首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
文章在北京城市森林植被区选择2个观测点,采集2个观测点的PM_(2.5)质量浓度数据,并结合北京植物园的气象数据,研究其PM_(2.5)质量浓度变化特征和影响因素,探讨PM_(2.5)质量浓度变化对城市生活的影响。结果表明:被选观测点的PM_(2.5)浓度月变化基本呈"M"型,PM_(2.5)浓度在6月最低(西山公园为(71.01±34.34)μg/m~3,北京植物园为(44.41±31.57)μg/m~3),2月最高(西山公园为(154.07±95.70)μg/m~3,北京植物园为(139.49±100.74)μg/m~3),10月达下半年的最高值(西山公园为(133.45±109.06)μg/m~3,北京植物园为(127.04±109.34)μg/m~3);PM_(2.5)浓度全年均值为西山公园((104.02±26.45)μg/m~3)>北京植物园((82.52±28.18)μg/m~3);PM_(2.5)浓度季节变化呈"V"型在冬季最高,春季次之,夏季最低PM_(2.5)质量浓度季节变化西山公园为冬季((115.46±41.37)μg/m~3)>春季((112.39±18.50)μg/m~3)>秋季((106.37±24.25)μg/m~3)>夏季((81.87±12.60)μg/m~3),北京植物园为冬季((97.35±41.38)μg/m~3)>春季((94.07±12.21)μg/m~3)>秋季((93.17±31.42)μg/m~3)>夏季((61.86±16.70)μg/m~3);森林空旷地的空气质量优于森林内部PM_(2.5)浓度变化主要受地理位置、气象因素、人文因素的影响。  相似文献   

2.
乌鲁木齐市PM_(2.5)和PM_(2.5~10)中碳组分季节性变化特征   总被引:2,自引:0,他引:2  
2011年1月至12月在乌鲁木齐市区用膜采样法采集了大气PM_(2.5)和PM_(2.5~10)样品,并利用热光/碳分析仪测定了其中有机碳(OC)和元素碳(EC)的质量浓度.通过OC与EC的粒径分布特征、比值和相关性的分析,初步分析了乌鲁木齐市大气可吸入颗粒物中碳质气溶胶污染特征,并用OC/EC比值法估算了二次有机碳(SOC)的浓度.结果表明,PM_(2.5)和PM_(2.5~10)的年平均质量浓度分别为92.8μg/m~3和64.7μg/m~3.PM_(2.5)中OC和EC的年平均浓度分别为13.85μg/m~3和2.38μg/m~3,PM_(2.5~10)中OC和EC的年平均浓度分别为2.63μg/m~3和0.57μg/m~3.OC和EC四季变化趋势基本一致,季浓度最高.碳组分主要集中于PM_(2.5)中,OC/EC比值范围为3.62~11.21.夏季和秋季的PM_(2.5)和PM_(2.5~10)中OC和EC的相关性较好(R20.65).估算得出的PM_(2.5)和PM_(2.5~10)中SOC的估算浓度为2.31~11.98μg/m~3和0.38~1.49μg/m~3.  相似文献   

3.
《环境科学与技术》2021,44(4):97-103
为研究鞍山市春秋季PM_(2.5)中碳组分的污染特征及来源,该文于2014年10月和2015年4月在鞍山市设立6个点位采集PM_(2.5)样品,并测定了其中有机碳(OC)和元素碳(EC)的含量。通过对鞍山市PM_(2.5)中OC和EC的浓度水平、OC与EC的相关性及比值、二次有机碳(SOC)的估算和主成分分析等进行研究,分析了鞍山市春秋季PM_(2.5)碳组分的污染特征和来源。结果表明,春季和秋季PM_(2.5)浓度的日均值分别为(94.28±10.27)μg/m~3和(118.60±12.92)μg/m~3;春季PM_(2.5)中OC和EC的质量浓度分别为(12.44±1.53)μg/m~3和(3.80±0.74)μg/m~3;秋季PM_(2.5)中OC和EC的质量浓度分别为(18.53±1.92)μg/m~3和(4.74±1.24)μg/m~3,OC、EC在春秋季的差异具有统计学意义,各监测点位OC与EC浓度均表现为秋季高于春季;春季和秋季各点位的OC/EC值均大于2,说明各采样点位在春秋季均存在二次污染;相关分析表明,春秋季的OC与EC均显著相关,说明春秋季OC与EC来源相似;采用OC/EC最小比值法估算SOC含量,得到春季和秋季SOC浓度分别为4.65和10.37μg/m~3;主成分分析结果表明,鞍山市大气PM_(2.5)中碳组分主要来源于燃煤、生物质燃烧、道路扬尘和机动车尾气。  相似文献   

4.
基于江苏省2013年12月-2014年11月期间71个监测点PM_(2.5)日数据以及2014年土地利用数据,以年、季为时间尺度,利用泰森多边形划分研究区域,在系统分析PM_(2.5)时空分异规律基础上,揭示PM_(2.5)浓度变化及其与土地利用的关系。结果表明:(1)PM_(2.5)浓度分布存在明显的时空变化趋势。时间上,冬季浓度最高,达109.72μg/m~3,春季次之,为70.13μg/m~3,秋季最低,仅53.20μg/m~3;空间上,从各监测点一年PM_(2.5)浓度看,南京、泰州和宿迁数个监测点是PM_(2.5)高浓度区域,浓度范围81~85μg/m~3。盐城开发区管委会浓度最低,仅49.75μg/m~3,全省呈现"内陆高,沿海低;内陆南高北低"的趋势。(2)土地利用类型及景观格局对PM_(2.5)浓度分布有一定影响。耕地、草地、水域和未利用地与PM_(2.5)呈负相关,林地和建设用地则呈正相关。景观面积、密度、破碎度和聚散性是影响PM_(2.5)的主要因素,冬夏季较为敏感。  相似文献   

5.
重庆市主城区PM2.5时空分布特征   总被引:6,自引:3,他引:3  
利用2014年6月1日至2015年5月31日重庆市主城区17个国控空气质量监测站24 h自动连续采样的PM_(2.5)浓度数据,探讨了重庆市主城区PM_(2.5)时空分布特征.结果表明:1重庆市主城区PM_(2.5)季节浓度由高到低依次为冬季(100.2μg·m~(-3))、秋季(66.1μg·m~(-3))、春季(45.9μg·m~(-3))和夏季(33.4μg·m~(-3))(P0.05).2重庆市主城区PM_(2.5)月均浓度变化呈单峰单谷型,1月PM_(2.5)月均浓度最高(P0.05),达到120.8μg·m-3.3逐日变化,国控17个空气质量监测站PM_(2.5)日均浓度曲线都呈现出尖峰和深谷交替变化的锯齿状.4重庆市主城区16个国控监测点(除缙云山对照点)PM_(2.5)浓度日变化在全年、春季、秋季和冬季都呈现明显的双峰双谷型.5PM_(2.5)与SO_2、NO_2和CO都呈显著正相关(P0.01),表明SO_2、NO_2和CO的二次转化对PM_(2.5)浓度具有显著影响.  相似文献   

6.
随着我国经济、工业化、城市化进程迅速发展,PM_(2.5)污染在中国已经成为一个极端的环境和社会问题,并引起广泛关注.采用新技术估算的地表PM_(2.5)质量浓度,收集并处理了遥感反演的气溶胶光学厚度(AOD),气象数据,其他地理数据和污染物排放数据,采用贝叶斯最大熵(BME)结合地理加权回归(GWR)来分析2015年冬季的PM_(2.5)暴露在我国东部大范围区域的时空变异特征.结果表明,BME模型的十折交叉验证结果的决定系数R~2为0.92,均方根误差(RMSE)为8.32μg·m~(-3),平均拟合误差(MPE)为-0.042μg·m~(-3),平均绝对拟合误差(MAE)为4.60μg·m~(-3),与地理加权回归模型的结果相比(R~2=0.71,RMSE=15.68μg·m~(-3),MPE=-0.095μg·m~(-3),MAE=11.14μg·m~(-3)),BME的预测结果有极大的提高.空间上,PM_(2.5)高浓度地区主要集中在华北、长江三角洲、四川盆地,低浓度地区主要集中在中国的最南部如珠江三角洲和云南的西南部;时间上,不同月份的研究区域PM_(2.5)空间分布所有差别,2015年的12月、2016年1月PM_(2.5)污染最为严重,2015年的11月,2016年的2月污染相对较低.  相似文献   

7.
针对哈尔滨市的PM_(2.5)空气污染问题,收集整理了哈尔滨市2014年全年的空气污染物数据和气象数据,分析研究了当地PM_(2.5)质量浓度变化特征,找出其影响因素。结果表明,哈尔滨市PM_(2.5)日均质量浓度为72.64μg/m~3,初步达到国家标准。PM_(2.5)月均质量浓度11月最高,约为148.27μg/m~3,9月最低,约为21.07μg/m~3。秋冬两季PM_(2.5)平均质量浓度较高。PM_(2.5)/PM10比例春季最低,约为0.5,PM_(2.5)已成为哈尔滨市可吸入颗粒物中的首要污染物。从PM_(2.5)与SO~2、NO~2、CO的相关性来看,哈尔滨市PM_(2.5)与CO的相关性最高,四季均在0.9左右。各类空气污染物的平均浓度降水日低于非降水日。PM_(2.5)与气象因子的相关性较小,与风速呈负相关。  相似文献   

8.
利用1998~2012年卫星反演的细颗粒物(PM_(2.5))全球高精度产品数据集,精细化地给出了华东地区PM_(2.5)时空分布与变化特征,并分析了此背景下浙江省PM_(2.5)的人口经济暴露水平.结果表明1998~2012年期间,浙江省区域平均PM_(2.5)浓度整体变化呈现出先增加、后下降的特征,拐点出现在2007~2009年前后,与华东区域大背景的变化趋势一致.1998~2000年华东南部与山东东部的年平均PM_(2.5)浓度基本保持在50μg·m~(-3)以下,其余地区大多在50~75μg·m~(-3)左右,华东地区和浙江省PM_(2.5)浓度超过35μg·m~(-3)的地区分别占到51.8%和21.1%.1998~2009年PM_(2.5)浓度上升趋势非常明显,华东地区的平均变化趋势为2.58μg·(m~3·a)~(-1),浙江省的上升趋势较华东区域慢,为1.43μg·(m~3·a)~(-1).2007~2009年PM_(2.5)浓度达到最大,华东和浙江省超过35μg·m~(-3)的地区分别占到82.1%和65.9%.此后PM_(2.5)浓度呈现出下降的变化趋势,华东地区和浙江省的平均变化趋势分别为-1.75μg·(m~3·a)~(-1)和-1.58μg·(m~3·a)~(-1),PM_(2.5)浓度超过35μg·m~(-3)的地区比例均有所下降,说明政府颁布的一系列节能减排方针政策可能对华东地区的空气质量改善起到了一定的成效.2010年浙江地区PM_(2.5)暴露水平超过35μg·m~(-3)的人口比例和GDP比例分别为74.0%和70.8%,其中38.1%的人口生活的环境和38.9%的GDP产生的环境PM_(2.5)浓度年平均值在50μg·m~(-3)以上.  相似文献   

9.
2016年在北京市区春、夏、秋、冬四季分别进行1个月的PM_(2.5)样品采集,探讨了北京市霾与非霾期间PM_(2.5)质量浓度的季节变化、逐日变化特征,对影响其浓度的气象因素进行了分析,并使用MATLAB软件对数据进行可视化表达。结果表明,2016年北京市PM_(2.5)年均浓度为119.8μg/m~3,占采样天数37.6%的霾天PM_(2.5)质量浓度对其贡献率为72.5%;采样期间夏季与冬季的霾天数较多,呈明显的双峰特征。霾天与非霾天PM_(2.5)质量浓度存在显著差异,霾天PM_(2.5)平均浓度(138.3~263.8μg/m~3)是非霾天PM_(2.5)均值(65.4~86.4μg/m~3)的1.9~3.1倍。各季节温度对霾天的影响较小,春、冬季霾天的相对湿度(40%~70%,65%~95%)高于相应平均值(31.7%,55.0%),PM_(2.5)质量浓度与其显著正相关(R0.68),表明该季节相对湿度对霾天的形成有比较明显的影响。另外,南风和西南风且风速1.2 m/s,大气压较高时易形成霾天。  相似文献   

10.
南洋  张倩倩  张碧辉 《环境科学》2020,41(2):499-509
为探究中国典型区域地表PM_(2.5)浓度长期时空变化及其影响因素,运用广义可加模型(GAM)对1998~2016年均0. 01°×0. 01°地表PM_(2.5)浓度网格化数据进行分析.典型区域多年平均PM_(2.5)浓度从高到低:华东华中地区(40. 5μg·m~(-3))华北地区(37. 4μg·m~(-3))华南地区(27. 8μg·m~(-3))东北地区(23. 7μg·m~(-3))四川盆地(22. 4μg·m~(-3)).东北地区PM_(2.5)年际变化呈现明显上升趋势;其他地区1998~2007年呈上升趋势,2008~2016年出现下降趋势.在典型区域PM_(2.5)浓度空间分布上,PM_(2.5)浓度分布呈现显著的空间差异,多年来各区域PM_(2.5)浓度高值分布相对稳定. PM_(2.5)浓度变化的单因素GAM模型中,所有影响因素均通过显著性检验,典型区域中对PM_(2.5)浓度变化影响解释率较高的各个影响因素顺序有所不同. PM_(2.5)浓度变化的多因素GAM模型中,均呈现非线性关系,典型区域方差解释率为87. 5%~92%(平均89. 0%),模型拟合度较高,对其变化有显著性影响.典型区域YEAR和LON-LAT均对PM_(2.5)浓度变化影响最为显著.除此之外,气象因子对PM_(2.5)的影响大小在各个区域存在不同.东北地区影响PM_(2.5)最重要的3个气象因子排序为:tp v_(10) ssr;华北地区为:temp tp msl;华东华中地区为:temp tp ssr;华南地区为:temp RH blh;四川盆地为:tp temp u_(10).结果表明,运用GAM模型,能够定量分析区域PM_(2.5)浓度长期变化的影响因素,对PM_(2.5)污染评估具有重要意义.  相似文献   

11.
不同酸性气体及相对湿度对海盐氯损耗过程的影响   总被引:2,自引:1,他引:1  
使用在广州南村站、深圳竹子林站及西涌站的MARGA仪器实测资料,分析了不同酸性气体及相对湿度对海盐氯损耗过程的影响.在分析深圳竹子林站、西涌站的海盐氯损耗中发现,竹子林站氯损耗平均为48.0%,西涌站海盐氯损耗平均为56.9%,氯损耗的峰值一般出现于下午14时.西涌站、竹子林站和广州南村站酸性气体和碱性气体均以HNO2、SO2、NH3为主,但各站点的比例分布不同,西涌站以HNO2最多(42%),SO2(32%)次之;竹子林站以NH3与SO2为主,百分比分别为36%和34%;广州南村站以SO2为主(58%),NH3次之(20%);而三站HNO3所占比例很小,均为7%.另外,分析了HCl的来源,主要关注了海盐粒子中的NaCl与HNO3反应、NH4Cl的挥发及H2SO4与NaCl的反应这3个来源,发现西涌站与竹子林站HCl和HNO3之间的线性关系较好(R2西涌=0.689,R2竹子林=0.594),说明西涌站与竹子林站的HCl主要来源于NaCl与HNO3反应过程中Cl被HNO3置换而成;而广州南村站二者线性关系较差(R2南村=0.295),说明还存在其他的损耗机制.在研究相对湿度对氯损耗的影响中发现,相对湿度低时氯损耗更容易发生.  相似文献   

12.
近年,臭氧(O3)正逐渐取代PM2.5成为中国首要大气污染物.因此,研究O3的时空分布特征及污染成因对于空气污染治理与管控具有重要价值.重庆复杂的地形造成该地区O3的污染成因具有很大的不确定性.采用2013—2020年重庆市主城区环境监测站O3、PM2.5、NO2逐小时监测数据和国家气象站观测资料,分析了O3的时空分布特征,并探究其与复杂地形、前体物、气象要素及PM2.5的关系.结果表明:①2013—2020年臭氧日最大8 h平均浓度的第90百分位值年际变化总体呈现先减后增的趋势.发生臭氧污染月份数量增加,臭氧污染开始月份从6月提前到4月.②2019年重庆臭氧中度和重度(中重度)污染天数最多,为6 d.2013—2015年中重度污染频率由1.09%减少至0.27%,到2019年增加至1.64%,2020年降至0.81%.③重庆中重度污染期间,O3的空间分布受山谷风环流与城市热岛效应的共同影响.白天城区站点O3浓度高于山区站点O3浓度,夜间山区站点O3浓度高于城区站点O3浓度.④城区站点的O3与NO2浓度呈现显著负相关,山区站点O3与NO2浓度的相关系数为负值,但相关性不显著.⑤重庆大部分O3中重度污染由局地污染主导,在非高温或者高湿的情况下同样可能发生臭氧中重度污染.臭氧中重度污染发生时,风向多为西-北风.O3浓度与气温和风速呈显著正相关,与相对湿度呈负相关.⑥重庆O3-PM2.5相关性城区与山区表现不一致,城区南坪站O3-PM2.5在暖季呈正相关关系,冷季相关性有正有负,山区缙云山站O3-PM2.5在暖季和冷季都呈正相关关系.  相似文献   

13.
基于臭氧检测仪(Ozone Monitoring Instrument,OMI)的遥感数据,利用ArcGIS10.2对2005—2020年中三角地区(湖北省、湖南省、江西省)紫外吸收性气溶胶指数(Ultraviolet Aerosol Index,UVAI)的时空变化进行分析,结合气溶胶颗粒物(PM2.5、PM10)和气态污染物(CO)数据,利用HYSPLIT(Hybrid Single-Particle Lagrangian Integrated Trajectory model)方法研究主要污染城市气溶胶颗粒物的来源与传输路径,通过核密度估计法、相关性分析、聚类分析,研究其影响因素.结果表明:(1)在空间分布上,中三角地区吸收性气溶胶的高值区集中在襄阳市北部、孝感市东部、武汉市西部;在时间分布上,2008年UVAI最低,2014年达到最大值;季节分布具有明显变化,2005—2020年吸收性气溶胶指数季均值为冬季>春季>秋季>夏季.(2)UVAI与人口增长率、第二产业产值占总产值的比重呈正相关性,与节能环保预算支出呈显著负...  相似文献   

14.
为了探讨上海市霾期间PM2.5、PM10污染与呼吸科、儿呼吸科日均门诊人数的相关性;对上海市6所大中型医院2009-01-01~2009-12-31期间医院呼吸科、儿呼吸科日门诊人数及霾天PM2.5、PM10的浓度数据运用广义相加泊松回归模型进行统计分析,并进行当日和滞后日的危险度评估.结果发现,在霾发生当日,PM10...  相似文献   

15.
The present article studies the effect of CeO2 and Al2O3 on the activity of Pd/Co3O4/cordierite catalyst in conversion of NO, CO, CnHm. The catalysts were characterized by temperature programmed reduction with hydrogen, X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy. It is shown that the effect of CeO2 on the properties of Pd/Co3O4/cordierite catalyst depends on preparation method. The catalyst obtained by co-deposition of cerium and cobalt oxides has higher activity in CO oxidation (CO + O2 and CO + NO) and total hexane oxidation (C6H14 + O2). Such phenomenon is probably caused by more than stoichiometric amount of formed oxygen vacancies, an increase in both mobility of surface oxygen and dispersity of components in the catalytic composition. It is demonstrated that CeO2 addition promotes the SO2 resistance of Pd/Co3O4/cordierite. The second support decreases the activity of Pd/Co3O4/cordierite catalyst in the reactions of CO and C6H14 with oxygen because of CoAl2O4 formation.  相似文献   

16.
罗佳宸  毛瑢  李思悦 《环境科学》2018,39(7):3134-3141
于2015年10月对三峡库区主要河流表层水体中的溶解性碳组成进行了测定,结合水文地质条件和水化学关键指标,对河流表层水体二氧化碳分压(p CO_2)的空间变化及影响因素进行了研究,并利用模型法分析了水-气界面CO_2通量特征.结果表明,三峡库区主要河流秋季pCO_2介于18.75~296.31 Pa之间,均值为(141.06±77.51)Pa;河流CO_2脱气通量平均值为(101.1±78.0)mmol·(m2·d)-1,其中86%的采样点位表现为大气CO_2源的特征.p CO_2与DO和pH显著负相关,与HCO-3显著正相关.由于山区河流流速快和水力停留时间短等特征,河流有机碳原位呼吸是导致p CO_2与DO和pH很强的负相关关系的主要原因.研究结果为准确估算三峡库区河流CO_2逸出量提供了重要的数据支撑.  相似文献   

17.
两湖盆地位于华中地区,横跨湖北、湖南两省,海拔高度低于200 m.襄阳为华中地区两湖盆地的“风口”,PM2.5污染严重.为认识襄阳地区大气环境变化特征,对其2016年1月的大气污染过程进行研究分析,研究气象条件对PM2.5浓度的影响.结果表明:冷空气南下入侵对两湖盆地襄阳地区产生PM2.5重污染有重要驱动作用.强风是驱动大气污染物区域传输的主要因素,受东亚冬季风影响,上风方的PM2.5跨区域传输到下风方两湖盆地,导致襄阳地区的PM2.5污染水平上升.基于FLEXPART-WRF模式,定量估算了2016年1月襄阳地区4次PM2.5重污染过程的区域传输贡献,估算发现4次大气重污染过程的外源贡献率均高于50.0%,最高达80.3%,体现了大气污染物区域传输对两湖盆地大气重污染事件的主导作用.两湖盆地襄阳地区PM2.5污染主要潜在源来自东北路径,以华北平原为主.  相似文献   

18.
本研究在河北工程大学监测站点开展了大气中56种VOCs、NOx以及气象参数的长期在线监测,结合2013—2019年国控站的在线监测数据,对邯郸市PM2.5-O3复合污染特征进行分析.结果表明,邯郸市2013—2019年复合污染天数波动较大,近几年呈现增加趋势,且集中在每年的春夏季.2013—2017年复合污染天数峰值均出现在6月,2018年和2019年出现在3月和4月.气象因素分析结果表明,温度、湿度和气压对邯郸市复合污染影响较明显,当温度为21.0~29.0℃、湿度较高、气压偏低的条件下,更容易发生复合污染,而风速对邯郸市复合污染影响较小.对PM2.5与O3相互作用分析发现,冬季高浓度PM2.5对O3有抑制作用,夏季PM2.5浓度不超标时,O3浓度随其升高而上升,PM2.5浓度超标后变化趋势相反,当PM2.5浓度大于125 μg·m-3时不再出现PM2.5-O3复合污染.虽然近年来PM2.5、SO2和NO2浓度下降,但二次转化率依然较高甚至有加强趋势.利用VOCs/NOx值分析邯郸市O3生成敏感性,结果显示邯郸市春冬季属于VOCs控制到NOx控制的过渡区,夏秋季属于NOx控制区,且复合污染日VOCs/NOx值(6.3)最小,清洁日(9.3)最大.复合污染时NO3-和OC浓度较高,OC/EC值与其他污染日相比最大,说明复合污染时二次污染严重,有效治理PM2.5-O3复合污染必须减排能同时形成O3和二次有机气溶胶的高活性有机物.  相似文献   

19.
许鑫  蒋建国  陈懋喆  罗曼  张妍  杜雪娟 《环境科学》2007,28(7):1644-1648
对南方某城市生活垃圾焚烧厂新鲜焚烧飞灰对CO2的吸收及其碳酸化的过程进行了研究,实验从水分添加量、CO2的分压等因素,考察了飞灰中重金属Pb的稳定化效果,并利用X射线衍射实验(XRD)、扫描电镜实验(SEM)对反应机理进行了分析.结果表明,不添加水分时,焚烧飞灰对CO2的吸收效果较差;当水分添加量大于10%时,焚烧飞灰对CO2的吸收效果较好.焚烧飞灰对纯CO2的吸收效果较好,空气中的CO2含量较低,在反应1 d后吸收效果不是十分明显.XRD实验结果表明,CO2的吸收会使焚烧飞灰中大量的Ca(OH)2与CO2反应转化为CaCO3,从而降低焚烧飞灰的碱性;部分重金属的氧化物会被碳酸化成生相应的碳酸盐.SEM实验结果表明,经过碳酸化处理后的飞灰颗粒表面生成了片状和圆柱状的晶体物质.  相似文献   

20.
京津冀区域生产和消费CO2排放的时空特点分析   总被引:1,自引:0,他引:1  
汪浩  陈操操  潘涛  刘春兰  陈龙  孙莉 《环境科学》2014,35(9):3619-3631
区分消费和生产二氧化碳排放是对开放的经济区域进行排放责任划分的基础,日渐受到政策制定者的关注.利用经济投入产出-生命周期分析模型,对京津冀区域1997年、2002年和2007年的消费和生产二氧化碳排放时空特征及二氧化碳排放平衡进行分析.结果表明,京津冀区域消费和生产二氧化碳排放呈约4%的年均增长;贸易隐含二氧化碳排放比例为30%~83%,并以国内贸易隐含二氧化碳排放为主;河北的消费和生产二氧化碳排放占区域主导,增速和二氧化碳排放强度高于北京和天津;京津冀区域为二氧化碳排放净流入区域,存在部分排放责任转移;京津为二氧化碳排放净转入地区,冀为二氧化碳排放净转出地区;京津冀三地二氧化碳排放关键部门分布集中且相似度较高,可以考虑区域联合控制.其中,电力、蒸汽、热水生产和供应业和金属冶炼及压延加工业对二氧化碳排放的依赖性最大,承担较大的其他部门的二氧化碳排放责任.投入产出分析解析了地区生产和消费二氧化碳排放情况,有利于区域减排的精细化管理和制定相应对策,并促进区域减排合作.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号