首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在简要回顾APEC期间的空气质量情况的基础上,从多方面较系统的分析了APEC期间北京市空气质量的变化特征,包括各项污染物浓度水平的同比分析、不同区域不同类别站点小时浓度的百分数分布及变化情况分析、污染物日变化规律变化特征分析、空气质量改善效果的空间分布特征分析、颗粒物组分变化特征分析、污染来源解析模型、数值污染模型等方法,力求从多个方面深入了解APEC控制措施对北京市污染水平、污染特征造成的影响,并利用组分、模型等方法定性定量的评估主要空气质量影响因素、不同的污染控制措施对APEC期间空气质量改善的作用及贡献。结果表明,APEC期间,北京市空气质量得到明显改善,空气质量基本处于优良级别,各项污染物浓度大幅下降,APEC污染控制期各项污染物的百分位数浓度与无控制期出现明显分离特征,污染物的日变化低浓度持续时间更长且增长更缓慢。  相似文献   

2.
为研究交通源空气污染状况,通过采用自动监测系统,于2009年春季期间,对在聊城市主干道附近布设的6个监测点的空气质量进行监测,获得了其空气污染物浓度特征:(1)所有监测点SO2、NOx日均值与O3小时均值均未超标,且O3污染指数很低,表明二次污染甚微;(2)CO是首要污染物,PM10次之,两者日均值超标率均为100%。分析了超标污染物与交通流量的关系,结果表明,PM10浓度与交通量有较高的线性相关性,而CO浓度与交通流量无显著相关性。  相似文献   

3.
基于韦伯-费希纳定律的空气质量普适韦伯指数公式   总被引:3,自引:0,他引:3  
在适当设定各项空气污染物浓度"参照值"cj0的基础上,用相应于"参照值"cj0的污染物的"规范值"xj作为基于韦伯-费希纳(W-F)定律空气质量指数公式中的污染刺激量。由于各污染物同级标准的浓度"规范值"xjl差异不大,从而可以认为各污染物的韦伯指数公式等效于一个具有共同适用的韦伯常数α的W-F指数公式,并采用粒子群(PSO)算法优化得出α,得到对7项空气污染物皆适用的空气质量普适韦伯指数公式。该公式应用于多个实例分析,并与多种其它评价方法的评价结果比较表明,空气质量普适韦伯指数公式具有简单、实用和直观的特点。  相似文献   

4.
以克拉玛依市4个区2012年的大气自动监测数据为样本,基于分形求和模型,分析大气污染物的分布特征,利用分维数确定污染物浓度分布的随机程度,计算 SO2、NO2、PM10的大气环境背景值与标准值,确定适合于评价区域的ORAQI指数计算公式,并与 API指数作对比。ORAQI指数计算结果显示,克拉玛依市全年环境空气质量基本呈现“U”字形变化,春夏季大气质量好于秋冬季,全年空气质量有明显的季节变化,4个区中克拉玛依区空气质量相对较差,乌尔禾区空气质量最好。相对于 API指数的均匀分布结果,ORAQI指数具有更好的次要污染物体现能力,可以综合体现所评价的各项污染因子的贡献。  相似文献   

5.
选取2014—2018年广东省21个城市的空气质量指数(AQI)以及PM2.5、PM10、CO、NO2、O3、SO2的浓度数据,利用重心模型和空间自相关模型,对广东省的空气质量和各污染物的浓度水平进行时空特征分析,同时,利用空间计量分析模型分析社会经济特征变量对环境空气质量空间特征的影响.结果表明:2014—2018年...  相似文献   

6.
一种评估烟花爆竹燃放对大气PM2.5影响的新方法   总被引:5,自引:1,他引:4  
基于北京市空气质量自动监测系统2013年2月常规污染物监测数据,提出了定量估算烟花爆竹燃放对大气PM2.5影响的污染物相对比值(PM2.5/CO)法。利用该方法研究表明,2013年北京除夕烟花爆竹燃放使PM2.5单站1小时平均浓度最大增加709μg/m3(石景山古城监测点);全市24小时平均浓度增加88μg/m3,达到159μg/m3,空气质量由良好升级为重度污染。元宵节夜间烟花爆竹燃放使PM2.5单站1小时平均浓度最大增加469μg/m3(海淀万柳监测点),全市24小时平均浓度增加54μg/m3。除夕夜、元宵夜全市平均烟花爆竹PM2.5浓度超过75μg/m3的时间分别为5、7 h,达到峰值后半衰期分别为0.9、1.7 h。城区烟花爆竹PM2.5浓度高于郊区,并可导致下风向郊区的PM2.5浓度显著增加。除夕、元宵节北京市区烟花爆竹排放PM2.5总量分别约为1.91×105kg、1.17×105kg。  相似文献   

7.
基于全国空气质量监测网数据,分析了2015—2019年汾渭平原11个城市臭氧(O3)污染状况。结果表明:2015—2019年,汾渭平原11个城市O3平均浓度总体呈升高趋势,年平均升高12.2μg/m3,其中,2017—2019年均超过二级标准限值(160μg/m3)。O3单项污染物的空气质量分指数占空气质量指数的比例逐年升高,O3超标使汾渭平原2015—2019年各年度空气质量优良天数比例分别减少了1.4、5.4、13.0、11.1、14.4个百分点。O3浓度呈春夏季(5—9月)高、秋冬季(11—12月)低的特点,其中,5—9月O3超标天数占全部O3超标天数的97%以上。各年度O3日最大8小时平均质量浓度(O3-8 h)的最大值分别为152、176、224、195、202μg/m3,均出现在5—7月。O3...  相似文献   

8.
利用2010年3-5月北京市市区以及北京西北部、西部和东部3个不同方位边界的空气质量自动监测站监测数据,结合气象资料和激光雷达观测数据,分析了春季外来沙尘对北京市空气质量的影响。研究结果表明:2010年春季北京市出现15次外来沙尘天气,外来沙尘输送对北京市空气质量的影响天数为21 d,直接造成15 d空气质量超标,最严重的一次API指数达到最大值500。沙尘的天气形势特征以及输送路径的不同,对北京市空气质量的影响有明显差异。当低压中心过境时,沙尘天气影响最重,颗粒物浓度显著上升,气态污染物迅速下降,沙尘呈现自西北向东南输送的特征;低压底部过境与低压中心过境类似,但是沙尘强度略弱;除此之外,沙尘回流也可以直接造成北京市空气质量超标,颗粒物浓度和气态污染物浓度均表现出上升的变化趋势。  相似文献   

9.
介绍了世界上一些发达国家的空气污染预报的做法和采取的措施,阐述了我国开展空气质量预报的方针和方法,指出了周报是预报的基础工作。叙述了我国空气质量周报的污染参数的选取、污染指数的分级及其浓度限值和污染指数计算及确定,分析并总结了开展城市空气质量周报所发挥的效用是提高公众的环保意识,加大了治理污染的力度,转变了环境监测的职能,促进了环境监测事业的发展  相似文献   

10.
针对《环境空气质量指数(AQI)技术规定(试行)》(HJ 633-2012)中对空气质量AQI实时发布存在的欠缺,从增加颗粒物1 h浓度的AQI分级浓度限值及颗粒物24 h滑动平均值计算方法改进着手,解决PM2.5和PM10的24 h滑动平均值实时延迟、1 h平均值代替24 h滑动平均值偏高等问题。  相似文献   

11.
中国城市细颗粒物(PM_(2.5))空气质量达标率低,且城市间的污染程度差异较大。为了整体改善PM_(2.5)空气质量,需要针对不同污染程度的城市,制定分阶段改善目标加以考核和管理,研究探讨了城市PM_(2.5)空气质量改善目标体系及不同污染程度城市各阶段目标值。首先运用文献综述法、国内外对比分析法梳理评述了WHO、欧美等发达国家PM_(2.5)的空气质量标准和达标要求,提出中国城市PM_(2.5)空气质量改善的考核目标体系,包括PM_(2.5)浓度目标值或下降率、严重污染天数上限、达标天数下限等指标。通过历史数据分析法研究了2000—2013年美国、日本一些城市和2013—2016年中国74个环保城市PM_(2.5)年均浓度的变化趋势,推论出中国城市PM_(2.5)年均浓度年均下降5%~8%是可能实现的;结合环境保护部及各省市PM_(2.5)污染防治规划,提出PM_(2.5)空气质量改善目标的设定原则和达标天数的回归计算方法;以2014年114个城市PM_(2.5)年均浓度为基数,计算得出不同污染程度城市2020、2025、2030年PM_(2.5)年均浓度年下降率和达标天数的目标值。  相似文献   

12.
当前,中国城市环境空气污染形势十分严峻,空气质量呈现出典型的区域性特征。研究对2006—2012年各地区环境空气质量数据和经济社会发展指标统计资料面板数据进行分析,结果表明:研究选取时段内多数空气质量指标与人均国内生产总值之间的关系并不符合典型的环境库兹涅茨曲线(倒U型曲线),无显著相关性,但NO2质量浓度与人均国内生产总值之间呈现出倒N型曲线,空气质量综合指数与人口密度之间也呈现出倒N型曲线。空气质量综合指数与国民经济中第二产业占比和第三产业占比之间没有显著的相关关系,但与第一产业占比呈显著的负相关关系。空气质量综合指数与主要污染物单位面积排放量呈显著的正相关关系,与单位面积能源消费总量、单位面积煤炭消费量均呈显著的正相关关系,表明以煤炭为主要能源类型的能源消费带来的污染物排放是影响空气质量的主要因素。空气质量综合指数与降水量呈显著的负相关关系,降水量等气象条件对空气质量有一定影响,在开展大气污染防治时,应综合考虑各地的自然因素特征,合理确定工作目标和防治对策。  相似文献   

13.
基于2020年南京市空气质量实况数据及预报数据,评估了当年南京市空气质量预报效果,分析了预报偏差特征及其成因。结果表明,4个季节中,秋季的空气质量指数(AQI)预报准确率评分和综合评分最高,夏季的首要污染物准确率评分最高;4个季节均出现正预报偏差,其中夏、冬季偏差大于春、秋季;首要污染物误报率与季节相关,二氧化氮(NO_(2))和可吸入颗粒物(PM_(10))的误报率较高的原因是NO_(2)和PM_(10)作为首要污染物主要出现在春、秋季,而这2个季节4种主要污染物的空气质量分指数(IAQI)值非常接近,增加了预报员经验修正的难度。典型预报偏差个例分析结果表明,模式预报对于污染物质量浓度量级的预报偏差以及预报员对气象条件和前体物质量浓度变化关注不足,是导致最终预报出现低估的主要原因。  相似文献   

14.
基于南充市主城区6项大气污染物浓度数据,研究了2014-2020年南充市的空气质量指数、空气质量指数等级和首要污染物的时序分布。结果表明:随着大气污染防治的开展,南充市大气污染物浓度逐渐下降,出现首要污染物的天数逐年减少,空气质量逐步提高。受污染物节律性影响,空气质量呈现明显的季节差异,冬季空气质量最差,春季次之,夏季污染相对较轻,秋季最轻。首要污染物类型的季节分布特征表现为冬季出现首要污染物天数最多,春季和夏季次之,秋季最少。春、秋、冬季以PM2.5污染为主,夏季以O3污染为主。从全年来看,与O3相比,PM2.5对空气质量的影响更为突出。在持续控制大气污染物排放总量的同时,精细化协同管控细颗粒物、氮氧化物、挥发性有机物和二氧化硫排放将有助于现阶段的大气污染防治。  相似文献   

15.
城市空气质量周报效果用分析   总被引:1,自引:0,他引:1  
介绍了世界上一些发达国家的空气污染预报的做法和采取的措施,阐述了我国开展空气质量预报的计针和方法,指出了周报是预报的基础工作。叙述了我国空气质量周报的污染参数的选取、污染的选取、污染指数的分级其浓度限值和污染指数计算及确定,分析了并总结了开展城市空气质量周报所发挥的效果是提高公众的环保单调意识,加大了治理污染的力度,转变了环境监测的职能,促进了环境监测事业的发展。  相似文献   

16.
环境空气质量指数在应用中存在的问题及建议   总被引:7,自引:4,他引:3  
随着空气质量新标准的实施,环境空气质量指数已应用于我国部分城市环境空气质量的评价,并在环境空气质量信息发布中发挥了重要作用,但其在应用过程中也显现出一些问题。通过对颗粒物实时报反映不及时、臭氧评价结果有矛盾、臭氧8 h浓度计算时段不明确、部分环境空气质量指数类别划分不合理、城市空气质量缺少总体评价等问题的分析,提出了相应的改进建议。  相似文献   

17.
环境空气质量指数计算方法与分级方案比较   总被引:6,自引:4,他引:2  
环境空气质量指数(AQI)广泛应用于各国环境空气质量评价体系之中,旨在为公众提供简单明了的空气质量信息和健康指引。通过对不同国家和地区空气质量指数的名称、计算方法、分级方案进行深入分析和比较,系统分析了各种空气质量指数的优缺点,并针对我国当前的空气质量指数体系存在的问题提出了相应的改进建议。  相似文献   

18.
针对长沙市区PM2.5浓度的主要影响因素,采用统计学方法对长沙市区空气质量指数AQI包含的5个基本因素进行了相关因素分析,得出了PM2.5浓度与其余4个因素的关联度系数,并根据分析结果提出了几点改善PM2.5浓度的建议。通过分析长沙市区空气中的PM2.5浓度数据,采用ARIMA模型对PM2.5浓度进行了较为精准的预测。所提出的方法为长沙市区PM2.5的防治提供了一定的参考。  相似文献   

19.
2014年起,上海市围绕城市及长三角区域空气质量预测预报和重污染预警需求,搭建了长三角区域空气质量数值预报系统。该系统综合应用了模式参数化方案比选、排放清单耦合处理、大气化学资料同化、大数据集合订正等关键技术,集合模式PM2. 5和O3小时浓度偏差为-10%~10%,提升了区域PM2. 5和O3浓度模拟效果。该系统实现了污染在线源解析和多排放情景模拟等功能的业务应用,应用于2018年首届中国国际进口博览会保障中,为上海市及长三角区域空气质量业务预报和重大活动保障提供了业务产品支撑。  相似文献   

20.
利用多种污染物浓度数据、气象观测数据,结合HYSPLIT后向轨迹模式,对2015年11月6—10日发生在沈阳的一次较长时间重污染天气过程,从大气浓度变化、天气形势特征及成因机制等方面进行综合分析。结果表明,重污染期间日空气质量指数均超过重度污染限值200,首要污染物PM_(2.5)最高小时质量浓度达到1 326μg/m3,为沈阳市监测PM_(2.5)以来的历史峰值。此次空气污染是气象及人为因素共同作用的结果,重污染过程时段内高空场不利于气流上升运动的发展,地面倒槽、稳定的大气层结不利于污染物的扩散。此次重污染过程与大范围秸秆集中燃烧、大量污染物排放有一定关系。通过后向轨迹计算分析,发现颗粒物长距离输送对区域污染产生一定影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号