首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
包气带油污土层生物修复现场控制性因素的评价   总被引:4,自引:0,他引:4       下载免费PDF全文
包气带油污土层的生物修复涉及到石油降解微生物、石油污染物的可生物降解性和土壤环境三个方面.本文通过最或然计数法(MPN)、原油族组分柱层析分析方法和色质联机分析等实验手段,研究了淄河滩包气带油污土层的水力学特性、氮磷营养元素、微生物和石油污染物.结果表明,长期受石油污染的土层含有丰富的微生物,其中大部分具有降解石油烃的能力,且土层的渗透性极强,有利于开展油污土层的生物修复.同时,长期的挥发、淋失和转化造成土层中石油污染物主要由高分子、高沸点烃类组成,且油污土层的速效氮、速效磷含量太低,直接增加了生物修复的难度,成为不利于生物修复的影响因素.  相似文献   

2.
包气带土层中石油污染物生物降解的温度效应   总被引:9,自引:2,他引:7  
张旭  李广贺  黄巍 《环境科学》2001,22(4):108-110
温度是影响包气带土层中石油污染物自然衰减的重要因素.通过室内模拟实验对油污土层微生物降解的温度效应进行研究,并预测不同温度下石油污染物的半衰期.结果表明,温度对生物反应速率常数的影响符合关系式K=3145exp(-5233/T).根据该式对石油污染物的半衰期进行预测,得出5℃、10℃、20℃和30℃时包气带土层中石油污染物的半衰期分别为1499 d、1075 d、572 d和317 d.  相似文献   

3.
包气带土层中石油污染物的微生物降解研究   总被引:14,自引:3,他引:11  
在包气带土层中污染物的生物降解过程中,营养物水平是重要的限制性因素.笔者通过测定土层中的氮和磷组分的含量,以及生物降解速率的实验研究,测得淄河河滩土层每kg干土中可生物利用的氮为0.814 7 g,可生物利用的磷为36.9 mg,相对微生物的生长来说二者均严重不足,无法满足生物降解要求.研究表明,翻耕供氧,大大强化了生物降解过程.同时,根据柱层析分析结果确定三种石油组分降解速率分别为:芳香烃>脂肪烃>胶质.   相似文献   

4.
基于现场试验的石油类污染物自然衰减能力研究   总被引:1,自引:0,他引:1  
贾慧  武晓峰  胡黎明  刘培斌 《环境科学》2011,32(12):3699-3703
基于在北京地区某加油站开展的油类污染物自然衰减试验,通过氧平衡和碳平衡计算对加油站土壤内石油污染物的自然衰减方式进行了评价,利用一级衰减模型对该污染现场土壤中油污染物的降解速率和半衰期进行了计算,并在此基础上对该加油站包气带土壤的自然衰减能力和环境质量进行了评价.结果表明,该污染场地实际耗氧量小于污染物全部需氧降解所需要的理论耗氧量,检测到的CO2的量也远小于需氧降解的理论生成量;污染点石油污染物的半衰期约为50 d左右.根据以上结果得出以下结论:①该加油站地下土壤中实际发生的微生物降解既有需氧降解也有厌氧降解;②第一次监测时超过环境标准的苯浓度大约在250 d左右降至保护地下水的筛选值以下,污染点已经不存在环境风险,该污染现场的环境监控措施可以解除.  相似文献   

5.
油污土微生态环境非生物因子与微生物活性关系   总被引:12,自引:2,他引:10  
贾建丽  李广贺  钟毅 《环境科学》2004,25(3):110-114
油污土微生态环境的非生物因子通过改变降解优势菌的含量及活性最终影响石油烃的生物降解速率及模式.本研究通过对我国北方部分油田和石油化工区的取样分析,揭示油污土微生态环境的非生物因子与微生物活性的关系,研究影响微生物活性和石油烃降解效率的环境及污染物等非生物因子.结果表明,我国北方油田区及石油化工区土壤受到了不同程度的石油烃污染,石油烃含量最高可达34 000mg/kg干土.柱层析分析结果表明,污染物中烷烃、芳烃等轻质组分含量超过50%,有利于微生物活性的提高.油田区土壤的pH值一般在7.8以上,不利于石油烃降解微生物生长代谢;油污土的营养水平普遍较低,如可被生物利用的速效氮含量低于30mg/kg干土,速效磷含量低于10mg/kg干土,仅占土壤总氮、总磷的5%左右,远远达不到石油烃生物降解所需的营养水平(C:N:P=100:10:1).毫无疑问,调节土壤pH值,增加对营养水平等非生物因子的调控对于提高微生物活性,加快石油烃的降解有重要的意义.  相似文献   

6.
利用自行设计制作的一套土壤气体取样监测装置,在北京地区某加油站开展了包气带内石油类污染物自然衰减的现场试验研究.在现场对包气带内的土壤气体样本进行采集,并对样本中的VOC含量及O2、CO2含量进行了检测分析.2个阶段的检测结果表明,经过381 d的自然衰减,污染点位的TVOC浓度减少了99.2%,BTEX的气相浓度占TVOC的比例由17.0%降至12.1%;O2和CO2含量在G3点位呈现出随着土壤深度的增加,O2含量逐渐减少、CO2含量逐渐增加的变化趋势.通过对试验结果的分析得出以下结论:①第一次检测结果表明G3点位附近存在一定的土壤污染,经过381 d的自然衰减,G3点位土壤中的BTEX含量已降至保护环境的标准以下,该污染现场的环境监控措施可以解除;②对造成该点污染的原因进行推断,可以判定污染为短期污染源导致,不存在持续的泄漏源;③自然衰减能够有效清除土壤中污染物,可以作为北京市同类污染场地有效的治理手段加以考虑;④检测污染土壤中O2和CO2含量的变化是判断有机污染物需氧降解的有效手段.  相似文献   

7.
垃圾渗滤液污染羽在地下环境中的分带现象研究   总被引:21,自引:14,他引:7  
董军  赵勇胜  韩融  刘莹莹  李志斌  宗芳 《环境科学》2006,27(9):1901-1905
通过土柱实验研究垃圾渗滤液污染物在地下环境中降解的生物地球化学作用和分带现象,并对污染前后土壤中的Fe3+、Fe2+、氧化容量(OXC)和还原容量(RDC)等的变化进行分析.结果表明,垃圾渗滤液污染羽中出现了4个顺序氧化还原带,微生物在每个带所利用的最终电子受体是不同的,分别为CO2、Fe3+、NO3-和O2,相应地依次称为产甲烷带、铁还原带、NO相似文献   

8.
酸性土壤环境石油烃生物降解效应   总被引:8,自引:1,他引:7  
污染场地酸性土壤环境和生物修复土壤酸化,使得酸性土壤环境石油烃生物降解效应影响与有效调控成为污染土壤修复的重要内容.本文通过监测酸性和偏碱性土壤中微生物数量、活性以及石油烃含量变化,探讨酸性环境对除油微生物及烃降解效率的影响.通过投加富集菌液和生物载体,调控酸性土壤微生态环境,揭示微环境调控对于烃生物降解效应影响.研究结果表明,pH为5.4~5.7的酸性土壤,对土著除油微生物活性和数量具有显著抑制性,烃降解处于停滞状态.投加富集菌液未能有效地减弱酸性环境对除油微生物的强烈抑制作用.微生物数量在14d内从106个/ g减至0,微生物FDA(FluoresceinDiacetate)活性很低,约0.10Abs/g .生物载体的投加,能有效改善介质界面微生态环境,明显减弱酸性环境的抑制效应,减缓除油微生物死亡速率.19d时土壤中降解微生物由原来的2×106个/g下降到2.2×102个/g ,第49d石油烃的生物降解率为13.02%.  相似文献   

9.
生物炭固定化多环芳烃高效降解菌剂的制备及稳定性   总被引:1,自引:0,他引:1  
高效多环芳烃降解微生物在污染环境中存活并保持一定生物量是实现生物强化修复的前提.本研究通过优选生物炭,优化生物炭固定化多环芳烃高效降解菌Martelella sp.AD-3的制备条件以及评估生物炭固定化菌剂的稳定性,期望获得具有应用前景的生物材料.结果显示,稻壳生物炭比表面积及孔隙大、Zeta电位高、固定化菌剂去除效果好,选择其作为固定化AD-3菌的载体.电镜观察及固定化菌剂对菲的去除率表明,固定化培养基为3% LB,接种量为2.9×108 CFU·mL-1,固定2 d时,稻壳固定化菌剂负载AD-3量最多,对菲的去除速率可达8.08 mg·L-1·h-1.室温保存21 d后,稻壳生物炭固定化菌剂对菲的去除速率仍达到4.46 mg·L-1·h-1,表明稻壳生物炭固定化AD-3菌不仅保持了菌对菲的高效降解能力,而且延长了降解微生物的保存时间,这为多环芳烃污染土壤修复提供了良好的生物修复功能材料.  相似文献   

10.
土壤微生物对苯的降解研究   总被引:10,自引:2,他引:8  
使用大庆油田石油污染土壤中分离出优势菌种(革兰氏阴性G-、黄杆菌属Flavobacterium),在实验室可控条件下,研究了该菌种对苯的降解规律和特点.研究发现:微生物对苯浓度耐受范围8.8~17.6 mg·L-1,大于17.6mg·L-1时,对该菌株产生明显的抑制作用.降解体系在pH为6.5~7.0之间达到对苯的较高降解水平,最佳降解率出现在苯初始浓度7.04~13.2mg·L-1之间;苯在微生物细胞内外的浓度变化趋势呈现一致.-lgP(P为有机溶剂苯在细胞膜和水相中的分配系数的比值)的变化能够较好的表征苯在微生物细胞内外的降解趋势和毒性变化;当体系中苯的初始浓度大于8.8mg·L-1时,苯的降解率与P值变化趋于一致.  相似文献   

11.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

12.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

13.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

14.
RemovalofheavymetalsfromsewagesludgebylowcostingchemicalmethodandrecyclinginagricultureWuQitang,NyirandegePascasie,MoCehuiF...  相似文献   

15.
A field study was conducted in the Taihu Lake region, China in 2004 to reveal the organochlorine pesticide concentrations in soils after the ban of these substances in the year 1983. Thirteen organochlorine pesticides (OCPs) were analyzed in soils from paddy field, tree land and fallow land. Total organochlorine pesticide residues were higher in agricultural soils than in uncultivated fallow land soils. Among all the pesticides, ΣDDX (DDD, DDE and DDT) had the highest concentration for all the soil samples, ranging from 3.10 ng/g to 166.55 ng/g with a mean value of 57.04 ng/g and followed by ΣHCH, ranging from 0.73 ng/g to 60.97 ng/g with a mean value of 24.06 ng/g. Dieldrin, endrin, HCB and α-endosulfan were also found in soils with less than 15 ng/g. Ratios of p,p'-(DDD DDE)/DDT in soils under three land usages were: paddy field > tree land > fallow land, indicating that land usage inlfuenced the degradation of DDT in soils. Ratios of p,p'-(DDD DDE)/DDT >1, showing aged residues of DDTs in soils of the Taihu Lake region. The results were discussed with data from a former study that showed very low actual concentrations of HCH and DDT in soils in the Taihu Lake region, but according to the chemical half-lives and their concentrations in soils in 1980s, the concentration of DDT in soils seemed to be underestimated. In any case our data show that the ban on the use of HCH and DDT resulted in a tremendous reduction of these pesticide residues in soils, but there are still high amounts of pesticide residues in soils, which need more remediation processes.  相似文献   

16.
Single and joint effects of pesticides and mercury on soil urease   总被引:6,自引:3,他引:3  
The influence of two pesticides including chlorimuron-ethyl and furadan and mercury (Hg) on urease activity in 4 soils (meadow burozem and phaeozem) was investigated. The soils were exposed to various concentrations of the two pesticides and Hg individually and simultaneously. Results showed that there was a close relationship between urease activity and organic matter content in soil. Chlorimuron-ethyl and furadan could both activate urease in the 4 soils. The maximum increment of urease activity by chlorimuronethyl was up to 14%-18%. There was almost an equal increase (up to 13%-21%) in the urease activity by furadan. On the contrary, Hg markedly inhibited soil urease activity. A logarithmic equation was used to describe the relationship (P〈0.05) between the concentration of Hg and the activity of soil urease in the 4 tested soils. Semi-effect dose (ED50) values by the stress of Hg based on the inhibition of soil urease in the 4 soils were 88, 5.5, 24 and 20 mg/kg, respectively, according to the calculation of the corresponding equations. The interactive effect of chlorimuron-ethyl or furadan with metal Hg on soil urease was mainly synergic at the highest tested concentrations.  相似文献   

17.
A study was conducted to compare the diversity of 2-, 3-, and 4-chlorobenzoate degraders in two pristine soils and one contaminated sewage sludge. These samples contained strikingly different populations of mono-chlorobenzoate degraders. Although fewer cultures were isolated in the uncontaminated soils than contaminated one, the ability of microbial populations to mineralize chlorobenzoate was widespread. The 3- and 4-chlorobenzoate degraders were more diverse than the 2-chlorobenzoate degraders. One of the strains isolated from the sewage sludge was obtained. Based on its phenotype, chemotaxonomic properties and 16S rRNA gene, the organism S-7 was classified as Rhodococcus erythropolis. The strain can grow at temperature from 4 to 37℃. It can utilize several (halo)aromatic compounds. Moreover, strain S-7 can grow and use 3-chlorobenzoate as sole carbon source in a temperatures range of 10-30℃ with stoichiometric release of chloride ions. The psychrotolerant ability was significant for bioremediation in low temperature regions. Catechol and chlorocatechol 1,2-dioxygenase activities were present in cell free extracts of the strain, but no (chloro)catechol 2,3- dioxygenase activities was detected. Spectral conversion assays with extracts from R. erythropolis S-7 showed accumulation of a compound with a similar UV spectrum as chloro-cis,cis-muconate from 3-chlorobenzoate. On the basis of these results, we proposed that S-7 degraded 3-chlorobenzoate through the modified ortho-cleave pathway.  相似文献   

18.
Common silver barb,Puntius gonionotus,exposed to the nominal concentration of 0.06 mg/L Cd for 60 d,were assessed for histopathological alterations(gills,liver and kidney),metal accumulation,and metallothionein(MT)mRNA expression.Fish exhibited pathological symptoms such as hypertrophy and hyperplasia of primary and secondary gill lamellae,vacuolization in hepatocytes,and prominent tubular and glomerular damage in the kidney.In addition,kidney accumulated the highest content of cadmium,more than gills and liver.Expression of MT mRNA was increased in both liver and kidney of treated fish.Hepatic MT levels remained high after fish were removed to Cd-free water.In contrast,MT expression in kidney was peaked after 28 d of treatment and drastically dropped when fish were removed to Cd-free water.The high concentrations of Cd in hepatic tissues indicated an accumulation site or permanent damage on this tissue.  相似文献   

19.
The contribution of aliphatic-rich plant biopolymer to sorption of hydrophobic organic compounds is significantly important because of their preservation and accumulation in the soil environment,but sorption mechanism is still not fully understood.In this study, sorption of 1-naphthol by plant cuticular fractions was examined to better understand the contributions of respective fraction.Toward this end,cuticular materials were isolated from the fruits of tomato by chemical method.The tomato cuticle sheet consisted of waxes (6.5 wt%),cuticular monomer (69.5 wt%),and polysaccharide (24.0 wt%).Isotherms of l-naphthol to the cuticular fractions were nonlinear (N value (0.82-0.90)) at the whole tested concentration ranges.The KodKow ratios for bulk cuticle (TC1),dewaxed cuticle (TC2),cutin (TC4),and desugared cuticle (TC5) were larger than unity,suggested that tomato bulk cuticle and cutin are much powerful solption medium.Sorption capability of cutin (TC4) was 2.4 times higher than the nonsaponifiable fraction (TC3).The 1-naphthol interactions with tomato cuticular materials were governed by both hydrophobic-type interactions and polar (H-bonding) interactions. Removal of the wax and polysaccharide materials from the bulk tomato cuticle caused a significant increase in the sorption ability of the cuticular material.There was a linear negative trend between K_(oc) values and the amount of polysaccharides or fraction's polarities ((N O)/C);while a linear positive relationship between K_(oc) values and the content of cutin monomer (linear R~2=0.993) was observed for present in the cuticular fractions.Predominant sorbent of the hydrophobic organic compounds (HOCs) in the plant cuticular fraction was the cutin monomer,contributing to 91.7% of the total sorption of tomato bulk cuticle.  相似文献   

20.
Seed induces and promotes the crystallization of calcium phosphate, and acts as carrier of the recovered phosphorus (P). In order to select suitable seed for P recovery from wastewater, three seeds including Apatite (AP), Juraperle (JP) and phosphate-modified Juraperle (M-JP) were tested and compared. Batch and fixed-bed column experiments of seeded crystallization of calcium phosphate were undertaken by using synthetic wastewater with 10 mg/L P phosphate. It shows that AP has bad enduring property in the crystallization process, while JP has better performance for multiple uses, and M-JP is a hopeful seed for P recovery by crystallization of calcium phosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号