首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this work is to assess the behaviour of a moving bed reactor, based on a screw transporter design, in waste tyre pyrolysis under several experimental conditions. Waste tyre represents a significant problem in developed countries and it is necessary to develop new technology that could easily process big amounts of this potentially raw material. In this work, the influence of the main pyrolysis process variables (temperature, solid residence time, mass flow rate and inert gas flow) has been studied by a thorough analysis of product yields and properties. It has been found that regardless the process operational parameters, a total waste tyre devolatilisation is achieved, producing a pyrolytic carbon black with a volatile matter content under 5 wt.%. In addition, it has been proven that, in the range studied, the most influencing process variables are temperature and solid mass flow rate, mainly because both variables modify the gas residence time inside the reactor. In addition, it has been found that the modification of these variables affects to the chemical properties of the products. This fact is mainly associated to the different cracking reaction of the primary pyrolysis products.  相似文献   

2.
In this study, the combustion and pyrolysis processes of three sewage sludge were investigated. The sewage sludge came from three wastewater treatment plants.Proximate and ultimate analyses were performed. The thermal behaviour of studied sewage sludge was investigated by thermogravimetric analysis with mass spectrometry (TGA-MS). The samples were heated from ambient temperature to 800 °C at a constant rate 10 °C/min in air (combustion process) and argon flows (pyrolysis process). The thermal profiles presented in form of TG/DTG curves were comparable for studied sludges. All TG/DTG curves were divided into three stages. The main decomposition of sewage sludge during the combustion process took place in the range 180–580 °C with c.a. 70% mass loss. The pyrolysis process occurred in lower temperature but with less mass loss. The evolved gaseous products (H2, CH4, CO2, H2O) from the decomposition of sewage sludge were identified on-line.  相似文献   

3.
In this research, a two-step process consisting of vacuum pyrolysis and vacuum centrifugal separation was employed to treat waste printed circuit boards (WPCBs). Firstly, WPCBs were pyrolysed under vacuum condition at 600 °C for 30 min in a lab-scale reactor. Then, the obtained pyrolysis residue was heated under vacuum until the solder was melted, and then the molten solder was separated from the pyrolysis residue by the centrifugal force. The results of vacuum pyrolysis showed that the type-A of WPCBs (the base plates of which was made from cellulose paper reinforced phenolic resin) pyrolysed to form an average of 67.97 wt.% residue, 27.73 wt.% oil, and 4.30 wt.% gas; and pyrolysis of the type-B of WPCBs (the base plates of which was made from glass fiber reinforced epoxy resin) led to an average mass balance of 72.20 wt.% residue, 21.45 wt.% oil, and 6.35 wt.% gas. The results of vacuum centrifugal separation showed that the separation of solder was complete when the pyrolysis residue was heated at 400 °C, and the rotating drum was rotated at 1200 rpm for 10 min. The pyrolysis oil and gas can be used as fuel or chemical feedstock after treatment. The pyrolysis residue after solder separation contained various metals, glass fibers and other inorganic materials, which could be recycled for further processing. The recovered solder can be reused directly and it can also be a good resource of lead and tin for refining.  相似文献   

4.
This work was aimed at improving the pyrolysis oil quality of waste rubber by adding larch sawdust. Using a 1 kg/h stainless pyrolysis reactor, the contents of sawdust in rubber were gradually increased from 0%, 50%, 100% and 200% (wt%) during the pyrolysis process. Using a thermo-gravimetric (TG) analyzer coupled with Fourier transform infrared (FTIR) analysis of evolving products (TG–FTIR), the weight loss characteristics of the heat under different mixtures of sawdust/rubber were observed. Using the pyrolysis–gas chromatography (GC)–mass spectrometry (Py–GC/MS), the vapors from the pyrolysis processes were collected and the compositions of the vapors were examined. During the pyrolysis process, the recovery of the pyrolysis gas and its composition were measured in-situ at a reaction temperature of 450 °C and a retaining time of 1.2 s. The results indicated that the efficiency of pyrolysis was increased and the residual carbon was reduced as the percentage of sawdust increased. The adding of sawdust significantly improved the pyrolysis oil quality by reducing the polycyclic aromatic hydrocarbons (PAHs) and nitrogen and sulfur compounds contents, resulting in an improvement in the combustion efficiency of the pyrolysis oil.  相似文献   

5.
The aim of this work is the evaluation, on a pilot scale, of scrap tyre pyrolysis process performance and the characteristics of the products under different process parameters, such as temperature, residence time, pressure, etc. In this frame, a series of tests were carried out at varying process temperatures between 550 and 680 degrees C, other parameters being equal. Pyrolysis plant process data are collected by an acquisition system; scrap tyre samples used for the treatment, solid and liquid by-products and produced syngas were analysed through both on-line monitoring (for gas) and laboratory analyses. Results show that process temperature, in the explored range, does not seem to seriously influence the volatilisation reaction yield, at least from a quantitative point of view, while it observably influences the distribution of the volatile fraction (liquid and gas) and by-products characteristics.  相似文献   

6.
To obtain detailed information on the pyrolysis characteristics, a thermogravimetric study on the pyrolysis of 14 typical medical waste compositions was carried out in thermogravimetric analysis (TGA) equipment using dynamic techniques in a stream of N(2). An index representing pyrolysis reactivity of waste was presented. Kinetic parameters were obtained by Coats-Redfern method and used to model the TG curve. The results showed that: (a) Plastic, protein, cellulosic material, synthetic fibre, and rubber entered pyrolysis process in succession. (b) There was one decomposition stage in the pyrolysis of one-off medical glove, operating glove, cellulosic waste, absorbable catgut suture and adhesive plaster, while other components had two obvious weight loss stages. (c) The obtained apparent activation energy for second stage pyrolysis was comparably higher than that for first stage. (d) Each stage was controlled by only one kinetic mechanism, in which kinetic parameters were constant. (e) The degradation kinetics of medical waste may be affected by special physical and chemical treatment in the product manufacturing process. (f) Among 13 waste samples, the pyrolysis index of cellulosic matter was the highest, which indicated cellulosic matter had strong pyrolysis reactivity. (g) With increasing heating rate, TG curve and DTG peak shifted to high temperatures and main reaction interval of the sample became longer.  相似文献   

7.
Dynamic mechanical properties including temperature effect, stress softening, and Payne effect are studied on the elastomer composites filled with soy protein or carbon black. The comparison of protein composite with well-known carbon black composites provides further insight into the protein composites. The elastomers filled with soy protein aggregates give substantial reinforcement effect when compared with the unfilled elastomers. Approximately 400 times increase in shear elastic modulus was observed when 40% by weight of protein is incorporated into the elastomers. The sample films were cast from the particle dispersion of soy protein isolate and carboxylated styrene–butadiene latex. At the higher temperatures, the shear elastic modulus of soy protein-filled composites does not decrease as much as that of the carbon black-filled composites. The behavior of elastic and loss modulus under the oscillatory strain of different magnitude is similar to that of carbon black reinforced styrene–butadiene rubber. However, carbon black composites show a better recovery behavior after eight cycles of dynamic strain. The reduction of shear elastic modulus with dynamic strain (Payne effect) was compared with Kraus model and the fitting parameter related to the aggregate structure of the soy protein. A reasonable agreement between the theoretical model and experiment was obtained, indicating the Payne effect of the protein-related network structure in the elastomers could also be described by the kinetic agglomeration de-agglomeration mechanism.  相似文献   

8.
Approximately 1.5 billion tyres are produced each year which will eventually enter the waste stream representing a major potential waste and environmental problem. However, there is growing interest in pyrolysis as a technology to treat tyres to produce valuable oil, char and gas products. The most common reactors used are fixed-bed (batch), screw kiln, rotary kiln, vacuum and fluidised-bed. The key influence on the product yield, and gas and oil composition, is the type of reactor used which in turn determines the temperature and heating rate. Tyre pyrolysis oil is chemically very complex containing aliphatic, aromatic, hetero-atom and polar fractions. The fuel characteristics of the tyre oil shows that it is similar to a gas oil or light fuel oil and has been successfully combusted in test furnaces and engines. The main gases produced from the pyrolysis of waste tyres are H2, C1–C4 hydrocarbons, CO2, CO and H2S. Upgrading tyre pyrolysis products to high value products has concentrated on char upgrading to higher quality carbon black and to activated carbon. The use of catalysts to upgrade the oil to a aromatic-rich chemical feedstock or the production of hydrogen from waste tyres has also been reported. Examples of commercial and semi-commercial scale tyre pyrolysis systems show that small scale batch reactors and continuous rotary kiln reactors have been developed to commercial scale.  相似文献   

9.
Cellulose/polyethylene (CPE) mixture 3:1, w/w with and without three clay catalysts (K10 – montmorillonite K10, KSF – montmorillonite KSF, B – Bentonite) addition were subjected to pyrolysis at temperatures 400, 450 and 500 °C with heating rate of 100 °C/s to produce bio-oil with high yield. The pyrolytic oil yield was in the range of 41.3–79.5 wt% depending on the temperature, the type and the amount of catalyst. The non-catalytic fast pyrolysis at 500 °C gives the highest yield of bio-oil (79.5 wt%). The higher temperature of catalytic pyrolysis of cellulose/polyethylene mixture the higher yield of bio-oil is. Contrarily, increasing amount of montmorillonite results in significant, almost linear decrease in bio-oil yield followed by a significant increase of gas yield. The addition of clay catalysts to CPE mixture has a various influence on the distribution of bio-oil components. The addition of montmorillonite K10 to cellulose/polyethylene mixture promotes the deepest conversion of polyethylene and cellulose. Additionally, more saturated than unsaturated hydrocarbons are present in resultant bio-oils. The proportion of liquid hydrocarbons is the highest when a montmorillonite K10 is acting as a catalyst.  相似文献   

10.
A study was made of the pyrolysis of tyre particles, with the aim of determining the possibilities of using the products resulting from the process as fuel. Three final temperatures were used, determined from thermogravimetric data. The design of the experiment was a horizontal oven containing a reactor into which particles of the original tyre were placed. After the process, a solid fraction (char) remained in the reactor, while the gases generated went through a set of scrubbers where most of the condensable fraction (oils) was retained. Finally, once free of this fraction, the gases were collected in glass ampoules. Solid and liquids fractions were subjected to thermogravimetric analyses in order to study their combustibility. The gas fraction was analysed by means of gas chromatography to establish the content of CO, CO2, H2 and hydrocarbons present in the samples (mainly components of gases produced in the pyrolysis process). A special study was made of the sulphur and chlorine content of all the fractions, as the presence of these elements could be problematic if the products are used as fuel. Tyre pyrolysis engenders a solid carbon residue that concentrates sulphur and chorine, with a relatively high calorific value, although not so high as that of the original tyre. The liquid fraction produced by the process has a high calorific value, which rises with the final temperature, up to 40 MJ/kg. The chlorine content of this fraction is negligible. Over 95% of the gas fraction, regardless of the final temperature, is composed of hydrocarbons of a low molecular weight and hydrogen, this fraction also appearing to be free of chlorine.  相似文献   

11.
The use of tyre pyrolysis oil in diesel engines   总被引:1,自引:0,他引:1  
Tests have been carried out to evaluate the performance, emission, and combustion characteristics of a single cylinder direct injection diesel engine fueled with 10%, 30%, and 50% of tyre pyrolysis oil (TPO) blended with diesel fuel (DF). The TPO was derived from waste automobile tyres through vacuum pyrolysis. The combustion parameters such as heat release rate, cylinder peak pressure, and maximum rate of pressure rise also analysed. Results showed that the brake thermal efficiency of the engine fueled with TPO-DF blends increased with an increase in blend concentration and reduction of DF concentration. NO(x), HC, CO, and smoke emissions were found to be higher at higher loads due to the high aromatic content and longer ignition delay. The cylinder peak pressure increased from 71 bars to 74 bars. The ignition delays were longer than with DF. It is concluded that it is possible to use tyre pyrolysis oil in diesel engines as an alternate fuel in the future.  相似文献   

12.
In order to reduce secondary pollution during the incineration of composite refuse derived fuel (CRDF), the combustion features and the emission behavior of chlorine in CRDF containing coal were analyzed. The former was analyzed using thermo-gravimetric and the latter by gas chromatography–mass spectrometry. The release rate of inorganic chlorine during combustion reached 90 mass% at temperature between 773.15 and 873.15 K. On the other hand, approximately 84 mass% release rates was resulting from pyrolysis at 723.15 K. When temperature reached above 1073.15 K, it was noticed that higher concentration of organic chlorine in different organic compounds were produced in the processing of pyrolysis compared with those released from the combustion processing. From the thermo-gravimetric analysis using a self-designed system, three distinct phases were detected in the thermal process of CRDF. The first phase occurred at temperature between 473 and 573 K and its mass loss was about 38.50%. The second phase between temperature regions of 673–773 K with a mass loss of 20.35%. The third phase was observed at the temperature between 873 and 1073 K with 22.25% mass loss.  相似文献   

13.
A new method to simplify calculation the kinetics model is applied to sewage sludge pyrolysis based on the assumption that volatile run out as soon as it formed and during temperature arising process in this study. Difference method widely used to solve math problems is conducted to calculate kinetics parameters. Pyrolysis experiments are carried out at heating rates of 10, 15, 20, and 50 °C/min. All the TG curves are divided into three parts which are beginning decomposition temperature range, main decomposition temperature range, and final decomposition temperature range. The second one is employed to determine the parameters for more than 70% of the total mass loss occurs in this range. According to the developed method, the react order, reaction energy and pre-exponential factor are obtained, which are in the range of 3.9–4.1, 82.3–109.2 kJ/mol and 7.7 × 106–2.8 × 109/min, respectively, which are in the range of that reported previously. As a comparison experimental data with calculated data, the well fitting results indicate that this method is appropriate for simulating sludge pyrolysis kinetics.  相似文献   

14.
The present study describes the preparation and characterization of leather particulate-polymer composites (LPPCs) from solid wastes (chrome shavings/buffing dusts) generated during leather manufacturing processes. Nitrile butadiene rubber (NBR), Styrene butadiene rubber (SBR) and neoprene rubber were the polymers used at different concentrations. Pretreatment of leather wastes with suitable alkaline reagents enhances the binding efficiency with polymers chosen and the high interfacial bonding prevailing reduces the chromium leaching. Mechanical properties of the resultant polymer composites showed good machinable and nailing properties. Addition of poly vinyl chloride (PVC) further enhances the above said properties. Scanning electron micrograph analyses implies complete blending of components in LPPCs. The composites exhibit good machinable and nailing properties and are easily transformed to shoe heel, shoe sole and shoe last.  相似文献   

15.
Paper sludge is a waste product from the paper and pulp manufacturing industry that is generally disposed of in landfills. Pyrolysis of paper sludge can potentially provide an option for managing this waste by thermal conversion to higher calorific value fuels, bio-gas, bio-oils and charcoal. This work investigates the properties of paper sludge during pyrolysis and energy required to perform thermal conversion. The products of paper sludge pyrolysis were also investigated to determine their properties and potential energy value. The dominant volatile species of paper sludge pyrolysis at 10 °C/min were found to be CO and CO2, contributing to almost 25% of the paper sludge dry weight loss at 500 °C. The hydrocarbons (CH4, C2H4, C2H6) and hydrogen contributed to only 1% of the total weight loss. The bio-oils collected at 500 °C were primarily comprised of organic acids with the major contribution being linoleic acid, 2,4-decadienal acid and oleic acid. The high acidic content indicates that in order to convert the paper sludge bio-oil to bio-diesel or petrochemicals, further upgrading would be necessary. The charcoal produced at 500 °C had a calorific value of 13.3 MJ/kg.  相似文献   

16.
The pyrolysis of sawdust and polyethylene in TG and U-shape tube reactor   总被引:1,自引:0,他引:1  
The co-pyrolysis of sawdust and polyethylene was carried out in a TG-DTG system and a U-shape tube reactor. This research was focused on the interaction between sawdust and polyethylene during the pyrolysis process. The results showed that the interaction between the sawdust particles and polyethylene particles could be ignored during the devolatile process, but there was interaction among the volatile components in the co-pyrolysis process.  相似文献   

17.
Thermogravimetric (TG) analysis and infrared spectroscopy were used to analyze the pyrolysis characteristics of printed circuit board scraps (PCBs), coal powder and their mixtures under nitrogen atmosphere. The experimental results show that there is a large difference between waste PCBs and coal powder in pyrolysis processing. The pyrolysis properties of the mixing samples are the result of interaction of the PCBs and coal powder, which is influenced by the content of mixture. The degree of pyrolysis and pyrolysis properties of the mixture are much better than that of the single component. The TG and the differential thermogravimetric (DTG) curves of the PCBs mixed with coal powder move towards the high-temperature zone with increasing amount of coal powder and subsequently the DTG peak also becomes wider. The Coats–Redfern integral method was used to determine the kinetic parameters of pyrolysis reaction mechanism with the different proportion of mixture. The gas of pyrolysis mainly composes of CO2, CO, H2O and some hydrocarbon. The bromide characteristic absorption peak has been detected obviously in the pyrolysis gas of PCBs. On the contrary, the absorption peak of the bromide is not obvious in pyrolysis gas of the PCBs samples adding 40% coal powder.  相似文献   

18.
One kind of Chinese waste tire's sample was pyrolyzed under an inert atmosphere by using thermo-gravimetric apparatus (TGA) and differential thermal analysis (DTA). Different pyrolysis temperature ranges were determined according to the reaction transition temperature obtained by TGA and DTA. Then, at each temperature range, the pyrolysis gaseous products were analyzed by gas chromatography (GC). The influence of the temperature range on the relative yields of the major decomposition products is studied, and a mechanism for the formation of the main components was also investigated. The results indicate that pyrolysis of waste rubber follows the radical mechanism, and the major products are not seriously affected by increasing the temperature from room temperature to 420 degrees C and from 421 to 600 degrees C, but the degradation of blend rubber is different for each of the compositional elastomer.  相似文献   

19.
The objective of this work is the study of pyrolysis as a feedstock recycling process, for valorizing the rejected streams that come from industrial plants, where packing and packaging wastes are classified and separated for their subsequent mechanical recycling. Four real samples collected from an industrial plant at four different times of the year, have been pyrolysed under nitrogen in a 3.5 dm3 autoclave at 500 °C for 30 min. Pyrolysis liquids are a complex mixture of organic compounds containing valuable chemicals as styrene, ethyl-benzene, toluene, etc. Pyrolysis solids are composed of the inorganic material contained in the raw materials, as well as of some char formed in the pyrolysis process, and pyrolysis gases are mainly composed of hydrocarbons together with some CO and CO2, and have very high gross calorific values (GCV).It has been proved by the authors that the composition of the raw material (paper, film, and metals contents) plays a significant role in the characteristics of pyrolysis products. High paper content yields water in the pyrolysis liquids, and CO and CO2 in the gases, high PE film content gives rise to high viscosity liquids, and high metals content yields more aromatics in the liquid products, which may be attributed to the metals catalytic effect.  相似文献   

20.
Waste combustion on a grate with energy recovery is an important pillar of municipal solid waste (MSW) management in the Netherlands. In MSW incinerators fresh waste stacked on a grate enters the combustion chamber, heats up by radiation from the flame above the layer and ignition occurs. Typically, the reaction zone starts at the top of the waste layer and propagates downwards, producing heat for drying and devolatilization of the fresh waste below it until the ignition front reaches the grate. The control of this process is mainly based on empiricism.MSW is a highly inhomogeneous fuel with continuous fluctuating moisture content, heating value and chemical composition. The resulting process fluctuations may cause process control difficulties, fouling and corrosion issues, extra maintenance, and unplanned stops. In the new concept the fuel layer is ignited by means of preheated air (T > 220 °C) from below without any external ignition source. As a result a combustion front will be formed close to the grate and will propagate upwards. That is why this approach is denoted by upward combustion.Experimental research has been carried out in a batch reactor with height of 4.55 m, an inner diameter of 200 mm and a fuel layer height up to 1 m. Due to a high quality two-layer insulation adiabatic conditions can be assumed. The primary air can be preheated up to 350 °C, and the secondary air is distributed via nozzles above the waste layer. During the experiments, temperatures along the height of the reactor, gas composition and total weight decrease are continuously monitored. The influence of the primary air speed, fuel moisture and inert content on the combustion characteristics (ignition rate, combustion rate, ignition front speed and temperature of the reaction zone) is evaluated.The upward combustion concept decouples the drying, devolatilization and burnout phase. In this way the moisture and inert content of the waste have almost no influence on the combustion process. In this paper an experimental comparison between conventional and reversed combustion is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号