共查询到20条相似文献,搜索用时 31 毫秒
1.
We made an inventory of nitrate (NO3-N) enrichment in surface and groundwater systems in the Hooghly district of India owing to intensive farming with high fertilizer doses as a function of quantity of fertilizers use, soil characteristics, types of crop grown, depth of groundwater sampling and also N-load in soil profiles. Water samples were collected from different sources at 412 odd sites spread over in 17 blocks of the district along with representative soil profiles. On average, the study area had high clay and NO3-N in soil profiles with an increasing and decreasing trends along depth, respectively. The NO3-N content both in surface and groundwater varied from 0.01 microg mL(-1) to 4.56 microg mL(-1), being well below the threshold limit of 10 microg mL(-1) fixed by WHO for drinking purpose. The content decreased with increasing depth of wells (r = -0.39**) and clay content of soil profiles (r = -0.31**). It, however, increased with increasing rate of fertilizer application (r = 0.72**), NO3-N load in soil profiles (r = 0.85**) and was higher in areas where shallow--rather than deep-rooted crops are grown. Results indicated even under fairly high quantity of fertilizer use, groundwater of the study area is safe for drinking purpose. 相似文献
2.
This study was undertaken to assess the heavy metal concentration of the drinking water with respect to zinc, copper, cadmium, manganese, lead and arsenic in Kamrup district of Assam, India. Ground water samples were collected from tube wells, deep tube wells and ring wells covering all the major hydrogeological environs. Heavy metals in groundwater are estimated by using Atomic Absorption Spectrometer, Perkin Elmer Analyst 200. Data were assessed statistically to find the distribution pattern and other related information for each metal. The study revealed that a good number of the drinking water sources were contaminated with cadmium, manganese and lead. Arsenic concentrations although did not exceeded WHO limits but was found to be slightly elevated. Copper and zinc concentrations were found to be within the prescribed WHO limits. An attempt has also been made to ascertain the possible source of origin of the metals. Positive and significant correlation existing between manganese with zinc and copper indicates towards their similar source of origin and mobility. In view of the present study and the level of heavy metal contamination, it could be suggested to test the potability of the water sources before using it for drinking purpose. 相似文献
3.
Kamala Kanta Borah Bhabajit Bhuyan Hari Prasad Sarma 《Environmental monitoring and assessment》2010,169(1-4):347-352
Drinking water quality with respect to lead, iron, fluoride, and arsenic has been carried out in and around tea gardens of Darrang district of Assam, India. The district lies between 26°25′ and 26°55′ northern latitude and 91°45′ and 91°20′ east longitude and covers an area of 3,465.30 km2. Twenty-five different sampling stations were selected for the study. Iron, lead, and arsenic were analyzed by using an atomic absorption spectrometer, Perkin Elmer AA 200, while fluoride was measured by the SPADNS method using a UV–VIS spectrometer, Shimadzu 1240 model. The study revealed that the water sources in the area are heavily polluted with lead. Statistical analysis of the data is presented to determine the distribution pattern, localization of data, and other related information. Statistical observations imply non-uniform distribution of the studied parameters with a long asymmetric tail either on the right or left side of the median. 相似文献
4.
Assessment of groundwater pollution in West Delhi, India using geostatistical approach 总被引:3,自引:0,他引:3
Partha Pratim Adhikary H. Chandrasekharan Debashis Chakraborty Kalpana Kamble 《Environmental monitoring and assessment》2010,167(1-4):599-615
The exploration, exploitation, and unscientific management of groundwater resources in the National Capital Territory (NCT) of Delhi, India have posed a serious threat of reduction in quantity and deterioration of quality. The objective of the study is to determine the groundwater quality and to assess the risk of groundwater pollution at Najafgarh, NCT of Delhi. The groundwater quality parameters were analyzed from the existing wells of the Najafgarh and the thematic maps were generated using geostatistical concepts. Ordinary kriging and indicator kriging methods were used as geostatistical approach for preparation of thematic maps of the groundwater quality parameters such as bicarbonate, calcium, chloride, electrical conductivity (EC), magnesium, nitrate, sodium, and sulphate with concentrations equal or greater than their respective groundwater pollution cutoff value. Experimental semivariogram values were fitted well in spherical model for the water quality parameters, such as bicarbonate, chloride, EC, magnesium, sodium, and sulphate and in exponential model for calcium and nitrate. The thematic maps of all the groundwater quality parameters exhibited an increasing trend of pollution from the northern and western part of the study area towards the southern and eastern part. The concentration was highest at the southernmost part of the study area but it could not reflect correctly the groundwater pollution status. The indicator kriging method is useful to assess the risk of groundwater pollution by giving the conditional probability of concentrations of different chemical parameters exceeding their cutoff values. Thus, risk assessment of groundwater pollution is useful for proper management of groundwater resources and minimizing the pollution threat. 相似文献
5.
Chemistry of groundwater in Gulbarga district, Karnataka, India 总被引:1,自引:0,他引:1
Majagi S Vijaykumar K Rajshekhar M Vasanthkumar B 《Environmental monitoring and assessment》2008,136(1-3):347-354
Groundwater quality of Gulbarga District is extensively monitored for two years of study period from October 1999 to September
2001. Twenty-five different sampling stations were selected for the study purpose in the city and five selected villages in
the district. Gulbarga districts lies in the northern plains of Karnataka State, covers an area of 16,244 km2 and lies between 16°-11′ and 17°-19′N latitude and 76°-54′E longitude The study revealed that the water sources in the area
are heavily polluted. The major water quality parameters exceeding the permissible limits during all the seasons are total
hardness, calcium hardness, magnesium hardness, alkalinity and MPN (Bacterial count) and other parameters have shown distinctive
variation in different stations and season. Most of these parameters are correlated with one another. Statistical analysis
of the data is presented. 相似文献
6.
Laboratory and Field Assessment of Arsenic Testing Field Kits in Bangladesh and West Bengal, India 总被引:2,自引:0,他引:2
High concentrations of arsenic in ground waters in West Bengal and Bangladeshhave become a major cause for concern in recent years. Given the enormity and the severity of the problemof arsenic poisoning, a task of evaluating the commercially available arsenic detection field kits for their capabilities was undertaken. In the light of the findings, generic specificationswere recommended which could form the basis forindigenous manufacture of these kits in the arsenic affected countries. This article presents the results of the laboratory and fieldevaluation conducted in Bangladesh and West Bengalof five arsenic testing field kits. The salient features of the kits, their merits and limitationshave been brought out. Based on the criteria of kitdesign, quality of chemicals used, colourcomparator charts, detection range, time required for analysis, cost etc., a comparative ranking ofthe kits has been made to facilitate the choice of the kit to meet specific requirements. 相似文献
7.
8.
Fluoride concentration in groundwater sources used as major drinking water source in rural area of block Nawa (Nagaur District), Rajasthan was examined and the toxic effects by intake of excess fluoride on rural habitants were studied. In block 13, habitations (30%) were found to have fluoride concentration more than 1.5 mg/l (viz. maximum desirable limit of Indian drinking water standards IS 10500, 1999). In five habitations (11%), fluoride concentration in groundwater is at toxic level (viz. above 3.0 mg/l). The maximum fluoride concentration in the block is 5.91 mg/l from Sirsi village. As per the desirable and maximum permissible limit for fluoride in drinking water, determined by World Health Organization or by Bureau of Indian Standards, the groundwater of about 13 habitations of the studied sites is unfit for drinking purposes. Due to the higher fluoride level in drinking water, several cases of dental and skeletal fluorosis have appeared at alarming rate in this region. There is an instant need to take ameliorative steps in this region to prevent the population from fluorosis. Groundwater sources of block Nawa can be used for drinking after an effective treatment in absence of other safe source. The evaluation of various defluoridation methods on the basis of social and economical structure of India reveals that the clay pot chip, activated alumina adsorption, and Nalgonda techniques are the most promising. 相似文献
9.
Suthar S Garg VK Jangir S Kaur S Goswami N Singh S 《Environmental monitoring and assessment》2008,145(1-3):1-6
This study was carried out to assess the fluoride concentration in groundwater in some villages of northern Rajasthan, India, where groundwater is the main source of drinking water. Water samples collected form deep aquifer based hand-pumps were analysed for fluoride content. Fluoride in presently studied sites was recorded in the ranges of 4.78 and 1.01 mg/l. The average fluoride concentration for this region was recorded 2.82 mg/l. As per the desirable and maximum permissible limit for fluoride in drinking water, determined by WHO or by Bureau of Indian Standards, the groundwater of about 95 of the studied sites is unfit for drinking purposes. Due to the higher fluoride level in drinking water several cases of dental and skeletal fluorosis have appeared at alarming rate in this region. The middle and eastern parts of the Hanumangarh, a northern most district of the state, can be classified as higher risk area for fluorosis; due to relatively high concentrations of fluoride (3-4 mg/l) in groundwater of this region. After evaluating the data of this study it is concluded that there is an instant need to take ameliorative steps in this region to prevent the population from fluorosis. 相似文献
10.
Assessment of groundwater quality in Puri City, India: an impact of anthropogenic activities 总被引:1,自引:0,他引:1
Ritesh Vijay Puja Khobragade P. K. Mohapatra 《Environmental monitoring and assessment》2011,177(1-4):409-418
Puri City is situated on the east coast of India and receives water supply only from the groundwater sources demarcated as water fields. The objective of this paper is to assess and evaluate the groundwater quality due to impact of anthropogenic activities in the city. Groundwater samples were collected from the water fields, hand pumps, open wells, and open water bodies during post-monsoon 2006 and summer 2007. Groundwater quality was evaluated with drinking water standards as prescribed by Bureau of Indian Standards and Environmental Protection Agency to assess the suitability. The study indicated seasonal variation of water-quality parameters within the water fields and city area. Groundwater in the water fields was found to be suitable for drinking after disinfection. While in city area, groundwater quality was impacted by onsite sanitary conditions. The study revealed that groundwater quality was deteriorated due to the discharge of effluent from septic tanks, soak pits, pit latrines, discharges of domestic wastewater in leaky drains, and leachate from solid waste dumpsite. Based on observed groundwater quality, various mitigation measures were suggested to protect the water fields and further groundwater contamination in the city. 相似文献
11.
Adhikary PP Chandrasekharan H Chakraborty D Kumar B Yadav BR 《Environmental monitoring and assessment》2009,154(1-4):41-52
Parametric statistical approaches, correlations and multiple linear regressions were used to develop models for the interpretation of hydrogeochemical parameters in the Western part of Delhi state, India. The hydrogeochemical parameters indicated that the groundwater quality is not safe for consumption. The water is moderately saline and the salinity level is increasing over time. There is also the problem of nitrate pollution. The correlation between electrical conductivity (EC) and other water quality parameters except potassium (K(+)), nitrate (NO(3)(-)) and bicarbonate (HCO(3)(-)) is significantly positive and Ca(++)+ Mg(++)/Na(+)+ K(+) is significantly negative. In predicting EC, the multiple R(2) values of 0.996 and 0.985 indicate that 99.6% and 98.5% variability in the observed EC could be ascribed to the combined effect of Na(+), HCO(3)(-), Cl(-), SO(4)(--), NO(3)(-) and Ca(++)+ Mg(++) for the year of 2005 and 2006 respectively. Out of 99.6% of the variability in EC in 2005, 51.2% was due to Cl(-) alone, and 8.5%, 12.5%, 6.1%, 14.7% and 6.7% were due to Na(+), HCO(3)(-), SO(4)(--), NO(3)(-) and Ca(++) + Mg(++). Similarly in 2006, out of 98.5% of the variability in EC, 48.5% was due to Cl(-) alone, and 10.4%, 12.7%, 5.3%, 17.2% and 4.4% were due to Na(+), HCO(3)(-), SO(4)(--), NO(3)(-) and Ca(++)+ Mg(++). The analysis shows that a good correlation exists between EC, Cl(-) and SO(4)(--) either individually or in combination with other ions and the multiple regression models can predict EC at 5% level of significance. 相似文献
12.
K. Karthikeyan K. Nanthakumar P. Velmurugan S. Tamilarasi P. Lakshmanaperumalsamy 《Environmental monitoring and assessment》2010,160(1-4):141-155
A total of 60 drinking water samples collected from Erode district, Tamilnadu, India were analysed for fluoride contamination, besides water quality parameters such as pH, electrical conductivity, total dissolved solids, total alkalinity, total hardness, fluoride, bicarbonates, calcium, magnesium, nitrate, sulphate, phosphate, sodium and potassium. The results obtained were found to exceed the permissible limits. The concentration of fluoride in the water samples ranged between 0.5 and 8.2 mg/l and revealed that 80% of the water samples contain fluoride above the maximum permissible limit. Similarly, the concentrations of nitrate, hardness, calcium and magnesium in some samples were also more than the permissible level. Pearson’s correlation coefficient among the parameters showed a positive correlation of fluoride with total hardness and calcium. It is inferred from the study that these water sources can be used for potable purpose only after prior treatment. 相似文献
13.
Assessment of nitrate contamination due to groundwater pollution in north eastern part of Anantapur District, A.P. India 总被引:1,自引:0,他引:1
Reddy AG Niranjan Kumar K Subba Rao D Sambashiva Rao S 《Environmental monitoring and assessment》2009,148(1-4):463-476
The north eastern part of Anantapur district is in the state of Andhra Pradesh, India, is significant as it is covered by varied geological formations and has different land use and irrigation practices. Though ground water is the major drinking water source, deterioration in its quality is going unchecked. In such agro-economy based rural areas, the nitrate contamination is rampant and much attention has not been drawn towards this anthropogenic pollution. In the study area ground water samples from different hydrogeological set-up have been collected during the pre and post monsoon seasons and analysed for the major ions such as Ca, Mg, Na, K, CO(3), HCO(3), Cl, SO(4), NO(3) and F. The study revealed that 65% of the samples were found to be unsuitable for drinking purposes in the pre monsoon season and 45% in the post monsoon due to excess nitrate (>45 mg/l) content in the ground water. Among the different seasons and environs, nitrate was in highest concentration in the granitic terrain and canal command areas during pre monsoon season. The nitrate was found to decrease with depth in all the hydrogeological set-ups in both the seasons. Intense agriculture practices, improper sewerage and organic waste disposal methods were observed to contribute nitrate to the shallow and moderately deep aquifers. 相似文献
14.
Tomohiko Isobe Shohei P. Ogawa Rina Sugimoto Karri Ramu Agus Sudaryanto Govindan Malarvannan Gnanasekaran Devanathan Babu Rajendran Ramaswamy Natesan Munuswamy Deavaraj Sankar Ganesh Jeyaraj Sivakumar A. Sethuraman V. Parthasarathy Annamalai Subramanian Jennifer Field Shinsuke Tanabe 《Environmental monitoring and assessment》2013,185(7):5627-5637
Perchlorate contamination was investigated in groundwater and surface water from Sivakasi and Madurai in the Tamil Nadu State of South India. Sensitive determination of perchlorate (LOQ?=?0.005 μg/L) was achieved by large-volume (500 μL) injection ion chromatography coupled with tandem mass spectrometry. Concentrations of perchlorate were <0.005–7,690 μg/L in groundwater (n?=?60), <0.005–30.2 μg/L in surface water (n?=?11), and 0.063–0.393 μg/L in tap water (n?=?3). Levels in groundwater were significantly higher in the fireworks factory area than in the other locations, indicating that the fireworks and safety match industries are principal sources of perchlorate pollution. This is the first study that reports the contamination status of perchlorate in this area and reveals firework manufacture to be the pollution source. Since perchlorate levels in 17 out of 57 groundwater samples from Sivakasi, and none from Madurai, exceeded the drinking water guideline level proposed by USEPA (15 μg/L), further investigation on human health is warranted. 相似文献
15.
Factors controlling the salinity in groundwater in parts of Guntur district, Andhra Pradesh, India 总被引:1,自引:0,他引:1
Subba Rao N 《Environmental monitoring and assessment》2008,138(1-3):327-341
Groundwater chemistry has been studied to examine the associated hydrogeochemical processes operating for the development
of salinity in the groundwater in parts of Guntur district, Andhra Pradesh, India. The study area is underlain by charnockites
and granitic gneisses associated with schists of the Precambrian Eastern Ghats. Groundwater is the main resource for irrigation
besides drinking. Chemical parameters, pH, EC, TDS, Ca2+, Mg2+, Na+, K+, , , Cl−, , , F− and SiO2, are taken into account. Groundwater is of brackish type. Na+−Cl− facies dominates the groundwater. Examination of compositional relations and mineral saturation states shows that the ion
exchange of Ca2+ for adsorbed Na+, evapotranspiration, dissolution of soil salts, dissolution of NaCl and CaSO4, and precipitation of CaCO3 are the dominant hydrogeochemical processes associated with the groundwater composition in the area. Evapotranspiration causes
accumulation of salts in the soil/weathered zone. These salts reach the water table by leaching through infiltrating recharge
water. A positive relation between depth to water table and TDS with season supports this inference. The effects of human
activities, such as intensive and long-term irrigation, irrigation-return-flow, application of unlimited agricultural fertilizers
and recycling of saline groundwater, act to further increase the salinity in the groundwater. Therefore, the groundwater quality
increases towards the flow path, while the post-monsoon groundwater shows higher concentrations of TDS, Na+, Mg2+, Cl−, , , F− and SiO2 ions. The study could help to understand the hydrogeochemical characteristics of the aquifer system for taking effective
management measures to mitigate the inferior groundwater quality for sustainable development. 相似文献
16.
Demand for groundwater for drinking, agricultural, and industrial purposes has increased due to rapid increase in population. Therefore, it is imperative to assess the groundwater potential of different areas, especially in a fragile wetland ecosystem to select appropriate sites for developing well fields to minimize adverse environmental impacts of groundwater development. This study considers East Calcutta Wetlands (ECW)??a freshwater peri-urban inland wetland ecosystem located at the lower part of the deltaic alluvial plain of South Bengal Basin and east of Kolkata city. This wetland is well known over the world for its resource recovery systems developed by local people through ages, using wastewater of the city. The subsurface geology is completely blanketed by the Quaternary sediments comprising a succession of silty clay, sand of various grades, and sand mixed with occasional gravels and thin intercalations of silty clay. Groundwater occurs mostly under confined condition except in those places where the top aquitard has been obliterated due to scouring action of past channels. The groundwater in the study area is being over-extracted at the rate of 65 × 103 m3/day. Overlay analysis in Geographic Information System platform using multiple criteria such as water quality index, hydraulic conductivity, groundwater velocity, and depth to piezometric surface reveals that in and around ECW, there are five groundwater potential zones. About 74% of the aquifer of this area shows very poor to medium groundwater potential. Management options such as minimization of groundwater abstraction by introducing the treated surface water supply system and the implementation of rainwater harvesting and artificial recharge in high-rise buildings and industries are suggested for different potential zones. 相似文献
17.
P. K. Panigrahy D. R. Satapathy C. R. Panda R. N. Kar 《Environmental monitoring and assessment》2014,186(12):8303-8315
Petroleum hydrocarbon (PHC) concentration was monitored in water of estuaries, ports, and coastal transects up to 10-km distance in East Coast of India once in every year during 2002–2009. The highest concentration was observed at Haldia port (1.60–20.11 μg/l) due to the impact of hydrocarbon discharges from nearby oil refinery, petrochemical industries, handling of crude oils, etc. The concentration of PHC exhibited relatively higher values during low tide than the high tide in all the four estuaries indicating riverine inputs and land-based discharges, which contribute substantial amounts of PHC to the coastal water. Hoogly estuary recorded higher values of PHC (1.17–18.50 μg/l) due to the influence of industrial wastes, land runoff, and port activities. The spatial distribution of PHC estimated by the kriging method showed a variation in concentration of PHC over the whole region. To discriminate the dispersion pattern of PHC, principal component analysis (PCA) was performed using a correlation matrix. 相似文献
18.
Pesticide residue level in tea ecosystems of Hill and Dooars regions of West Bengal, India 总被引:1,自引:0,他引:1
Bishnu A Chakrabarti K Chakraborty A Saha T 《Environmental monitoring and assessment》2009,149(1-4):457-464
In the present study we quantified the residues of organophosphorus (e.g. ethion and chlorpyrifos), organochlorine (e.g. heptachlor, dicofol, alpha-endosulfan, beta-endosulfan, endosulfan sulfate) and synthetic pyrethroid (e.g. cypermethrin and deltamethrin) pesticides in made tea, fresh tea leaves, soils and water bodies from selected tea gardens in the Dooars and Hill regions of West Bengal, India during April and November, 2006. The organophosphorus (OP) pesticide residues were detected in 100% substrate samples of made tea, fresh tea leaves and soil in the Dooars region. In the Hill region, 20% to 40% of the substrate samples contained residues of organophosphorus (OP) pesticides. The organochlorine (OC) pesticide residues were detected in 33% to 100% of the substrate samples, excluding the water bodies in the Dooars region and 0% to 40% in the Hill region. The estimated mean totals of studied pesticides were higher in fresh tea leaves than in made tea and soils. The synthetic pyrethroid (SP) pesticide residues could not be detected in the soils of both the regions and in the water bodies of the Dooars. Sixteen percent and 20% of the made tea samples exceeded the MRL level of chlorpyrifos in Dooars and Hill regions respectively. The residues of heptachlor exceeded the MRL in 33% (April) and 100% (November) in the Dooars and 40% (April) and 20% (November) in the Hill region. Based on the study it was revealed that the residues of banned items like heptachlor and chlorpyrifos in made tea may pose health hazards to the consumers. 相似文献
19.
Hydrogeochemical characterization of fluoride rich groundwater of Wailpalli watershed, Nalgonda District, Andhra Pradesh, India 总被引:1,自引:0,他引:1
A. G. S. Reddy D. V. Reddy P. N. Rao K. Maruthy Prasad 《Environmental monitoring and assessment》2010,171(1-4):561-577
The groundwater of Nalgonda district is well known for its very high fluoride content for the past five decades. Many researchers have contributed their scientific knowledge to unravel causes for fluoride enrichment of groundwater. In the present paper, an attempt has been made to relate the high fluoride content in the groundwater to hydrogeochemical characterization of the water in a fracture hard rock terrain—the Wailpally watershed. Groundwater samples collected from all the major geomorphic units in pre- and post-monsoon seasons were analyzed for its major ion constituents such as Ca2?+?, Mg2?+?, Na?+?, K?+?, CO $_{3}^{-}$ , HCO $_{3}^{-}$ , Cl???, SO $_{4}^{-2}$ , NO $_{3}^{-}$ , and F???. The groundwaters in the watershed have the average fluoride content of 2.79 mg/l in pre-monsoon and 2.83 mg/l in post-monsoon. Fluoride concentration in groundwater does not show perceptible change neither with time nor in space. The ionic dominance pattern is in the order of Na?+? > Ca2?+??> Mg2?+??> K??? among cations and HCO $_{3}^{-}\:\,>$ Cl????> SO $_{4}^{-2} >$ NO $_{3}^{-} >$ F??? among anions in pre-monsoon. In post-monsoon, Mg replaces Ca2?+? and NO $_{3}^{-}$ takes the place of SO $_{4}^{-2}$ . The Modified Piper diagram reflect that the water belong to Ca?+?2–Mg?+?2–HCO $_{3}^{-}$ to Na?+?–HCO $_{3}^{-}$ facies. Negative chloralkali indices in both the seasons prove that ion exchange between Na?+? and K?+? in aquatic solution took place with Ca?+?2 and Mg?+?2 of host rock. The interpretation of plots for different major ions and molar ratios suggest that weathering of silicate rocks and water–rock interaction is responsible for major ion chemistry of groundwater in Wailpally watershed. Chemical characteristics and evolution of this fluoride-contaminated groundwater is akin to normal waters of other hard rock terrain; hence, it can be concluded that aquifer material play an important role in the contribution of fluoride in to the accompanying water. High fluoride content in groundwater can be attributed to the continuous water–rock interaction during the process of percolation with fluorite-bearing country rocks under arid, low precipitation, and high evapotranspiration conditions. 相似文献
20.
Assessment and spatial distribution of groundwater quality in industrial areas of Ghaziabad, India 总被引:2,自引:0,他引:2
Savita Kumari Anil Kumar Singh Ashok Kumar Verma N. P. S. Yaduvanshi 《Environmental monitoring and assessment》2014,186(1):501-514
An attempt has been made in this study to evaluate the groundwater quality in two industrial blocks of Ghaziabad district. Groundwater samples were collected from shallow wells, deep wells and hand pumps of two heavily industrialized blocks, namely Bulandshahar road industrial area and Meerut road industrial area in Ghaziabad district for assessing their suitability for various uses. Samples were collected from 30 sites in each block before and after monsoon. They were analyzed for a total of 23 elements, namely, Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, Se, U, V, and Zn. In addition to these elements, some other parameters were also studied viz: color, odor, turbidity, biological oxygen demand, chemical oxygen demand (COD), dissolved oxygen, total dissolved solids and total suspended solid. The water quality index was also calculated based on some of the parameters estimated. Out of the 23 elements, the mean values of 12 elements, namely, Al, As, Ca, Cd, Cr, Mg, Mn, Na, Ni, Pb, Se, and U, were higher than the prescribed standard limits. The concentrations (in milligram per liter) of highly toxic metals viz., Al, As, Cd, Cr, Ni, Pb, Se, and U, ranged from 1.33–6.30, 0.04–0.54, 0.005–0.013, 4.51–7.09, 0.14–0.27, 0.13–0.32, 0.16–2.11, and 0.10–1.21, respectively, in all groundwater samples, while the permissible limits of these elements as per WHO/BIS standards for drinking are 0.2, 0.01, 0.003, 0.05, 0.07, 0.01, 0.04, and 0.03 mg L?1, respectively. The EC, pH, and COD in all samples varied from 0.74–4.21, 6.05–7.72, and 4.5–20.0 while their permissible limits are 0.7 dS m?1, 6.5–8.5, and 10 mg L?1, respectively. On the basis of the above-mentioned parameters, the water quality index of all groundwater samples ranged from 101 to 491, and 871 to 2904 with mean value of 265 and 1,174 based on two criteria, i.e., physico-chemical and metal contaminations, respectively while the prescribed safe limit for drinking is below 50. The results revealed that the groundwater in the two blocks is unfit for drinking as per WHO/BIS guidelines. The presence of elements like As, Se, and U in toxic amounts is a matter of serious concern. 相似文献