerable area being the first to reflect climate changes, are most likely to show strong effects of climate variability. The aim of this study was to identify growth responses of subalpine fir (Abies fargesii) to climate variability, and investigate range shifts along an altitudinal gradient in the subalpine region of the Qinling Mountains, China. Standard correlation functional analysis showed different growth responses of fir trees to climatic variables between north and south aspects. In the north aspect, radial growth was significantly positively correlated with temperatures in early spring (February–April) and summer (July) of the current year, while radial growth was significantly positively correlated with temperatures in November and December of the previous year and early spring (February–April) of the current year in the south aspect. Analysis of age structure distribution displayed a decrease in number of mature fir trees and an increase in number of saplings along the altitudinal gradient on both aspects. Fir saplings/seedlings only occur in the treeline environment, and this fir population was significantly younger than that at lower elevations. Thus, fir trees show different radial growth patterns in response to climatic variability between north and south aspects, and age-class distributions along the altitudinal gradient imply an upward shift in range in the subalpine region during the past century in the Qinling Mountains of China.  相似文献   

4.
Life history trade-offs in tropical trees and lianas   总被引:1,自引:0,他引:1  
It has been hypothesized that tropical trees partition forest light environments through a life history trade-off between juvenile growth and survival; however, the generality of this trade-off across life stages and functional groups has been questioned. We quantified trade-offs between growth and survival for trees and lianas on Barro Colorado Island (BCI), Panama using first-year seedlings of 22 liana and 31 tree species and saplings (10 mm < dbh < 39 mm) of 30 tree species. Lianas showed trade-offs similar to those of trees, with both groups exhibiting broadly overlapping ranges in survival and relative growth rates as seedlings. Life history strategies at the seedling stage were highly correlated with those at the sapling stage among tree species, with all species showing an increase in survival with size. Only one of 30 tree species demonstrated a statistically significant ontogenetic shift, having a relatively lower survival rate at the sapling stage than expected. Our results indicate that similar life history trade-offs apply across two functional groups (lianas and trees), and that life history strategies are largely conserved across seedling and sapling life-stages for most tropical tree species.  相似文献   

5.
Paine CE  Beck H 《Ecology》2007,88(12):3076-3087
Seed dispersal and seedling recruitment (the transition of seeds to seedlings) set the spatiotemporal distribution of new individuals in plant communities. Many terrestrial rain forest mammals consume post-dispersal seeds and seedlings, often inflicting density-dependent mortality. In part because of density-dependent mortality, diversity often increases during seedling recruitment, making it a critical stage for species coexistence. We determined how mammalian predators, adult tree abundance, and seed mass interact to affect seedling recruitment in a western Amazonian rain forest. We used exclosures that were selectively permeable to three size classes of mammals: mice and spiny rats (weighing <1 kg), medium-sized rodents (1-12 kg), and large mammals (20-200 kg). Into each exclosure, we placed seeds of 13 tree species and one canopy liana, which varied by an order of magnitude in adult abundance and seed mass. We followed the fates of the seeds and resulting seedlings for at least 17 months. We assessed the effect of each mammalian size class on seed survival, seedling survival and growth, and the density and diversity of the seedlings that survived to the end of the experiment. Surprisingly, large mammals had no detectable effect at any stage of seedling recruitment. In contrast, small- and medium-sized mammals significantly reduced seed survival, seedling survival, and seedling density. Furthermore, predation by small mammals increased species richness on a per-stem basis. This increase in diversity resulted from their disproportionately intense predation on common species and large-seeded species. Small mammals thereby generated a rare-species advantage in seedling recruitment, the critical ingredient for frequency dependence. Predation by small (and to a lesser extent, medium-sized) mammals on seeds and seedlings significantly increases tree species diversity in tropical forests. This is the first long-term study to dissect the effects of various mammalian predators on the recruitment of a diverse set of tree species.  相似文献   

6.
Metz MR  Sousa WP  Valencia R 《Ecology》2010,91(12):3675-3685
Negative density-dependent mortality can promote species coexistence through a spacing mechanism that prevents species from becoming too locally abundant. Negative density-dependent seedling mortality can be caused by interactions among seedlings or between seedlings and neighboring adults if the density of neighbors affects the strength of competition or facilitates the attack of natural enemies. We investigated the effects of seedling and adult neighborhoods on the survival of newly recruited seedlings for multiple cohorts of known age from 163 species in Yasuni National Park, Ecuador, an ever-wet, hyper-diverse lowland Amazonian rain forest. At local scales, we found a strong negative impact on first-year survival of conspecific seedling densities and adult abundance in multiple neighborhood sizes and a beneficial effect of a local tree neighborhood that is distantly related to the focal seedling. Once seedlings have survived their first year, they also benefit from a more phylogenetically dispersed seedling neighborhood. Across species, we did not find evidence that rare species have an advantage relative to more common species, or a community compensatory trend. These results suggest that the local biotic neighborhood is a strong influence on early seedling survival for species that range widely in their abundance and life history. These patterns in seedling survival demonstrate the role of density-dependent seedling dynamics in promoting and maintaining diversity in understory seedling assemblages. The assemblage-wide impacts of species abundance distributions may multiply with repeated cycles of recruitment and density-dependent seedling mortality and impact forest diversity or the abundance of individual species over longer time scales.  相似文献   

7.
Clark CJ  Poulsen JR  Levey DJ 《Ecology》2012,93(3):554-564
In tropical forests, resource-based niches and density-dependent mortality are mutually compatible mechanisms that can act simultaneously to limit seedling populations. Differences in the strengths of these mechanisms will determine their roles in maintaining species coexistence. In the first assessment of these mechanisms in a Congo Basin forest, we quantified their relative strengths and tested the extent to which density-dependent mortality is driven by the distance-dependent behavior of seed and seedling predators predicted by the Janzen-Connell hypothesis. We conducted a large-scale seed addition experiment for five randomly selected tropical tree species, caging a subset of seed addition quadrats against vertebrate predators. We then developed models to assess the mechanisms that determine seedling emergence (three months after seed addition) and survival (two years after seed addition). As predicted, both niche differentiation and density-dependent mortality limited seedling recruitment, but predation had the strongest effects on seedling emergence and survival. Seedling species responded differently to naturally occurring environmental variation among sites, including variation in light levels and soil characteristics, supporting predictions of niche-based theories of tropical tree species coexistence. The addition of higher densities of seeds into quadrats initially led to greater seedling emergence, but survival to two years decreased with seed density. Seed and seedling predation reduced recruitment below levels maintained by density-dependent mortality, an indication that predators largely determine the population size of tree seedlings. Seedling recruitment was unrelated to the distance to or density of conspecific adult trees, suggesting that recruitment patterns are generated by generalist vertebrate herbivores rather than the specialized predators predicted by the Janzen-Connell hypothesis. If the role of seed and seedling predation in limiting seedling recruitment is a general phenomenon, then the relative abundances of tree species might largely depend on species-specific adaptations to avoid, survive, and recover from damage induced by vertebrate herbivores. Likewise, population declines of herbivorous vertebrate species (many of which are large and hunted) may trigger shifts in species composition of tropical forests.  相似文献   

8.
Montgomery RA  Reich PB  Palik BJ 《Ecology》2010,91(12):3641-3655
In ecological communities, the outcome of plant-plant interactions represents the net effect of positive and negative interactions occurring above and below ground. Untangling these complex relationships can provide a better understanding of mechanisms that underlie plant-plant interactions and enhance our ability to predict population, community, and ecosystem effects of biotic interactions. In forested ecosystems, tree seedlings interact with established vegetation, but the mechanisms and outcomes of these interactions are not well understood. To explore such mechanisms, we manipulated above- and belowground interactions among tree seedlings, shrubs, and trees and monitored seedling survival and growth of six species (Pinus banksiana, Betula papyrifera, P. resinosa, Quercus rubra, P. strobus, and Acer rubrum) in mature pine-dominated forest in northern Minnesota, USA. The forest had a moderately open canopy and sandy soils. Understory manipulations were implemented in the forest interior and in large gaps and included removal of shrubs (no interactions), tieback of shrubs (belowground), removal of shrubs with addition of shade (aboveground), and unmanipulated shrubs (both below- and aboveground). We found that shrubs either suppressed or facilitated seedling survival and growth depending on the seedling species, source of interaction (e.g., above- or belowground), and ecological context (e.g., gap or forest interior). In general, shrubs strongly influenced survival and growth in gaps, with more modest effects in the forest interior. In gaps, the presence of shrub roots markedly decreased seedling growth and survival, supporting the idea that belowground competition may be more important in dry, nutrient-poor sites. Shrub shade effects were neutral for three species and facilitative for the other three. Facilitation was more likely for shade-tolerant species. In the forest interior, shrub shade negatively affected seedling survival for the most shade-intolerant species. For several species the net effect of shrubs masked the existence of both positive and negative interactions above and below ground. Our results highlight the complexity of plant-plant interactions, demonstrate that outcomes of these interactions vary with the nature of resource limitation and the ecophysiology of the species involved, and suggest that ecological theory that rests on particular notions of plant-plant interactions (e.g., competition) should consider simultaneous positive and negative interactions occurring above and below ground.  相似文献   

9.
Many ponderosa pine and mixed-conifer forests of the western, interior United States have undergone substantial structural and compositional changes since settlement of the West by Euro-Americans. Historically, these forests consisted of widely spaced, fire-tolerant trees underlain by dense grass swards. Over the last 100 years they have developed into dense stands consisting of more fire-sensitive and disease-susceptible species. These changes, sometimes referred to as a decline in "forest health," have been attributed primarily to two factors: active suppression of low-intensity fires (which formerly reduced tree recruitment, especially of fire-sensitive, shade-tolerant species), and selective logging of larger, more fire-tolerant trees. A third factor, livestock grazing, is seldom discussed, although it may be as important as the other two factors. Livestock alter forest dynamics by (1) reducing the biomass and density of understory grasses and sedges, which otherwise outcompete conifer seedlings and prevent dense tree recruitment, and (2) reducing the abundance of fine fuels, which formerly carried low-intensity fires through forests. Grazing by domestic livestock has thereby contributed to increasingly dense western forests and to changes in tree species composition. In addition, exclosure studies have shown that livestock alter ecosystem processes by reducing the cover of herbaceous plants and litter, disturbing and compacting soils, reducing water infiltration rates, and increasing soil erosion.  相似文献   

10.
11.
Forest encroachment threatens the biological diversity of grasslands globally. Positive feedbacks can reinforce the process, affecting soils and ground vegetation, ultimately leading to replacement of grassland by forest species. We tested whether restoration treatments (tree removal, with or without fire) reversed effects of nearly two centuries of encroachment by Abies grandis and Pinus contorta into dry, montane meadows in the Cascade Range, Oregon, USA. In nine, 1-ha plots containing a patchy mosaic of meadow openings and forests of varying age (20 to > 140 yr), we compared three treatments affecting the ground vegetation: control (no trees removed), unburned (trees removed, slash burned in piles leaving 90% of the area unburned), and burned (trees removed, slash broadcast burned). We quantified changes over 3-4 years in soils, abundance and richness of species with differing habitat associations (meadow, forest, and ruderal), and recruitment of conifers. Except for a transient increase in available N (especially in burn scars), effects of burning on soils were minimal due, in part, to mixing by gophers. Tree removal greatly benefited meadow species at the expense of forest herbs. Cover and richness of meadow species increased by 47% and 38% of initial values in unburned plots, but changed minimally in burned plots. In contrast, cover and richness of forest herbs declined by 44% and 26% in unburned plots and by 79% and 58% in burned plots. Ruderal species and conifer seedlings were uncommon in both treatments. Although vegetation was consumed beneath burn piles, meadow species recovered significantly after three years. Long-term tree presence did not preclude recovery of meadow species; in fact, colonization was greater in older than in younger forests. In sum, temporal trends were positive for most indicators, suggesting strong potential for restoration. Contrary to conventional wisdom, tree removal without fire may be sufficient to shift the balance from forest to meadow species. In meadows characterized by historically infrequent fire, small-scale disturbances and competitive interactions may be more critical to ecosystem maintenance and restoration. Managers facing the worldwide phenomenon of tree invasion should critically evaluate the ecological vs. operational need for fire in ecosystem restoration.  相似文献   

12.
Mangan SA  Herre EA  Bever JD 《Ecology》2010,91(9):2594-2603
A growing body of evidence obtained largely from temperate grassland studies suggests that feedbacks occurring between plants and their associated soil biota are important to plant community assemblage. However, few studies have examined the importance of soil organisms in driving plant-soil feedbacks in forested systems. In a tropical forest in central Panama, we examined whether interactions between tree seedlings and their associated arbuscular mycorrhizal fungi (AMF) lead to plant-soil feedback. Specifically, do tropical seedlings modify their own AMF communities in a manner that either favors or inhibits the next cohort of conspecific seedlings (i.e., positive or negative feedback, respectively)? Seedlings of two shade-tolerant tree species (Eugenia nesiotica, Virola surinamensis) and two pioneer tree species (Luehea seemannii, Apeiba aspera) were grown in pots containing identical AMF communities composed of equal amounts of inoculum of six co-occurring AMF species. The different AMF-host combinations were all exposed to two light levels. Under low light (2% PAR), only two of the six AMF species sporulated, and we found that host identity did not influence composition of AMF spore communities. However, relative abundances of three of the four AMF species that produced spores were influenced by host identity when grown under high light (20% PAR). Furthermore, spores of one of the AMF species, Glomus geosporum, were common in soils of Luehea and Eugenia but absent in soils of Apeiba and Virola. We then conducted a reciprocal experiment to test whether AMF communities previously modified by Luehea and Apeiba differentially affected the growth of conspecific and heterospecific seedlings. Luehea seedling growth did not differ between soils containing AMF communities modified by Luehea and Apeiba. However, Apeiba seedlings were significantly larger when grown with Apeiba-modified AMF communities, as compared to Apeiba seedlings grown with Luehea-modifed AMF communities. Our experiments suggest that interactions between tropical trees and their associated AMF are species-specific and that these interactions may shape both tree and AMF communities through plant-soil feedback.  相似文献   

13.
Habitat-specific impacts of multiple consumers on plant population dynamics   总被引:2,自引:0,他引:2  
Maron JL  Kauffman MJ 《Ecology》2006,87(1):113-124
Multiple consumers often attack seeds, seedlings, and adult plants, but their population-level consequences remain uncertain. We examined how insect and small mammal consumers influenced the demography and abundance of the perennial shrub, bush lupine (Lupinus arboreus). In grassland and dune habitats we established replicate experimental lupine populations in 81-m2 plots that were either protected from, or exposed to, herbivorous voles and granivorous mice (via fencing) and/or root feeding insects (via insecticide treatment). Populations were initiated with transplanted seedlings in 1999 and 2000. We followed the demography of these cohorts, subsequent generations, and the seed bank for 5.5 years. Voles and insects killed many seedlings in dune (1999 only) and grassland (1999 and 2000) habitats. After 2000, insects and voles had minimal effects on seedling or adult survival. Seed predation by granivorous mice, however, greatly depressed seedling recruitment, resulting in lower adult lupine abundance in control plots vs. those protected from rodents. In grasslands, initial effects of voles and insects on seedling survival produced large differences among treatments in adult plant density and the cumulative number of seeds produced throughout the experiment. Differences among grassland populations in seed rain, however, had little influence on the magnitude of seedling recruitment into this habitat. Instead, recruitment out of a preexisting seed bank compensated for the lack of seed production in populations exposed to consumers. Shading by dense adults in plots protected from consumers limited seedling establishment within these populations. Although differences among populations in cumulative seed rain did not influence adult establishment, populations protected from consumers accumulated substantially larger seed banks than controls. These results illustrate how density dependence, habitat-specific seed dynamics, and particular demographic impacts of consumers interact to shape plant population responses to consumers.  相似文献   

14.
生根粉对梭梭苗木根系生长及成活的影响   总被引:3,自引:0,他引:3  
在自然条件下,采用随机区组设计研究了生根粉(ABT3号)4个处理(25、50、100、200 mg L-1)对人工种植的梭梭幼苗细根动态、年生长终期根系形态特征以及成活率的影响.结果表明:1)梭梭幼苗一年中细根生长有2次高峰,峰值分别出现在6月和9~10月.经生根粉处理后,梭梭幼苗细根的生长动态与对照基本一致,但在具体月份生根粉明显增加了细根总长度、细根生长速率和细根数量密度.2)ABT3号生根粉可以使梭梭幼苗的存活率达到50%以上,显著高于对照的34.75%,相关分析表明生根粉提高梭梭幼苗成活率是通过增加根系生长来实现的.3)由主成分分析可知,50 mg L-1的生根粉处理作用效果最理想.因此,建议在梭梭种植过程中可使用50 mg L-1的生根粉提高其成活率;在本地,肉苁蓉接种的最佳季节是6月.图2表3参31  相似文献   

15.
Vander Wall SB 《Ecology》2008,89(7):1837-1849
Selective pressures that influence the form of seed dispersal syndromes are poorly understood. Morphology of plant propagules is often used to infer the means of dispersal, but morphology can be misleading. Several species of pines, for example, have winged seeds adapted for wind dispersal but owe much of their establishment to scatter-hoarding animals. Here the relative importance of wind vs. animal dispersal is assessed for four species of pines of the eastern Sierra Nevada that have winged seeds but differed in seed size: lodgepole pine (Pinus contorta murrayana, 8 mg); ponderosa pine (Pinus ponderosa ponderosa, 56 mg); Jeffrey pine (Pinus jeffreyi, 160 mg); and sugar pine (Pinus lambertiana, 231 mg). Pre-dispersal seed mortality eliminated much of the ponderosa pine seed crop (66%), but had much less effect on Jeffrey pine (32% of seeds destroyed), lodgepole pine (29%), and sugar pine (7%). When cones opened most filled seeds were dispersed by wind. Animals removed > 99% of wind-dispersed Jeffrey and sugar pine seeds from the ground within 60 days, but animals gathered only 93% of lodgepole pine seeds and 38% of ponderosa pine seeds during the same period. Animals gathered and scatter hoarded radioactively labeled ponderosa, Jeffrey, and sugar pine seeds, making a total of 2103 caches over three years of study. Only three lodgepole pine caches were found. Caches typically contained 1-4 seeds buried 5-20 mm deep, depths suitable for seedling emergence. Although Jeffrey and sugar pine seeds are initially wind dispersed, nearly all seedlings arise from animal caches. Lodgepole pine is almost exclusively wind dispersed, with animals acting as seed predators. Animals treated ponderosa pine in an intermediate fashion. Two-phased dispersal of large, winged pine seeds appears adaptive; initial wind dispersal helps to minimize pre-dispersal seed mortality whereas scatter hoarding by animals places seeds in sites with a higher probability of seedling establishment.  相似文献   

16.
长期以来通过整地造林去恢复重建植被已在横断山区干旱河谷广为采用,然而这样的实践是否能有效提高植被覆盖率并改善土壤水源涵养能力仍不清楚.选择岷江干旱河谷3个典型地段,调查了多年(7~16 a)后整地造林地上植被覆盖、土壤物理性质以及目的造林树种岷江柏(Cupressus chengiana S.Y. Hu)的保存、生长与结实状况,以评价干旱河谷乡土树种造林成效及造林后的生态效果.结果表明:(1)岷江柏在栽植多年后仍有大量死亡,保存率明显下降,造林16 a后仅为38%;(2)不同年代栽植的岷江柏在造林后2~6 a即开始旱现直径年生长量下降趋势;(3)造林带内乡土植被总盖度、灌木盖度、草本盖度、地衣苔藓盖度均低于保留带,因此等高线水平沟整地造林措施未能有效促进乡土植被发育;(4)造林带土壤水分物理性质也不如保留带,整地造林也没有有效改善土壤水源涵养能力.综合分析发现,整地造林多年后岷汀柏造林不仅没有达到岷江干旱河谷预期的生态恢复重建效果,甚至有加剧生态退化的趋势.因此认为:(1)规模化整地造林并不是有效的干旱河谷生态恢复和保护措施;(2)尽管岷江柏是乡土树种,但并不是干旱河谷植被恢复的适宜种.图3表3参29  相似文献   

17.
Forests experiencing moderate- or mixed-severity fire regimes are presumed to be widespread across the western United States, but few studies have characterized these complex disturbance regimes and their effects on contemporary forest structure. Restoration of pre-fire-suppression open-forest structure to reduce the risk of uncharacteristic stand-replacing fires is a guiding principle in forest management policy, but identifying which forests are clear candidates for restoration remains a challenge. We conducted dendroecological reconstructions of fire history and stand structure at 40 sites in the upper montane zone of the Colorado Front Range (2400-2800 m), sampled in proportion to the distribution of forest types in that zone (50% dominated by ponderosa pine, 28% by lodgepole pine, 12% by aspen, 10% by Douglas-fir). We characterized past fire severity based on remnant criteria at each site in order to assess the effect of fire history on tree establishment patterns, and we also evaluated the influence of fire suppression and climate. We found that 62% of the sites experienced predominantly moderate-severity fire, 38% burned at high severity, and no sites burned exclusively at low severity. The proportion of total tree and sapling establishment was significantly different among equal time periods based on a chi-square test, with highest tree and sapling establishment during the pre-fire-suppression period (1835-1919). Superposed epoch analysis revealed that fires burned during years of extreme drought (95% CI). The major pulse of tree establishment in the upper montane zone occurred during a multidecadal period of extreme drought conditions in the Colorado Front Range (1850-1889), during which 53% of the fires from the 1750-1989 period burned. In the upper montane zone of the Colorado Front Range, historical evidence suggests that these forests are resilient to prolonged periods of severe drought and associated severe fires.  相似文献   

18.
This study was conducted at a bottomland hardwood site with heavy textured soil in Akyazi, Turkey to determine the effect of initial spacing (3.0 x 3.0, 3.0 x 2.0, 2.5 x 1.6 and 2.5 x 1.2 m) and post-planting treatments (untreated check, moving, hoeing, disking, and hoeing plus disking) on early survival and growth of Fraxinus angustifolia Vahl. One-year old bare-root seedlings (70 +/- 5 cm in height) were hand-planted in December 2004. Through three years survival was perfect with a rate of 98% in all treatments. Spacing and the interaction between spacing and post-planting treatment did not significantly affect seedling growth through three years. However height and diameter growth increased overtime and differed significantly among post-planting treatments. The hoeing and hoeing plus disking treatments gave the highest growth, and resulted in about 31% increase in diameter and height increment, and in total diameter and height about 20%. These results suggest that post-planting treatments on bottomland sites with heavy textured soil give promising results.  相似文献   

19.
Holste EK  Kobe RK  Vriesendorp CF 《Ecology》2011,92(9):1828-1838
Plant growth responses to resources may be an important mechanism that influences species' distributions, coexistence, and community structure. Irradiance is considered the most important resource for seedling growth in the understory of wet tropical forests, but multiple soil nutrients and species have yet to be examined simultaneously with irradiance under field conditions. To identify potentially limiting resources, we modeled tree seedling growth as a function of irradiance and soil nutrients across five sites, spanning a soil fertility gradient in old-growth, wet tropical forests at La Selva Biological Station, Costa Rica. We measured an array of soil nutrients including total nitrogen (total N), inorganic N (nitrate [NO3-] and ammonium [NH4+]), phosphate (PO4-), and sum of base cations (SBC; potassium, magnesium, and calcium). Shade in the forest understory did not preclude seedling growth correlations with soil nutrients. Irradiance was a significant predictor of growth in 52% of the species, inorganic N in 54% (NO3- in 32%; NH4+ in 34%), total N in 47%, SBC in 39%, and PO4- in 29%. Overall, growth was correlated with both irradiance and soil nutrients in 45% of species and with soil nutrients only in an additional 48%; rarely was irradiance alone correlated with growth. Contrary to expectations, the magnitudes of growth effects, assessed as the maximum growth response to significant resources for each species, were similar for irradiance and most soil nutrients. Among species whose growth correlated with soil nutrients, the rank importance of nutrient effects was SBC, followed by N (total N, NO3-, and/or NH4+) and PO4-. Species' growth responsiveness (i.e., magnitudes of effect) to irradiance and soil nutrients was negatively correlated with species' shade tolerance (survival under 1% full sun). In this broad survey of species and resources, the nearly ubiquitous effects of soil nutrients on seedling growth challenge the idea that soil nutrients are less important than irradiance in the light-limited understory of wet tropical forests.  相似文献   

20.
为探讨老化时间对TiO_2纳米颗粒(nanoparticles,NPs)生物有效性的影响,研究了不同老化时间的Ti O_2NPs(0~120 d)对玉米幼苗生长的影响、在玉米体内的吸收及其在植株不同部位的存在位点等。研究发现,不同浓度的TiO_2NPs(1 000 mg·kg~(-1)和2 000 mg·kg~(-1))加入到土壤中,对玉米幼苗干鲜重没有明显的影响,但老化时间小于60 d时,对玉米幼苗株高有一定的抑制效应,老化60 d之后,随着老化时间的继续延长,毒性逐渐降低,最后趋于稳定。老化60 d时,TiO_2NPs处理的玉米幼苗根冠增大,玉米幼苗体内产生H2O_2的累积。在Ti O_2老化土壤中生长的玉米幼苗根系和地上部均有Ti的累积,1 000 mg·kg~(-1)的TiO_2NPs在玉米幼苗根部的生物累积系数达到35.4%,在地上部为13.6%,在玉米植株体内的转运系数为0.38;通过TEM观察,TiO_2NPs可以进入到玉米幼苗体内,并存在于根细胞的细胞质和叶绿体膜上,在叶片细胞的液泡和细胞核中也发现有TiO_2NPs的存在。上述研究结果为客观评价TiO_2NPs的生态风险提供了有用信息。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号