首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
大气降水中的主要水溶性离子有阳离子Mg~(2+)、Ca~(2+)、K~+、Na~+、NH_4~+,阴离子F~-、Cl~-、SO_4~(2-)、NO_3~-,不同地区大气降水中的阴、阳离子浓度有所差异,测定分析大气降水中的离子组分对了解该地区的空气污染情况和环境生态状况具有重要作用,由此可以了解该地区的工业发展、城市建设、能源消耗等人为活动对环境污染的影响程度。离子色谱法具有选择性好、快速灵敏、同时测定多组分的优点,对大气降水中阴、阳离子的分离测定更具有适应性,为此本文将就离子色谱法测定大气降水中阴、阳离子的问题展开研究。  相似文献   

2.
用离子色谱法对降水中的阴、阳离子进行测定,结果准确,测定快速、方便,灵敏度高;该方法所用试剂少,分析仪器自动化程度较高,提高了分析工作效率。是测定降水阴、阳离子较先进的方法。  相似文献   

3.
离子色谱法测定水样中的钠、钾、镁、钙离子一次测定即可同时检测4种组分,测定便捷;对混合标准样品和降水样品进行测定,结果准确、可靠。该方法适合降水、生活饮用水、饮用矿泉水中钠、钾、镁、钙离子的测定。  相似文献   

4.
为了研究降水过程中汞浓度变化规律,采集了上海市区2009年7月6日一次连续降水过程中的分时段12个雨水样品,利用冷原子荧光测汞仪测定了总汞、溶解态汞和颗粒态汞浓度.分析结果显示,降水过程各时段雨水样品的总汞浓度变化范围为0.26~0.53 μg·L-1之间,其中溶解态汞占总汞的比例为67.9%~96.8%;总汞浓度和颗粒态汞浓度的总体变化规律较一致,降水事件的前30分钟内浓度较高,之后逐渐降低,最终趋于稳定;溶解态汞浓度从降水事件开始由高到低逐渐变化,最终也趋于稳定.通过清除比计算云下冲刷过程对雨水中总汞浓度的贡献,发现云下冲刷的贡献大于40.9%.  相似文献   

5.
降水中硫酸根离子监测的质量控制   总被引:1,自引:0,他引:1  
阐述了降水监测中硫酸根离子(SO^2-4)浓度测定过程中降水采样布点、样品分析的质量保证措施,以及确保降水监测分析全过程质量控制措施等的实践经验。  相似文献   

6.
利用1990年-1993年大气降水监测数据,分析了徐州市大气降水污染现状及其化学成分。徐州市大气降水pH值范围为4.47-8.12,酸雨多出现在春、冬季。大气降水中主要离子为SO、NH、Ca2+。pH值和离子浓度随季节不同变化明显,冬季pH值较低,各离子浓度偏高;夏季pH值较高,各离子浓度偏低。大气降水体现了煤烟型污染的特点。  相似文献   

7.
为查明我国北方沙漠地区降水化学组成及来源,在阿拉善沙漠高原阿右旗气象站采集了2013—2015年的降水样品,测定了降水pH、EC(电导率)及主要离子当量浓度.结果表明:阿拉善沙漠阿右旗气象站降水pH和EC的范围分别为6.66~8.05和35~1 237 μS/cm;Ca2+、SO42-、Na+和Cl-为降水中的主要离子,其总和占总离子的85%以上.降水pH、EC和主要离子当量浓度是反映空气质量的基本参数,较高的降水pH反映出当地降水具有明显的碱性特征.与其他地区相比,该地区降水的EC和可溶性离子日均湿沉降通量也较高,且随月份有较大的变化,表明干旱沙漠粉尘对当地降水水化学的贡献较大.根据离子来源相对贡献的计算结果发现,降水中92.8%的SO42-和98%的NO3-来自人为源,98.8%的Ca2+和88.7%的K+为陆地来源,55%的Mg2+为海洋源,24.8%的Na+来自矿物风化,极少部分Cl-为人为源.研究显示:除降水中的NH4+外,其他主要离子之间的相关性表明各种成因物质在风力作用下同时进入了大气;基于[NH4+](NH4+的当量浓度)与[K+](K+的当量浓度)相关性分析,降水中的NH4+来自生物质燃烧、肥料使用、动物粪便等.   相似文献   

8.
典型污染城市9d连续大气降水化学特征:以贵阳市为例   总被引:5,自引:3,他引:2  
对贵阳地区2008年10月30日~11月7日的一场连续降水进行研究.通过对降水样品的pH值和主要阴阳离子组成的测定,分析了贵阳地区酸雨的主要离子来源以及离子浓度随降水过程的变化规律等.结果表明,此次降水的pH值范围为3.65~7.20,平均值为4.24;SO42-是主要的阴离子,浓度加权平均值为119.06μeq.L-1,占阴离子总量的80.63%;NH4+(38.38μeq.L-1)和Ca2+(48.87μeq.L-1)是主要的阳离子,分别占阳离子总量的37.82%和48.16%.Mg2+、Ca2+、NH4+与SO42-的相关系数分别为0.96、0.91、0.91,说明贵阳地区降水中可能存在以MgSO4、CaSO4、(NH4)2SO4为主的化学物质.大气中不同离子在降水过程被去除的方式和速率有较大的差别,在降水初始阶段,主要富存在粗颗粒中的Mg2+等离子,因粗颗粒迅速被冲刷而较快从大气中去除;而主要富存在细颗粒中的NH4+、SO42-等离子,因细颗粒冲刷速率较慢,而能够在大气中保存较长的时间.  相似文献   

9.
以离子色谱法测定了厦门市海洋性降水中的甲、乙酸及某些阴、阳离子。用多元逐步回归和多对多双重筛选回归等数学方法,分析了降水中弱有机酸及其与阴阳离子的关系;讨论了其来源及对厦门酸雨的贡献。  相似文献   

10.
大气降水中重金属离子特征研究   总被引:1,自引:0,他引:1  
大气降水中重金属离子的研究可以反映大气污染、地表水污染的信息.通过对国内外大气降水中重金属研究现状的阐述和大气降水中重金属的来源进行理论分析,并利用实地大气降水采样分析,归纳出其中重金属的特征,监测当前大气的污染状况,从而为区域性的大气中重金属的污染评价及污染治理提供理论依据.降水中的重金属元素主要包括Pb、Mn、Zn、Cu、Cd、Cr等,通过分析测定可以为利用大气降水作为重要饮用水补给源的区域提供饮水安全保障.  相似文献   

11.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

12.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

13.
Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-1,6-quinone (BP 1,6- quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized. The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites.  相似文献   

14.
Sorption of chlorotoluron in ammonium sulfate, urea and atrazine multi-solutes system was investigated by batch experiments. The results showed application of nitrogen fertilizers to the soil could affect the behavior of chlorotoluron. At the same concentration of N, sorption of chlorotoluron decreased as the concentration of atrazine increased on the day 0 and 6 in soil, respectively. The sorption of chlorotoluron increased from 0 to 6 d when soils were preincubated with deionized water, ammonium sulfate and urea solution for 6 d. That indicated incubation time was one of the most important factors for the sorption of chlorotoluron in nitrogen fertilizers treatments. The individual sorption isotherms of chlorotoluron in rubbery polymer and silica were strictly linear in single solute system, but there were competition sorption between pesticides or between pesticides and nitrogen fertilizers. That indicated the sorption taken place by concurrent solid-phase dissolution mechanism and sorption on the interface of water-organic matter or water-mineral matter.  相似文献   

15.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

16.
RemovalofheavymetalsfromsewagesludgebylowcostingchemicalmethodandrecyclinginagricultureWuQitang,NyirandegePascasie,MoCehuiF...  相似文献   

17.
Single and joint effects of pesticides and mercury on soil urease   总被引:6,自引:3,他引:3  
The influence of two pesticides including chlorimuron-ethyl and furadan and mercury (Hg) on urease activity in 4 soils (meadow burozem and phaeozem) was investigated. The soils were exposed to various concentrations of the two pesticides and Hg individually and simultaneously. Results showed that there was a close relationship between urease activity and organic matter content in soil. Chlorimuron-ethyl and furadan could both activate urease in the 4 soils. The maximum increment of urease activity by chlorimuronethyl was up to 14%-18%. There was almost an equal increase (up to 13%-21%) in the urease activity by furadan. On the contrary, Hg markedly inhibited soil urease activity. A logarithmic equation was used to describe the relationship (P〈0.05) between the concentration of Hg and the activity of soil urease in the 4 tested soils. Semi-effect dose (ED50) values by the stress of Hg based on the inhibition of soil urease in the 4 soils were 88, 5.5, 24 and 20 mg/kg, respectively, according to the calculation of the corresponding equations. The interactive effect of chlorimuron-ethyl or furadan with metal Hg on soil urease was mainly synergic at the highest tested concentrations.  相似文献   

18.
A study was conducted to compare the diversity of 2-, 3-, and 4-chlorobenzoate degraders in two pristine soils and one contaminated sewage sludge. These samples contained strikingly different populations of mono-chlorobenzoate degraders. Although fewer cultures were isolated in the uncontaminated soils than contaminated one, the ability of microbial populations to mineralize chlorobenzoate was widespread. The 3- and 4-chlorobenzoate degraders were more diverse than the 2-chlorobenzoate degraders. One of the strains isolated from the sewage sludge was obtained. Based on its phenotype, chemotaxonomic properties and 16S rRNA gene, the organism S-7 was classified as Rhodococcus erythropolis. The strain can grow at temperature from 4 to 37℃. It can utilize several (halo)aromatic compounds. Moreover, strain S-7 can grow and use 3-chlorobenzoate as sole carbon source in a temperatures range of 10-30℃ with stoichiometric release of chloride ions. The psychrotolerant ability was significant for bioremediation in low temperature regions. Catechol and chlorocatechol 1,2-dioxygenase activities were present in cell free extracts of the strain, but no (chloro)catechol 2,3- dioxygenase activities was detected. Spectral conversion assays with extracts from R. erythropolis S-7 showed accumulation of a compound with a similar UV spectrum as chloro-cis,cis-muconate from 3-chlorobenzoate. On the basis of these results, we proposed that S-7 degraded 3-chlorobenzoate through the modified ortho-cleave pathway.  相似文献   

19.
A field study was conducted in the Taihu Lake region, China in 2004 to reveal the organochlorine pesticide concentrations in soils after the ban of these substances in the year 1983. Thirteen organochlorine pesticides (OCPs) were analyzed in soils from paddy field, tree land and fallow land. Total organochlorine pesticide residues were higher in agricultural soils than in uncultivated fallow land soils. Among all the pesticides, ΣDDX (DDD, DDE and DDT) had the highest concentration for all the soil samples, ranging from 3.10 ng/g to 166.55 ng/g with a mean value of 57.04 ng/g and followed by ΣHCH, ranging from 0.73 ng/g to 60.97 ng/g with a mean value of 24.06 ng/g. Dieldrin, endrin, HCB and α-endosulfan were also found in soils with less than 15 ng/g. Ratios of p,p'-(DDD DDE)/DDT in soils under three land usages were: paddy field > tree land > fallow land, indicating that land usage inlfuenced the degradation of DDT in soils. Ratios of p,p'-(DDD DDE)/DDT >1, showing aged residues of DDTs in soils of the Taihu Lake region. The results were discussed with data from a former study that showed very low actual concentrations of HCH and DDT in soils in the Taihu Lake region, but according to the chemical half-lives and their concentrations in soils in 1980s, the concentration of DDT in soils seemed to be underestimated. In any case our data show that the ban on the use of HCH and DDT resulted in a tremendous reduction of these pesticide residues in soils, but there are still high amounts of pesticide residues in soils, which need more remediation processes.  相似文献   

20.
The contribution of aliphatic-rich plant biopolymer to sorption of hydrophobic organic compounds is significantly important because of their preservation and accumulation in the soil environment,but sorption mechanism is still not fully understood.In this study, sorption of 1-naphthol by plant cuticular fractions was examined to better understand the contributions of respective fraction.Toward this end,cuticular materials were isolated from the fruits of tomato by chemical method.The tomato cuticle sheet consisted of waxes (6.5 wt%),cuticular monomer (69.5 wt%),and polysaccharide (24.0 wt%).Isotherms of l-naphthol to the cuticular fractions were nonlinear (N value (0.82-0.90)) at the whole tested concentration ranges.The KodKow ratios for bulk cuticle (TC1),dewaxed cuticle (TC2),cutin (TC4),and desugared cuticle (TC5) were larger than unity,suggested that tomato bulk cuticle and cutin are much powerful solption medium.Sorption capability of cutin (TC4) was 2.4 times higher than the nonsaponifiable fraction (TC3).The 1-naphthol interactions with tomato cuticular materials were governed by both hydrophobic-type interactions and polar (H-bonding) interactions. Removal of the wax and polysaccharide materials from the bulk tomato cuticle caused a significant increase in the sorption ability of the cuticular material.There was a linear negative trend between K_(oc) values and the amount of polysaccharides or fraction's polarities ((N O)/C);while a linear positive relationship between K_(oc) values and the content of cutin monomer (linear R~2=0.993) was observed for present in the cuticular fractions.Predominant sorbent of the hydrophobic organic compounds (HOCs) in the plant cuticular fraction was the cutin monomer,contributing to 91.7% of the total sorption of tomato bulk cuticle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号