共查询到20条相似文献,搜索用时 26 毫秒
1.
Lei Wang Yongtao Lv Xudong Wang Yongzhe Yang Xiaorong Bai 《Frontiers of Environmental Science & Engineering in China》2011,5(4):633-638
To investigate the nitrogen transport and conversion inside activated sludge flocs, micro-profiles of O2, NH4+, NO2−, NO3−, and pH were measured under different operating conditions. The flocs were obtained from a laboratory-scale sequencing batch
reactor. Nitrification, as observed from interfacial ammonium and nitrate fluxes, was higher at pH 8.5, than at pH 6.5 and
7.5. At pH 8.5, heterotrophic bacteria used less oxygen than nitrifying bacteria, whereas at lower pH heterotrophic activity
dominated. When the ratio of C to N was decreased from 20 to 10, the ammonium uptake increased. When dissolved oxygen (DO)
concentration in the bulk liquid was decreased from 4 to 2 mg·L−1, nitrification decreased, and only 25% of the DO influx into the flocs was used for nitrification. This study indicated that
nitrifying bacteria became more competitive at a higher DO concentration, a higher pH value (approximately 8.5) and a lower
C/N. 相似文献
2.
Some kinds of amine groups can be introduced to the glassy carbon surface by the electrode oxidation of the carbon electrode surface in ammonium carbamate solution, and this amine groups modified electrode is named as an aminated glassy carbon electrode. The existences of not only primary amine but also secondary and tertially amines were confirmed by X ray photoelectron spectroscopy. The applications of the aminated carbon material for the electrocatalytic reductions of oxygen, hydrogen peroxide, and organic compounds such as quinones were carried out, and the effects of amination on the formation of electrocatalytic sites for many species were revealed. The electrocatalyzed cyclic voltammograms of metal ions and metal chelate compounds obtained by aminated glassy carbon electrodes are also discussed. Moreover, we intend to describe that the aminated carbon electrode can exhibit the large reduction waves of inorganic oxoacids such as N02? or bromide ion. The introduced functional groups containing nitrogen atom can change the distribution of the electron densities of the graphite carbon surface, and this specific electron distribution environment may generate the various electrocatalytic activities. 相似文献
3.
As one of the most important water pollutants, ammonia nitrogen emissions have increased year by year, which has attracted people's attention. Catalytic ozonation technology, which involves production of ·OH radical with strong oxidation ability, is widely used in the treatment of organic-containing wastewater. In this work, MgO-Co_3O_4 composite metal oxide catalysts prepared with different fabrication conditions have been systematically evaluated and compared in the catalytic ozonation of ammonia(50 mg/L) in water. In terms of high catalytic activity in ammonia decomposition and high selectivity for gaseous nitrogen, the catalyst with MgO-Co_3O_4 molar ratio 8:2, calcined at 500°C for 3 hr, was the best one among the catalysts we tested, with an ammonia nitrogen removal rate of 85.2% and gaseous nitrogen selectivity of44.8%. In addition, the reaction mechanism of ozonation oxidative decomposition of ammonia nitrogen in water with the metal oxide catalysts was discussed. Moreover, the effect of coexisting anions on the degradation of ammonia was studied, finding that SO_2-4 and HCO-3 could inhibit the catalytic activity while CO_2-3 and Br-could promote it. The presence of coexisting cations had very little effect on the catalytic ozonation of ammonia nitrogen. After five successive reuses, the catalyst remained stable in the catalytic ozonation of ammonia. 相似文献
4.
Zuobin Wang Jiao Zhang Xiao Guan Lu She Pengyu Xiang Siqing Xi Zhiqiang Zhang 《环境科学学报(英文版)》2019,31(11):119-128
A novel struvite crystallization method induced by bioelectrochemical acidolysis of magnesia(MgO) was investigated to recover phosphorus(P) from aqueous solution using a dual-chamber microbial electrolysis cell(DMEC). Magnesium ion(Mg~(2+)) in the anolyte was firstly confirmed to automatically migrate from the anode chamber to the cathode chamber, and then react with ammonium(NH+4) and phosphate(PO_4~(3-)) in the catholyte to form struvite. Recovery efficiency of 17.8%–60.2% was obtained with the various N/P ratios in the catholyte. When MgO(low solubility under alkali conditions) was added into the anolyte, the bioelectrochemical acidolysis of MgO naturally took place and the released Mg~(2+)induced struvite crystallization in the cathode chamber for P recovery likewise.Besides, there was a strong linear positive correlation between the recovery efficiency and the MgO dosage(R~2= 0.935), applied voltage(R~2= 0.969) and N/P ratio(R~2= 0.905). Increasing the applied voltage was found to enhance the P recovery via promoting the MgO acidolysis and the released Mg~(2+)migration, while increasing the N/P ratio in the catholyte enhanced the P recovery via promoting the struvite crystallization. Moreover, the electrochemical performance of the system was promoted due to more stable anolyte pH and lower pH gradient between the two chambers. Current density was promoted by 10%, while the COD removal efficiency was improved from 78.2% to 91.8% in the anode chamber. 相似文献
5.
6.
Meng Lu Xuhui Zhou Yiqi Luo Yuanhe Yang Changming Fang Jiakuan Chen Bo Li 《Agriculture, ecosystems & environment》2011,140(1-2):234-244
It is a well-established concept that nitrogen (N) limits plant growth and ecosystem production. However, whether N limits land carbon (C) sequestration – particularly in soil, the largest pool in the land – remains highly controversial. We conducted a meta-analysis to synthesize 257 studies published in the literature with 512 paired comparisons to quantify the changes of ecosystem C processes in response to N addition. Our results show that N addition significantly increased aboveground, belowground, and litter C pools by 35.7, 23.0, and 20.9%, respectively, across all the studies. Despite the substantial increases in C inputs from vegetation to soil system, N addition resulted in no significant change in C storage of both organic horizon and mineral soil in forests and grasslands, but a significant 3.5% increase in agricultural ecosystems, largely due to less contribution from aboveground production and increases in DOC and soil respiration. Thus, N stimulation of C storage primarily occurred in plant pools but little in soil pools. Moreover, N-induced change in soil C storage was positively related to changes in belowground production but not to those in aboveground growth. Our global synthesis also suggests that earth system models need to treat soil C inputs from aboveground and belowground sources differentially for soil C sequestration in response to N deposition and fertilization. 相似文献
7.
Assessment of the nitrogen and carbon budget of two managed temperate grassland fields 总被引:1,自引:0,他引:1
Christof Ammann Christoph Spirig Jens Leifeld Albrecht Neftel 《Agriculture, ecosystems & environment》2009,133(3-4):150
Greenhouse gas budgets as well as the productivity of grassland systems are closely related to the carbon (C) and nitrogen (N) cycles. Within the framework of the CarboEurope and NitroEurope projects we have measured C and N exchange on the field scale at the grassland site Oensingen previously converted from arable rotation. The site is located on the Swiss Central Plateau and consists of two parallel fields of equal size. One field was subjected to intensive management with average nitrogen input of 230 kg-N ha−1 year−1 and 4–5 cuts per year, and the other to an extensive management with no fertilisation and less frequent cutting. The total C budget of the fields was assessed by measuring the CO2 exchange by eddy covariance and analysing the carbon import by manure application and export by harvest. The N budget of the managed grassland is more complex. Besides the management related import and export, it includes gaseous exchange in many different forms (NO, NO2, HNO3, N2O, NH3, N2) needing different analytical techniques, as well as input by rain and leaching of N-compounds with the soil water. The main (“level-3”) field sites in the NitroEurope project are supposed to measure 95% of the N fluxes at the field scale. For several of the N fluxes specific measurements have been performed for 1 year or longer at the site. Some of the remaining N budget components (dry and wet deposition) could be estimated from results of a national deposition network, while other components (NH3 and N2 emission) were estimated based on literature parameterisations. However, we found indications that the (systematic) uncertainties of these estimated N-fluxes are large and that it is important to make site-specific measurement for all relevant budget components. The suitability of corresponding experimental methods is discussed.Analysis of the C budget over a 6-year period (2002–2007) showed a significant mean difference between the two newly established grassland fields with a likely net carbon loss for the extensive management and a net sequestration for the intensive management. Since the C/N ratio of the soil organic matter of the grassland is constrained in a rather narrow range around 9.3, the change in the soil carbon pool is supposed to be accompanied by a corresponding change in the N storage. This approach provided an alternative method to check the N budget of the two grassland fields derived from the individual N fluxes. 相似文献
8.
Osvaldo Salazar Manuel Casanova Thomas Kätterer 《Agriculture, ecosystems & environment》2011,140(1-2):123-136
Soil organic carbon (SOC) and total nitrogen (N) stocks in an agroforestry system with water harvesting were analysed in a field experiment and the results compared with those of other crop management systems in the Mediterranean zone of central Chile. Agroforestry with water harvesting showed higher positive effects on N stocks, mainly in the upper soil layer, than the other crop management systems. However, soil analysis revealed a lack of differences between treatments, a fact that might be related mainly to the short study time (12 years) and the high spatial variability in these soil properties at the experimental site. In addition, the Introductory Carbon Balance Model that simulates N processes (ICBM/N) was evaluated for simulating trends in SOC and N stocks in the field experiment. Soil data collected between 1996 and 2008 in the field experiment and primarily literature data sets were used to test ICBM/N and its performance was evaluated by considering uncertainty in model inputs using Generalised Likelihood Uncertainty Estimation (GLUE) methodology. The GLUE estimates (5% and 95%) and measured SOC and N stocks were in satisfactory agreement. The observed SOC and N stocks were bracketed by the uncertainty bands in 70% and 80% of the simulations, respectively. Sensitivity analysis showed the model to be most sensitive to C parameters, such as the humification coefficient (h). The results of this study show that ICBM/N can be an effective tool for estimating SOC and N stocks from agroforestry combined with water harvesting systems in the Mediterranean zone of central Chile over the medium term. However, they also indicate that additional data sets are needed to redefine the parameter distributions in the model and thus to predict trends in SOC and N stocks in the future. 相似文献
9.
Lian Wang Jie Zhang Jingze Liu Hong He Min Yang Jianwei Yu Zichuan M Feng Jiang 《环境科学学报(英文版)》2010,22(12):1846-1853
Bromate ion (BrO 3) removal from drinking water by powdered activated carbons (PAC S) in bath mode was evaluated under various operational conditions.Six kinds of PACs,including wood-based carbon,fruit-based carbon,coal-based carbon,and these three carbons thermally deoxidized in a nitrogen atmosphere,were selected to investigate their capacity on BrO 3 removal.With the highest zeta potential value and being richly mesoporous,coal-based carbon had a high and an excellent BrO 3 adsorption efficiency.The removal content of BrO 3 by per gram of coal-based carbon was 0.45 mg within 5 hr in 100 μg/L bromate solution.The surface characteristics of PACs and bromide formation revealed that both physical and chemical PACs properties simultaneously affected the adsorptionreduction process.Under acidic conditions,PAC S possessed high zeta value and adequate basic groups and exhibited neutral or positive charges,promoting BrO 3 adsorption-reduction on the carbon surface.Interestingly,the PAC S thermally deoxidized in N 2 atmosphere optimized their properties,e.g.increasing their zeta values and decreasing the oxygen content which accelerated the BrO 3 removal rate.The maximum adsorption capacity of fruit-based carbon was the highest among all tested carbons (99.6 mg/g),possibly due to its highest pore volume.Remarkably,the thermal regeneration of PACs in N 2 atmosphere could completely recover the adsorption capacity of PACs.The kinetic data obtained from carbons was analyzed using pseudo second-order and intraparticle diffusion models,with results showing that the intraparticle diffusion was the more applicable model to describe adsorption of BrO 3 onto PACs. 相似文献
10.
Humin, the most recalcitrant and abundant organic fraction of soils and of sediments, is a significant contributor to the
stable carbon pool in soils and is important for the global carbon budget. It has significant resistance to transformations
by microorganisms. Based on the classical operational definition, humin can include any humic-type substance that is not soluble
in water at any pH. We demonstrate in this study how sequential exhaustive extractions with 0.1 M sodium hydroxide (NaOH) + 6 M
urea, followed by dimethylsulphoxide (DMSO) + 6% (v/v) sulphuric acid (H2SO4) solvent systems, can extract 70–80% of the residual materials remaining after prior exhaustive extractions in neutral and
aqueous basic media. Solid-state 13C NMR spectra have shown that the components isolated in the base + urea system were compositionally similar to the humic
and fulvic acid fractions isolated at pH 12.6 in the aqueous media. The NMR spectra indicated that the major components isolated
in the DMSO + H2SO4 medium had aliphatic hydrocarbon associated with carboxyl functionalities and with lesser amounts of carbohydrate and peptide
and minor amounts of lignin-derived components. The major components will have significant contributions from long-chain fatty
acids, waxes, to cuticular materials. The isolates in the DMSO + H2SO4 medium were compositionally similar to the organic components that resisted solvation and remained associated with the soil
clays. It is concluded that the base + urea system released humic and fulvic acids held by hydrogen bonding or by entrapment
within the humin matrix. The recalcitrant humin materials extracted in DMSO + H2SO4 are largely biological molecules (from plants and the soil microbial population) that are likely to be protected from degradation
by their hydrophobic moieties and by sorption on the soil clays. Thus, the major components of humin do not satisfy the classical
definitions for humic substances which emphasise that these arise from microbial or chemical transformations in soils of the
components of organic debris. 相似文献
11.
Jia Guo Mingqian Zhang Li Zhang Aixing Deng Xinmin Bian Jianguo Zhu Weijian Zhang 《Agriculture, ecosystems & environment》2011,140(1-2):273-279
Increasing evidences have shown that dissolved organic components are responsible for the significant C and N exports from terrestrial ecosystems to the surrounding aquatic ecosystems and very sensitive to CO2 enrichment. However, there is still a lack of direct evidence about CO2-led effects on these components at the ecosystem scale, especially in wetlands. We, therefore, simultaneously investigated the contents of dissolved organic carbon (DOC) and dissolved nitrogen (DN) in the surface water and soil layer in a paddy field under FACE facility in Eastern China. Elevated CO2 significantly increased the contents of DOC and DN in the surface water by 18.0% and 14.3% on average. Elevated CO2 also increased DOC content in the soil, but decreased DN content. The contents of DOC and DN in the soil–water interface of 0–1 cm soil layer were on average 22.4% and 47.5% higher than in the 5–15 cm soil layer. Besides, significant higher DOC and DN contents existed in the soil porewater than in the surface water. Due to multiple drainage regime and rainstorm-induced runoffs in rice cropping regions, CO2-led DOC and DN increments in the surface water may increase C and N exports from paddies to the surrounding aquatic ecosystems under future climate patterns. 相似文献
12.
氨氮(NH4-N)是水体中能被藻类直接吸收利用的无机氮。利用稳定同位素技术研究了不同浓度下孔石莼(Ulvapertusa)对NH4-N的吸收,藻类体内δ15N、δ13C的变化。结果显示:试验初始阶段,孔石莼大量吸收水体中的14NH4-N、12CO2用于自身组织的合成,导致水体中氨氮浓度、δ15N和δ13C急剧下降,约在5~25 h,这一阶段水体中氨氮浓度变化很小,藻体15N缓慢降低,达到平缓期;约在25 h后,氨氮浓度缓慢下降,海水中的底物浓度很低,水体中14NH4-N几乎被吸收殆尽,孔石莼开始大幅吸收15NH4-N,δ15N上升。δ13C在4 h后呈现无规律波动。 相似文献
13.
A bacterial strain that utilized o-chloronitrobenzene(o-CNB) as the sole carbon,nitrogen and energy sources was isolated from an activated sludge collected from an industrial waste treatment plant. It was identified as Pseudomonas putida based on its morphology,physiological,and biochemical characteristics with an automatic biometrical system and the 16S rRNA sequence analysis. Microcosm study showed that the biodegradation of o-CNB was optimized at culture medium pH 8.0 and 32°C. At these conditions,the st... 相似文献
14.
Benoît Gabrielle Jeanne Da-Silveira Sabine Houot Joël Michelin 《Agriculture, ecosystems & environment》2005,110(3-4):289-299
Composting has emerged as a valuable route for the disposal of urban waste, with the prospect of applying composts on arable fields as organic amendments. Proper management of urban waste composts (UWC) requires a capacity to predict their impacts on carbon and nitrogen dynamics in the field, an issue in which simulation models are expected to play a prominent role.Here, we used a deterministic soil-crop model to simulate C–N dynamics in an arable field amended with three types of UWC (green waste and sludge, biodegradable waste, and solid waste), and a reference amendment (farmyard manure). The model is a version of CERES in which the soil C–N module was substituted with the NCSOIL model, whose microbiological parameters were determined from either laboratory incubation data or biochemical fractionation in a previous paper. CERES was tested against data from a field trial set up in 1998 in the Paris area, and managed as a maize (Zea mays L.)–wheat (Triticum aestivum L.) rotation. Comparison of observed and simulated data over the first 4 years of the field trial showed that CERES predicted the soil moisture and inorganic N dynamics reasonably well, as well as the variations in soil organic C. In particular, the parameterization of UWC organic matter from biochemical fractions achieved a similar fit as the parameterization based on incubation data. Wheat yields were also correctly predicted, but a systematic under-estimation of maize yields pointed at an under-estimation of spring and summer mineralization of N by CERES.Simulated N fluxes showed that the organic amendments induced an additional leaching ranging from 1 to 8 kg N ha−1 yr−1, which can be related to the initial mineral N content of the amendments. After 4 years, the composts had mineralized 3–8% of their initial organic N content, depending on their stability. Composts with slower N release had higher N availability for the crops. CERES could thus be used to aid in selecting the timing of compost application, in relation to its stability, based on both environmental and agronomical criteria. 相似文献
15.
16.
17.
18.
Biological nutrient removal grows into complicated scenario due to the microbial consortium shift and kinetic competition between phosphorus (P)-accumulating and nitrogen (N)-removing microorganisms. In this study, three sequential batch reactors with constant operational conditions except aeration patterns at 6 h cycle periods were tested. Intermittent aeration was applied to develop a robust nutrient removal system aimed to achieve high energy saving and removal efficiency. The results showed higher correspondence of P-uptake, polymeric substance synthesis and glycogen degradation in intermittent-aeration with longer interval periods compared to continuous-aeration. Increasing the intermittent-aeration duration from 25 to 50 min, resulted in higher process performance where the system exhibited approximately 30% higher nutrient removal. This study indicated that nutrient removal strongly depends on reaction phase configuration representing the importance of aeration pattern. The microbial community examined the variation in abundance of bacterial groups in suspended sludge, where the 50 min intermittent aeration, favored the growth of P-accumulating organisms and nitrogen removal microbial groups, indicating the complications related to nutrient removal systems. Successful intermittently aerated process with high capability of simple implementation to conventional systems by elemental retrofitting, is applicable for upgrading wastewater treatment plants. With aeration as a major operational cost, this process is a promising approach to potentially remove nutrients in high competence, in distinction to optimizing cost-efficacy of the system. 相似文献
19.
The removal of methyl orange wastewater was experimentally investigated using a three-dimensional electrode reactor with granular activated carbon and titanium filter electrodes arrays. The effects of the electric current, the residence time and the initial dye concentration on the methyl orange removal were evaluated. For the initial concentration of 1150 mg/L, the COD removal was obtained as 90% under the conditions of electric current 2 A, residence time 40 min. The effluent path of the electrochemical cell was optimized, using the anode effluent instead of the top effluent, where the COD removal was increased to 93% and the corresponding energy consumption was decreased from 15.5 to 14.6 kW-hr/kg COD. 相似文献
20.
Interactive effects of water and controlled release urea on nitrogen metabolism,accumulation, translocation,and yield in summer maize 总被引:1,自引:0,他引:1
To investigate the interactive effects of water and N from controlled release urea (CRU) on N metabolism, accumulation, translocation, and yield in Zhengdan958 (a summer maize cultivar planted widely in China), three water levels (adequate water W3, mild water stress W2, severe water stress W1) and four amounts of CRU (N) (N0, N1, N2, and N3 were 0, 105, 210, and 315 kg N ha?1, respectively) were carried out under the waterproof shed and soil column conditions. The results showed that yield, N metabolism, accumulation, and translocation were significantly affected by water, CRU, and their interactions after tasseling. Yields showed an increasing trend in response to N rates from 100.2 to 128.8 g plant?1 under severe water stress (W1), from 124.7 to 174.6 g plant?1 under mild water stress (W2), and from 143.7 to 177.0 g plant?1 under adequate water conditions (W3). There was an associated optimum amount of N for each water level. Under W1 and W2, N3 treatments showed significant advantages in three N metabolism enzymes’ activities and the N accumulations, and yield and its components were highest. But the nitrogen harvest index (NHI) of N3 had no significant difference with other nitrogen treatments. Under W3, the N translocation efficiency (NTE) and N translocation conversion rate (NTCR) of N2 in stem and leaf were higher than those of N3, but the N metabolism enzymes’ activities and yields of N2 and N3 had no significant difference, which indicated that N2 was superior to N3. The N3 treatment under W2 and N2 under W3 increased the N accumulation capacity in maize grain as well as the N translocation to grain that contributed to the increase of 1000-gain weight and grains per ear after tasseling. Under this experimental condition, a CRU rate of 225 kg ha?1 was the best treatment when the soil moisture content was 75 ± 5% of field capacity, but an N rate of 300 kg ha?1 was superior when soil moisture content was maintained at 55 ± 5% of field capacity during the entire growing season. 相似文献