首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ghauch A  Suptil J 《Chemosphere》2000,41(12):1835-1843
Atrazine, propazine and simazine were tested separately and in mixture by batch procedure in a laboratory-constructed apparatus. 3.75 l of a buffered s-triazines pesticide solution was treated at room temperature by 325-mesh zero-valent iron powder (ZVIP) (20 g/l). High performance liquid chromatography was used to separate by-products and study the decline in the pesticide’s concentrations. Results obtained show that the order of degradation was simazine, atrazine and then propazine. The half-lives (t1/2) of the s-triazines pesticides are, respectively, 7.4, 9.0 and 10.6 min when they are treated separately, and 9.8, 11.2 and 13.7 min when they are treated together under the same conditions. The final by-product obtained after 50 min of contact of simazine with ZVIP shows a shift to longer wavelength in its UV spectrum. A similar phenomenon is shown for atrazine and propazine. Identical primary by-products are produced and subsequently degraded to 4,6-(diamino)-s-triazine, which seems to be the major by-product of the reductive treatment process. Pathways for the degradation of the studied s-triazines by ZVIP are proposed.  相似文献   

2.
Evaluation of TCDD biodegradability under different redox conditions   总被引:2,自引:0,他引:2  
Kao CM  Chen SC  Liu JK  Wu MJ 《Chemosphere》2001,44(6):1447-1454
Polychlorinated dibenzo-p-dioxins have been generated as unwanted by-products in many industrial processes. Although their widespread distribution in different environmental compartments has been recognized, little is known about their fate in the ultimate environment sinks. The highly stable dioxin isomer 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been called the most toxic compound known to man. In this laboratory microcosm study, TCDD bioavailability was evaluated under five reduction/oxidation (redox) conditions including aerobic biodegradation, aerobic cometabolism, methanogenesis, iron reduction, and reductive dechlorination. Activated sludge and aquifer sediments from a TCDD and a pentachlorophenol (PCP) contaminated site were used as the inocula. Acetate, sludge cake, and cane molasses were used as the primary substrates (carbon sources) in cometabolism and reductive dechlorination microcosms. After a 90-day incubation period, microcosms constructed under reductive dechlorination conditions were the only treatment showing promising remediation results. The highest TCDD degradation rate [up to 86% of TCDD removal (with an initial concentration of 96 microg/kg of soil)] was observed in the microcosms with anaerobic activated sludge as the microbial inocula and sludge cakes as the primary substrates. Except for reductive dechlorination microcosms, no significant TCDD removal was observed in the microcosms prepared under other conditions. Thus, application of an effective primary substrate to enhance the reductive dechlorination process is a feasible method for TCDD bioremediation. Bioremediation expense can be significantly reduced by the supplement of some less expensive alternative substrates (e.g., sludge cakes, cane molasses). Results would be useful in designing a scale-up in situ or on-site bioremediation system such as bioslurry reactor for field application.  相似文献   

3.
Atrazine, propazine and simazine were tested separately and in mixture by batch procedure in a laboratory-constructed apparatus. 3.75 l of a buffered s-triazines pesticide solution was treated at room temperature by 325-mesh zero-valent iron powder (ZVIP) (20 g/l). High performance liquid chromatography was used to separate by-products and study the decline in the pesticide’s concentrations. Results obtained show that the order of degradation was simazine, atrazine and then propazine. The half-lives (t1/2) of the s-triazines pesticides are, respectively, 7.4, 9.0 and 10.6 min when they are treated separately, and 9.8, 11.2 and 13.7 min when they are treated together under the same conditions. The final by-product obtained after 50 min of contact of simazine with ZVIP shows a shift to longer wavelength in its UV spectrum. A similar phenomenon is shown for atrazine and propazine. Identical primary by-products are produced and subsequently degraded to 4,6-(diamino)-s-triazine, which seems to be the major by-product of the reductive treatment process. Pathways for the degradation of the studied s-triazines by ZVIP are proposed.  相似文献   

4.
Anaerobic dechlorination is an effective degradation pathway for higher chlorinated polychlorinated biphenyls (PCBs). The enhanced reductive dechlorination of PCB-contaminated soil by anaerobic composting with zero-valent iron (ZVI) was studied, and preliminary reasons for the enhanced reductive dechlorination with ZVI were investigated. The results show that the addition of nanoscale ZVI can enhance dechlorination during in-vessel anaerobic composting. After 140 days, the average number of removed Cl per biphenyl with 10 mg g?1 of added nanoscale ZVI was 0.63, enhancing the dechlorination by 34 % and improving the initial dechlorination speed. The ZVI enhances dechlorination by providing a suitable acid base environment, reducing volatile fatty acid inhibition and stimulating the microorganisms. The C/N ratios for treatments with the highest rate of ZVI addition were smaller than for the control, indicating that ZVI addition can promote compost maturity.  相似文献   

5.
During reductive dechlorination of trichloroethene (TCE) by zero-valent iron, stable carbon isotopic values of residual TCE fractionate significantly and can be described by a Rayleigh model. This study investigated the effect of observed reaction rate, surface oxidation and iron type on isotopic fractionation of TCE during reductive dechlorination. Variation of observed reaction rate did not produce significant differences in isotopic fractionation in degradation experiments. However, a small influence on isotopic fractionation was observed for experiments using acid-cleaned electrolytic iron versus experiments using autoclaved electrolytic iron, acid-cleaned Peerless cast iron or autoclaved Peerless cast iron. A consistent isotopic enrichment factor of epsilon = -16.7/1000 was determined for all experiments using cast iron, and for the experiments with autoclaved electrolytic iron. Column experiments using 100% cast iron and a 28% cast iron/72% aquifer matrix mixture also resulted in an enrichment factor of -16.9/1000. The consistency in enrichment factors between batch and column systems suggests that isotopic trends observed in batch systems may be extrapolated to flowing systems such as field sites. The fact that significant isotopic fractionation was observed in all experiments implies that isotopic analysis can provide a direct qualitative indication of whether or not reductive dechlorination of TCE by Fe0 is occurring. This evidence may be useful in answering questions which arise at field sites, such as determining whether TCE observed down-gradient of an iron wall remediation scheme is the result of incomplete degradation within the wall, or of the dissolved TCE plume by passing the wall.  相似文献   

6.
Polyurethane foam was an efficient adsorbent for trapping vapors of butyl esters of 2,4-D (2,4-dichlorophenoxyacetic acid) and triallate (S-(2,3,3-trichloroallyl)diisopropylthiocarbamate) in high volume air monitoring studies and of butyl esters of 2,4-D, iso-octyl ester of 2,4-D, n-butyl ester of 2,4,5-T (2,4,5-trichlorophenoxyacetic acid), bromoxynil octanoate (2,5-dibromo-4-hydroxybenzonitrile), triallate, and trifluralin (alpha, alpha, alpha-trifluoro-2,6-dinitro-N-N-dipropyl-p-toluidine) in short-term, low volume, worker inhalation exposure studies. The collected herbicide vapor was readily desorbed under soxhlet extraction with n-hexane and subsequently analyzed with electron-capture GLC. The overall efficiencies, for both trapping and extraction, were over 90%, using a single plug, for all herbicides, except triallate. In the case of triallate, two plugs in series were required for efficient trapping under the high volume air monitoring situation.  相似文献   

7.
Joo SH  Zhao D 《Chemosphere》2008,70(3):418-425
Highly stable Fe-Pd bimetallic nanoparticles were prepared with 0.2% (w/w) of sodium carboxylmethylcellulose (CMC) as a stabilizer. The effectiveness of the stabilized Fe-Pd nanoparticles was studied for degradation of two chlorinated pesticides (lindane and atrazine) under aerobic and anaerobic conditions. Batch kinetic tests showed that under anaerobic condition the nanoparticles can serve as strong electron donors and completely reduce 1 mgl(-1) of lindane at an iron dose of 0.5 gl(-1) or 1mg l(-1) of atrazine with 0.05 gl(-1) iron with a trace amount (0.05-0.8% of Fe) of Pd as a catalyst. In contrast, under aerobic condition, the nanoparticles can facilitate Fenton-like reactions, which lead to oxidation of 65% of lindane under otherwise identical conditions. Under aerobic condition, the presence of CMC reduced the level of hydroxyl radicals generated from the nanoparticels by nearly 50%, and thus, inhibited the oxidation of the contaminants. While the particle stabilization greatly enhanced the anaerobic degradation, it did not appear to be beneficial under aerobic condition. The degradation rate was progressively enhanced as the Pd content increased from 0.05% to 0.8% of Fe, and the catalytic effect of Pd was more significant under anaerobic condition. Under anaerobic condition, lindane is degraded via dihaloelimination and dehydrohalogenation, whereas atrazine is by reductive dechlorination followed by subsequent reductive dealkylation. Under aerobic condition, reactive oxygen species and hydroxyl radicals from the iron nanoparticles are responsible for oxidizing the pesticides. Lindane is oxidized via dechlorination/dehydrohalogenation, whereas atrazine is destroyed through dealkylation of the alkylamino side chain.  相似文献   

8.
A new method for reductive dechlorination of polychlorinated dibenzo-p-dioxins (PCDDs) and remediation of contaminated soils is described that uses zerovalent iron as the dechlorination agent and subcritical water as reaction medium and extractive solvent. It is found that the zerovalent iron can be applied for stepwise dechlorination of octachlorinated dibenzo-p-dioxin (OCDD) on various matrixes in subcritical water. By using iron powder as matrix higher chlorinated congeners were practically completely reduced to less than tetra-substituted homologues. A significant part of residual OCDD, when it was spiked in to soils, and formed less chlorinated congeners are extracted with water in the given conditions. The solubility of OCDD was increased by a 4–6 orders over its solubility at ambient conditions. The new method of contentious-flow extraction is described.  相似文献   

9.
Large-scale contaminated sites with multiple contaminants in the groundwater present a challenge to risk assessment and remediation. Attenuation reactions take place in the subsurface and act to contain contaminants, but must be thoroughly investigated on a site-specific basis. Field data from monitoring wells at a contaminated industrial site in Bitterfeld, Germany, are presented and analyzed for evidence of the prevalent biodegradation reactions. The groundwater in the Tertiary aquifer is contaminated with large quantities of chlorinated aliphatic compounds, in addition to chlorobenzenes and BTEX. In this strictly anaerobic environment, geochemical indications for several microbial processes were found, including methanogenesis, sulfate and iron reduction as well as reductive dechlorination of the chlorinated hydrocarbons. Direct evidence for the latter degradation reaction was observed along the flowpath due to the appearance of intermediates and an increase in the degree of dechlorination.  相似文献   

10.
A new method for reductive dechlorination of polychlorinated dibenzo-p-dioxins (PCDDs) and remediation of contaminated soils is described that uses zerovalent iron as the dechlorination agent and subcritical water as reaction medium and extractive solvent. It is found that the zerovalent iron can be applied for stepwise dechlorination of octachlorinated dibenzo-p-dioxin (OCDD) on various matrixes in subcritical water. By using iron powder as matrix higher chlorinated congeners were practically completely reduced to less than tetra-substituted homologues. A significant part of residual OCDD, when it was spiked in to soils, and formed less chlorinated congeners are extracted with water in the given conditions. The solubility of OCDD was increased by a 4–6 orders over its solubility at ambient conditions. The new method of contentious-flow extraction is described.  相似文献   

11.
A study was conducted to explore some of the basic processes of polychlorinated biphenyl (PCB) destruction by a new technology termed electrochemical peroxidation process (ECP). ECP represents an enhancement of the classic Fenton reaction (H2O2 + Fe2+) in which iron is electrochemically generated by steel electrodes. Focus was on the extent of adsorption of a mixture of Aroclor 1248 on steel electrodes in comparison to iron filings. Commercially available zero-valent iron filings rapidly adsorbed PCBs from an aqueous solution of Aroclor 1248. Within 4 h, all the PCBs were adsorbed at 1%, 5%, and 10% Fe0 (w/v) concentrations. Little difference in adsorption was found between acidic (2.3) and unamended solutions (pH 5.5), even though significant differences in iron oxidation state and Fe2+ concentrations were measured in solution. PCB adsorption also occurs on steel electrodes regardless of the pH or electric current applied (AC or DC), suggesting the combination of oxidizing (free radical-mediated reactions) and reducing (dechlorination reactions) iron-mediated degradation pathways may be possible. Extraction of the iron powder after 48 h of contact time yielded the progressive recovery of biphenyl with increasing Fe mass(from 0.4% to 3.5%) and changes of the PCB congener-specific pattern as a consequence of dechlorination. A variety of daughter congeners similar to those accumulated during anaerobic microbial dechlorination of Aroclor 1248 in contaminated sediments indicate preferential removal of meta- and para-chlorines.  相似文献   

12.
Ghauch A  Tuqan A 《Chemosphere》2008,73(5):751-759
Modified zero valent iron (MZVI) was used to study the transformation of a chlorothalonil (CLT) solution and the variation of the observed degradation rate of the reduction reactions. This was carried out when transition metals e.g. Pd, Cu and Co plated on the surface of micrometric iron particles (< 150 microm) were used as reducing catalytic agents for pesticide removal. Reactions were undertaken under both oxic and anoxic conditions in the presence and the absence of a phosphate buffer solution (PBS). Results of batch studies in nitrogen sparged solutions revealed that incomplete slow dechlorination merely occurred with zero valent iron (ZVI), however, complete rapid dechlorination reactions took place with MZVI especially Fe/Pd. Dechlorination was depicted by studying UV absorbance and MS spectra of CLT and all corresponding by-products. Typical blue shifts (deltalambda = 4-6 nm/chlorine atom) were observed at the same time as chlorine cluster isotopes disappeared. After the plating process, metal loading was controlled by analyzing the remaining metal in the solution by atomic absorption spectroscopy. Experiments showed that CLT degradation mechanism is faster in nitrogen sparged solutions in the absence of PBS. Time needed for complete removal of 2.08 +/- 0.19 microM CLT solution was about 2 h when experiments were conducted with ZVI (t1/2 = 15.0 min) and about 10 min when the reaction was carried out under the same conditions with Fe/Pd 1% (t1/2 = 1.0 min). Degradation rates for all bimetallic systems were determined showing that Pd is the more exciting catalytic transition metal followed by Cu and Co. Furthermore, MZVI method showed obvious advantage to traditional CLT treatment methods.  相似文献   

13.
The present paper deals with the formation of volatile halogenated by-products (POX) during the chlorination (160 mg/l) of aqueous solutions of the herbicide isoproturon (40 mg/l). Chlorination reactions have been carried out over 48 h, at ambient temperature, at two pHs (6 and 9) and in the presence or not of bromide ions (80 mg/l). The main results obtained have been as follows: (1) in the presence of bromide, isoproturon degradation is rather fast and it results affected by pH, complete isoproturon degradation is achieved within 1 and 15 min at pH 6 and 9, respectively; (2) in the absence of bromide herbicide degradation is slow (complete degradation is achieved within 180 min) and it is not affected by pH; (3) at pH 6, regardless of the presence of bromide, the maximum amount of POX formed is low (approximately 15 micromol X-/l) and remains constant during the reaction; (4) at pH 9 the amount of POX formed is far greater and continuously increases during the reaction, reaching a value of about 110 micromol X-/l after 48 h; (5) two different groups of by-products have been identified by solid phase micro extraction (SPME)-gas chromatography (GC)-mass spectrometry (MS) for the reactions carried out with or without bromide; among them, aliphatic as well as aromatic by-products containing chlorine, bromine or both halogens are present even though the most abundant are halogenated-methane derivatives (haloforms); pH value affects the amount of these by-products but does not modify their chemical nature.  相似文献   

14.
INTRODUCTION: Chlorinated ethanes and ethenes are among the most frequently detected organic pollutants of water. Their physicochemical properties are such that they can contaminate aquifers for decades. In favourable conditions, they can undergo degradation. In anaerobic conditions, chlorinated solvents can undergo reductive dechlorination. DEGRADATION PATHWAYS: Abiotic dechlorination is usually slower than microbial but abiotic dechlorination is usually complete. In favourable conditions, abiotic reactions bring significant contribution to natural attenuation processes. Abiotic agents that may enhance the reductive dechlorination of chlorinated ethanes and ethenes are zero-valent metals, sulphide minerals or green rusts. OXIDATION: At some sites, permanganate and Fenton's reagent can be used as remediation tool for oxidation of chlorinated ethanes and ethenes. SUMMARY: Nanoscale iron or bimetallic particles, due to high efficiency in degradation of chlorinated ethanes and ethenes, have gained much interest. They allow for rapid degradation of chlorinated ethanes and ethenes in water phase, but they also give benefit of treating dense non-aqueous phase liquid.  相似文献   

15.
Lee W  Batchelor B 《Chemosphere》2004,56(10):999-1009
Abiotic reductive dechlorination of chlorinated ethylenes (tetrachloroethylene (PCE), trichloroethylene (TCE), cis-dichloroethylene (c-DCE), and vinylchloride (VC)) by iron-bearing phyllosilicates (biotite, vermiculite, and montmorillonite) was characterized to obtain better understanding of the behavior of these contaminants in systems undergoing remediation by natural attenuation and redox manipulation. Batch experiments were conducted to evaluate dechlorination kinetics and some experiments were conducted with addition of Fe(II) to simulate impact of microbial iron reduction. A modified Langmuir-Hinshelwood kinetic model adequately described reductive dechlorination kinetics of target organics by the iron-bearing phyllosilicates. The rate constants stayed between 0.08 (+/-10.4%) and 0.401 (+/-8.1%) day(-1) and the specific initial reductive capacity of iron-bearing phyllosilicates for chlorinated ethylenes stayed between 0.177 (+/-6.1%) and 1.06 (+/-7.1%) microM g(-1). The rate constants for the reductive dechlorination of TCE at reactive biotite surface increased as pH (5.5-8.5) and concentration of sorbed Fe(II) (0-0.15 mM g(-1)) increased. The appropriateness of the model is supported by the fact that the rate constants were independent of solid concentration (0.0085-0.17 g g(-1)) and initial TCE concentration (0.15-0.60 mM). Biotite had the greatest rate constant among the phyllosilicates both with and without Fe(II) addition. The rate constants were increased by a factor of 1.4-2.5 by Fe(II) addition. Between 1.8% and 36% of chlorinated ethylenes removed were partitioned to the phyllosilicates. Chloride was produced as a product of degradation and no chlorinated intermediates were observed throughout the experiment.  相似文献   

16.
In situ methods are needed to evaluate the effectiveness of chemical amendments at enhancing reductive dechlorination rates in groundwater that is contaminated with the priority pollutant, trichloroethene (TCE). In this communication, a method that utilizes single-well, “push–pull” tests to quantify the effects of chemical amendments on in situ reductive dechlorination rates is presented and demonstrated. Five push–pull tests were conducted in each of five monitoring wells located in a TCE-contaminated aquifer at the site of a former chemical manufacturing facility. Rates for the reductive dechlorination of the fluorinated TCE-surrogate, trichlorofluoroethene (TCFE), were measured before (test 1) and after (test 5) three successive additions (tests 2–4) of fumarate. Fumarate was selected to stimulate the growth and activity of indigenous microorganisms with the metabolic capability to reduce TCFE and TCE. In three wells, first-order rate constants for the reductive dechlorination of TCFE increased by 8.2–92 times following fumarate additions. In two wells, reductive dechlorination of TCFE was observed after fumarate additions but not before. The transformation behavior of fumarate was also monitored following each fumarate addition. Correlations between the reductive dechlorination of TCFE and the reduction of fumarate to succinate were observed, indicating that these reactions were supported by similar biogeochemical conditions at this site.  相似文献   

17.
Tetrakis-(4-sulfonatophenyl)porphyrin cobalt was identified as a highly-active reductive dechlorination catalyst for chlorinated ethylenes. Through batch reactor kinetic studies, degradation of chlorinated ethylenes proceeded in a step-wise fashion with the sequential replacement of Cl by H. For perchloroethylene (PCE) and trichloroethylene (TCE), the dechlorination products were quantified and the C2 mass was accounted for. Degradation of the chlorinated ethylenes was found to be first-order in substrate. Dechlorination trials with increasing catalyst concentration showed a linearly increasing pseudo first-order rate constant which yielded rate laws for PCE and TCE degradation that are first-order in catalyst. The dechlorination activity of this catalyst was compared to that of another water-soluble cobalt porphyrin under the same reaction conditions and found to be comparable for PCE and TCE.  相似文献   

18.
Chlorinated hydrocarbons are the most common organic pollutants in groundwater systems worldwide. In this study, we developed bio-beads with immobilized anaerobic bacteria, zero-valent iron (ZVI), and activated carbon (AC) powder and evaluated their efficacy in removing 1,1,1-trichloroethane (TCA) from groundwater. Bio-beads were produced by polyvinyl alcohol, alginate, and AC powder. We found that the concentration of AC powder used significantly affected the mechanical properties of immobilized bio-beads and that 1.0 % (w/v) was the optimal concentration. The bio-beads effectively degraded TCA (160 mg L?1) in the anaerobic medium and could be reused up to six times. The TCA degradation rate of bio-beads was 1.5 and 2.3 times greater, respectively, than ZVI + AC treatment or microbes + AC treatment. Measuring FeS produced by microbial reactions indicated that TCA removal occurred via FeS-catalyzed dechlorination. Analysis of clonal libraries derived from bio-beads demonstrated that the dominant species in the community were Betaproteobacteria and Gammaproteobacteria, which may contribute to the long-term stability of ZVI reactivity during TCA dechlorination. This study shows that the combined use of immobilized anaerobic bacteria, ZVI, and AC in bio-beads is effective and practical for TCA dechlorination and suggests they may be applicable towards developing a groundwater treatment system for the removal of TCA.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号