共查询到20条相似文献,搜索用时 0 毫秒
1.
Lei Wang Yongtao Lv Xudong Wang Yongzhe Yang Xiaorong Bai 《Frontiers of Environmental Science & Engineering in China》2011,5(4):633-638
To investigate the nitrogen transport and conversion inside activated sludge flocs, micro-profiles of O2, NH4+, NO2−, NO3−, and pH were measured under different operating conditions. The flocs were obtained from a laboratory-scale sequencing batch
reactor. Nitrification, as observed from interfacial ammonium and nitrate fluxes, was higher at pH 8.5, than at pH 6.5 and
7.5. At pH 8.5, heterotrophic bacteria used less oxygen than nitrifying bacteria, whereas at lower pH heterotrophic activity
dominated. When the ratio of C to N was decreased from 20 to 10, the ammonium uptake increased. When dissolved oxygen (DO)
concentration in the bulk liquid was decreased from 4 to 2 mg·L−1, nitrification decreased, and only 25% of the DO influx into the flocs was used for nitrification. This study indicated that
nitrifying bacteria became more competitive at a higher DO concentration, a higher pH value (approximately 8.5) and a lower
C/N. 相似文献
2.
Removing nitrogen from wastewater with low chemical oxygen demand/total nitrogen (COD/TN) ratio is a difficult task due to the insufficient carbon source available for denitrification. Therefore, in the present work, a novel sequencing batch biofilm reactor (NSBBR) was developed to enhance the nitrogen removal from wastewater with low COD/TN ratio. The NSBBR was divided into two units separated by a vertical clapboard. Alternate feeding and aeration was performed in the two units, which created an anoxic unit with rich substrate content and an aeration unit deficient in substrate simultaneously. Therefore, the utilization of the influent carbon source for denitrification was increased, leading to higher TN removal compared to conventional SBBR (CSBBR) operation. The results show that the CSBBR removed up to 76.8%, 44.5% and 10.4% of TN, respectively, at three tested COD/TN ratios (9.0, 4.8 and 2.5). In contrast, the TN removal of the NSBBR could reach 81.9%, 60.5% and 26.6%, respectively, at the corresponding COD/TN ratios. Therefore, better TN removal performance could be achieved in the NSBBR, especially at low COD/TN ratios (4.8 and 2.5). Furthermore, it is easy to upgrade a CSBBR into an NSBBR in practice. 相似文献
3.
通过建立3个不同导气管管径(Ф25 mm,Ф50 mm,Ф75 mm)的准好氧生物反应器填埋场,探究了导气管管径对其碳氮污染物转化的影响.研究表明,准好氧生物反应器填埋场渗滤液总氮、氨氮、CODCr、TOC的降解均符合线性-指数复合模型,且当导气管管径由25 mm增大至50mm时,可明显提高其降解速率,分别由0.00323、0.00474、0.01177、0.0059 d-1提高至0.01921、0.02267、0.01617、0.01253 d-1;由50 mm进一步增大至75 mm时,渗滤液碳氮污染物的降解速率也有小幅提高.导气管管径的增大有利于填埋体内碳氮污染物的去除,由Ф25 mm增大至Ф50mm时,碳氮污染物去除率明显提高,且只有很少部分转移至液相中,同时氮污染物和碳污染物的气化率分别提高了33.42%和10.74%;进一步增大至Ф75 mm时,碳氮污染物去除率也有一定程度提高.导气管管径越大,固相中碳氮物质剩余率越低,液化率越低,气化率越高. 相似文献
4.
Some kinds of amine groups can be introduced to the glassy carbon surface by the electrode oxidation of the carbon electrode surface in ammonium carbamate solution, and this amine groups modified electrode is named as an aminated glassy carbon electrode. The existences of not only primary amine but also secondary and tertially amines were confirmed by X ray photoelectron spectroscopy. The applications of the aminated carbon material for the electrocatalytic reductions of oxygen, hydrogen peroxide, and organic compounds such as quinones were carried out, and the effects of amination on the formation of electrocatalytic sites for many species were revealed. The electrocatalyzed cyclic voltammograms of metal ions and metal chelate compounds obtained by aminated glassy carbon electrodes are also discussed. Moreover, we intend to describe that the aminated carbon electrode can exhibit the large reduction waves of inorganic oxoacids such as N02? or bromide ion. The introduced functional groups containing nitrogen atom can change the distribution of the electron densities of the graphite carbon surface, and this specific electron distribution environment may generate the various electrocatalytic activities. 相似文献
5.
以Ir O2/Ti为阳极,Fe为阴极,研究了电化学降解四氯化碳(Carbon Tetrachloride,CT)的性能,重点研究了槽电压、极板间距、溶液的初始p H、电解质种类及浓度等因素对CT处理效果的影响.结果表明:槽电压为3 V,极板间距为50 mm,初始p H为4.5,电解质Na2SO4浓度为10mmol·L~(-1)时,CT的降解效果最佳,3 h内CT(1 mg·L~(-1))的去除率可达68.6%.运用循环伏安法(Cyclic Voltammetry,CV)研究了CT的电化学降解行为,并对降解机理进行初步推测,发现阴极还原脱氯是CT电化学降解的主要途径,CT还原脱氯的产物主要是三氯甲烷(Chloroform,CF)和二氯甲烷(Dichloromethane,DCM). 相似文献
6.
利用从连续运行的缓释碳源滤料滤池中取出的聚羟基脂肪酸酯(PHAs)颗粒,研究了微生物和硝酸盐对其的总有机碳(TOC)释放速率的影响,并研究了温度、pH值、硝态氮浓度对其反硝化速率的影响.结果表明:原有的和附着有微生物的PHAs颗粒在去离子水中TOC释放速率分别为0.030,0.053mg/(g·d),远低于水中有硝酸盐时的TOC释放速率[进水NO3--N为30mg/L时,TOC释放速率为0.533mg/(g·d)].温度和pH值对反硝化速率影响较大, pH值为7.5时,在15~35℃范围内, 30℃下的反硝化速率最大,为0.067mg/(g·h);温度为30℃时,pH值在6.0~9.0范围内,pH值为7.8时的反硝化速率最大,达到0.061mg/(g·h).反硝化速率与NO3--N浓度之间的关系符合Monod方程,最大反应速率和半饱和常数分别为4.74mgNO3--N/(gSS·h)和56.6mg/L. 相似文献
7.
As one of the most important water pollutants, ammonia nitrogen emissions have increased year by year, which has attracted people's attention. Catalytic ozonation technology, which involves production of ·OH radical with strong oxidation ability, is widely used in the treatment of organic-containing wastewater. In this work, MgO-Co_3O_4 composite metal oxide catalysts prepared with different fabrication conditions have been systematically evaluated and compared in the catalytic ozonation of ammonia(50 mg/L) in water. In terms of high catalytic activity in ammonia decomposition and high selectivity for gaseous nitrogen, the catalyst with MgO-Co_3O_4 molar ratio 8:2, calcined at 500°C for 3 hr, was the best one among the catalysts we tested, with an ammonia nitrogen removal rate of 85.2% and gaseous nitrogen selectivity of44.8%. In addition, the reaction mechanism of ozonation oxidative decomposition of ammonia nitrogen in water with the metal oxide catalysts was discussed. Moreover, the effect of coexisting anions on the degradation of ammonia was studied, finding that SO_2-4 and HCO-3 could inhibit the catalytic activity while CO_2-3 and Br-could promote it. The presence of coexisting cations had very little effect on the catalytic ozonation of ammonia nitrogen. After five successive reuses, the catalyst remained stable in the catalytic ozonation of ammonia. 相似文献
8.
与碳氮循环相关的土壤酶活性对施用氮磷肥的响应 总被引:4,自引:0,他引:4
通过测定土壤酶活性和微生物量来评估施化肥对冬小麦土壤中参与碳(C)、氮(N)循环酶活性的影响.实验设氮(N)、磷(P)两个影响因子,4个处理分别是仅施P(SP)、仅施N(SN)、施N和P(P+N)、对照(CK,无施肥),测定冬小麦开花期和成熟期土壤纤维素酶、脱氢酶、脲酶和蛋白酶活性和开花期土壤微生物量.结果表明:纤维素酶活性在冬小麦两个生育期都是P+N处理中最高,分别为0.056μg·g-1·h-1(以葡萄糖计)和0.041μg·g-1·h-1(以葡萄糖计),显著高于CK.脱氢酶活性在冬小麦两个生育期都是P+N处理中最高,分别为0.46μg·g-1·h-1(以TPF计)和0.31μg·g-1·h-1(以TPF计),显著高于CK,SP和SN处理与CK有显著差异.脲酶活性在冬小麦两个生育期都是SN处理中最高,分别为54.2μg·g-1·h-1(以NH3-N计)和63.9μg·g-1·h-1(以NH3-N计),显著高于CK.蛋白酶活性在开花期SP处理中最大,成熟期CK处理中最大,分别为0.61μg·g-1·h-1(以酪氨酸计)和0.31μg·g-1·h-1(以酪氨酸计).除脲酶外,成熟期酶活性低于开花期.N和P交互作用通过增加土壤放线菌、菌根真菌生物量和作物地下生物量显著增加了纤维素酶和脱氢酶活性,通过降低土壤pH和增加铵态氮量显著降低了土壤蛋白酶活性,通过提高N利用率,降低了脲酶活性. 相似文献
9.
矿物成分对超细化煤粉燃烧过程中氮转化的影响 总被引:1,自引:0,他引:1
选用超细化鹤岗、铁法、准葛尔3种脱灰煤(HCl/HF脱灰),分别添加NaOH、MgO、CaO、Al2O3和Fe2O3矿物成分制成试验样品.采用DTG(热重/差热连用仪)和GCMS(气相色谱质谱连用仪)对不同样品进行燃烧实验,设定气体流量为50mL·min-1,氧气体积分数为20%,升温速率为20℃·min-1,研究矿物成分对煤粉燃烧时氮转化的影响.结果发现,经脱灰处理的超细化煤粉在氧气体积分数为20%时燃烧过程中NO的释放曲线是单峰曲线;NaOH、Al2O3对NO的还原反应均表现出不同程度的催化作用,NaOH的催化能力最强;Fe2O3、CaO和MgO对还原反应有催化或抑制作用,其作用的类别和大小与煤的种类和矿物质的含量有关,超细化可促进NO的还原. 相似文献
10.
过滤式电极消毒作为一种安全、高效的新型消毒技术备受关注,然而目前使用的电极材料比较单一,且稳定性和高效性难以兼备,制约了该技术的设备化发展.本文采用过滤式消毒方式,考察了几种高孔隙率的导电碳纤维毡的消毒效果.结果表明,碳纤维毡电极具有优异的消毒能力,活性碳纤维电极可在几伏的电压下使细菌死亡,与传统电化学消毒相比,电压降低了1~2个数量级.其中A-PCF(聚丙烯腈基活性碳纤维)电极在外接电压2 V,水力停留时间2 s时即可对大肠杆菌菌液实现6.5log的去除.当外接电压≤2 V时,流出物中未检测到氯,pH保持不变,排除了电化学产物的影响.A-PCF可作为过滤式电极消毒的优选电极材料. 相似文献
11.
Zuobin Wang Jiao Zhang Xiao Guan Lu She Pengyu Xiang Siqing Xi Zhiqiang Zhang 《环境科学学报(英文版)》2019,31(11):119-128
A novel struvite crystallization method induced by bioelectrochemical acidolysis of magnesia(MgO) was investigated to recover phosphorus(P) from aqueous solution using a dual-chamber microbial electrolysis cell(DMEC). Magnesium ion(Mg~(2+)) in the anolyte was firstly confirmed to automatically migrate from the anode chamber to the cathode chamber, and then react with ammonium(NH+4) and phosphate(PO_4~(3-)) in the catholyte to form struvite. Recovery efficiency of 17.8%–60.2% was obtained with the various N/P ratios in the catholyte. When MgO(low solubility under alkali conditions) was added into the anolyte, the bioelectrochemical acidolysis of MgO naturally took place and the released Mg~(2+)induced struvite crystallization in the cathode chamber for P recovery likewise.Besides, there was a strong linear positive correlation between the recovery efficiency and the MgO dosage(R~2= 0.935), applied voltage(R~2= 0.969) and N/P ratio(R~2= 0.905). Increasing the applied voltage was found to enhance the P recovery via promoting the MgO acidolysis and the released Mg~(2+)migration, while increasing the N/P ratio in the catholyte enhanced the P recovery via promoting the struvite crystallization. Moreover, the electrochemical performance of the system was promoted due to more stable anolyte pH and lower pH gradient between the two chambers. Current density was promoted by 10%, while the COD removal efficiency was improved from 78.2% to 91.8% in the anode chamber. 相似文献
12.
江西省不同农田利用方式对土壤碳、氮和碳氮比的影响 总被引:6,自引:0,他引:6
基于江西省16582个农田耕层(0~20 cm)土壤样点数据,运用实地调查、数理统计与地统计学等分析方法,探讨了不同农田利用方式(水旱轮作、一季旱地、两季旱地、一季水田和两季水田)对土壤有机碳(SOC)、氮含量(TN)和碳氮比(C∶N)的影响.结果表明,江西省耕层土壤SOC、TN含量和C∶N比分别为5.22~34.56 g·kg~(-1)、0.26~3.06 g·kg~(-1)和2.98~52.67,均处于中等偏上水平.经半方差函数分析,江西省土壤SOC、TN和C∶N比的空间变异主要是由随机性因素引起的;方差分析显示,不同土地利用方式下耕地土壤中SOC、TN和C∶N比存在显著差异,土壤SOC和TN含量表现为两季水田水旱轮作一季水田一季旱地两季旱地,而土壤C∶N比则表现为两季水田两季旱地一季水田水旱轮作一季旱地,土壤C∶N比对估测区域土壤有机碳储量具有良好的指示作用,因此,从土壤C∶N比角度考虑,水田更有利于SOC的贮存,有利于增加土壤汇集碳氮的能力.Pearson相关性分析表明,5种利用方式下经度、纬度和海拔与土壤SOC、TN含量和C∶N比具有显著的相关关系. 相似文献
13.
应用碳、氮稳定稳定同位素技术,对2014年夏季海州湾海洋牧场海域拖网渔获物营养级进行了初步分析,建立了海州湾海洋牧场区域主要拖网渔获物的营养结构。结果表明:海州湾拖网渔获物中鱼类氮稳定同位素比值主要集中在9.6‰~13.9‰,碳稳定同位素比值分布范围为-16.2‰~-23.3‰;计算得到的鱼类的营养级最大值和最小值分别为3.9和1.9;其中,中国花鲈和孔虎鱼所处营养级最高,为食物网中的顶级捕食者,螠蛏和中国毛虾营养级相对较低,位于食物网下层;中国花鲈个体大小与其氮稳定同位素比值存在显著正相关关系(R2=0.90,P < 0.01);碳稳定同位素比值分布结果显示海州湾海洋牧场海域各生物类群存在明显的生态位重叠现象。 相似文献
14.
Jun Xu Farzaneh Arabpour Roghabadi Ying Luo Vahid Ahmadi Qian Wang Zheng Wang Hong He 《环境科学学报(英文版)》2024,(6):165-182
Solar-driven carbon dioxide (CO2) conversion including photocatalytic (PC),photoelectrochemical (PEC),photovoltaic plus electrochemical (PV/EC) systems,offers a renewable and scalable way to produce fuels and high-value chemicals for environment and energy sustainability.This review summarizes the basic fundament and the recent advances in the field of solar-driven CO2 conversion.Expanding the visible-light absorption is an important strategy to improve solar energy convers... 相似文献
15.
Impacts of newly added organic carbon (C) and inorganic nitrogen (N) on the microbial utilization of soil organic matter are important in determining the future C balance of terrestrial ecosystems. We examined microbial responses to cellulose and ammonium nitrate additions in three soils with very different C and N availability. These soils included an organic soil( 14.2% total organic C, with extremely high extractable N and low labile C), a forest soi1(4.7% total organic C, with high labile C and extremely low extractable N), and a grassland soil(1.6% total organic C, with low extractable N and labile C). While cellulose addition alone significantly enhanced microbial respiration and biomass C and N in the organic and grassland soils, it accelerated only the microbial respiration in the highly-N limited forest soil. These results indicated that when N was not limited, C addition enhanced soil respiration by stimulating both microbial growth and their metabolic activity, New C inputs lead to elevated C release in all three soils, and the magnitude of the enhancement was higher in the organic and grassland soils than the forest soil. The addition of cellulose plus N to the forest and grassland soils initially increased the microbial biomass and respiration rates, but decreased the rates as time progressed. Compared to cellulose addition alone, cellulose plus N additions increased the total C-released in the grassland soil, but not in the forest soil. The enhancement of total C- released induced by C and N addition was less than 50% of the added-C in the forest soil after 96 d of incubation, in contrast to 87.5% and 89.0% in the organic and grassland soils. These results indicate that indigenous soil C and N availability substantially impacts the allocation of organic C for microbial biomass growth and/or respiration, potentially regulating the turnover rates of the new organic C inputs. 相似文献
16.
Removal of nitrogen in wastewater before discharge into receiving water courses is an important consideration in treatment systems. However, nitrogen removal efficiency is usually limited due to the low carbon/nitrogen (C/N) ratio. A common solution is to add external carbon sources, but amount of liquid is difficult to determine. Therefore, a combined wood-chip-framework substrate (with wood, slag and gravel) as a slow-release carbon source was constructed in baffled subsurface-flow constructed wetlands to overcome the problem. Results show that the removal rate of ammonia nitrogen (NH4+-N), total nitrogen (TN) and chemical oxygen demand (COD) could reach 37.5%–85%, 57.4%–86%, 32.4%–78%, respectively, indicating the combined substrate could diffuse sufficient oxygen for the nitrification process (slag and gravel zone) and provide carbon source for denitrification process (wood-chip zone). The nitrification and denitrification were determined according to the location of slag/gravel and wood-chip, respectively. Nitrogen removal was efficient at the steady phase before a shock loading using slag-wood-gravel combined substrate because of nitrification–denitrification process, while nitrogen removal was efficient under a shock loading with wood-slag-gravel combined substrate because of ANAMMOX process. This study provides a new idea for wetland treatment of high-strength nitrogen wastewater. 相似文献
17.
采用自沉积方法将HAuCl4直接还原成纳米金颗粒并修饰在碳纳米管表面,所制备的纳米金(Au-CNTs/C)修饰电极对邻苯二酚(CAT)具有高的电催化氧化作用.采用循环伏安法考察CAT在Au-CNTs/C电极上的电化学行为,发现CAT在该修饰电极上发生可逆的氧化还原反应,在0.25V有明显的氧化峰.在磷酸盐缓冲溶液PBS(pH7.4)中,CAT的响应电流与浓度在5.0×10-7~5.0×10-3mol/L范围内呈线性关系,相关系数为0.9992,检出限为3.3×10-7mol/L. 相似文献
18.
采用活性碳毡(ACF)作为电吸附材料,构建流通式(Flow-through)电容去离子(CDI)装置,以模拟盐水为对象,考察了电压、通量、进水初始浓度及盐离子种类等条件对ACF电吸附容量的影响,并与平板式(Flow-by)电容去离子装置对比.结果表明,在流通式运行模式下,ACF电吸附容量随着电压、进水盐浓度的增大而增大,吸盐量最终会达到极值(最大吸附量).ACF电吸附容量会随着进水通量的增大先增大后减小.在电压1.2 V、通量0.053 m L·min~(-1)·cm~(-2)、进水初始浓度1000 mg·L~(-1)的条件下,流通式CDI中ACF对硫酸钠的电吸附容量达到7.73 mg·g~(-1),而平板式CDI中ACF电吸附容量为5.42 mg·g~(-1).此外,还考察了在不同盐离子类型条件下的流通式CDI脱盐效果,结果表明,ACF电极对阳离子电吸附强弱顺序依次为K~+Na~+Ca~(2+),对阴离子电吸附强弱顺序为Cl~-NO_3~-SO_4~(2-).流通式CDI装置在12个周期内脱盐效果并无明显衰减,表明CDI具有较好的稳定性. 相似文献
19.
20.
碳源和氮源对异养硝化好氧反硝化菌株Y1脱氮性能的影响 总被引:7,自引:1,他引:7
从焦化废水活性污泥中筛选到一株高效脱氮细菌,命名为Acinetobacter sp.Y1.本实验对菌株Y1在不同碳源、氮源、碳氮比及底物浓度下的脱氮特性进行了研究,结果表明,菌株Y1可以利用氨氮、亚硝氮和硝氮生长,不能利用羟胺;以氨氮为唯一氮源进行硝化作用时,柠檬酸钠和乙酸钠是最佳碳源,最佳碳氮比为15,菌株Y1可降解高浓度氨氮,在36h内将400 mg·L-1氨氮全部去除,1600 mg·L-1氨氮的去除率可达21.3%,最大降解速率随着初始氨氮浓度的升高而增大.以硝氮或亚硝氮为唯一氮源进行反硝化时,菌株Y1可以适应高浓度氮源但不能完全去除氮源,当碳氮比为20,经36h培养硝氮和亚硝氮的去除率均达到100%. 相似文献