首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The comparison of phenol sorption on phenyltrimethylammonium (PTMA)- and benzyltrimethylammonium (BTMA)-bentonite shows a clear difference as far as phenol sorption isotherms are concerned. For PTMA-bentonite the sorption isotherm is of a straight-line character which results from simple partitioning of phenol between the aqueous and organic phases sorbed on the bentonite surface. For BTMA-bentonite the isotherm has a convex shape, characteristic of physicochemical sorption.For the first time a three-parametric model, including the dissociation constant of phenol pKa, distribution constant of phenol Kdphen and phenolate anion Kdphen between the aqueous phase and the bentonite phases is used for the evaluation of phenol sorption on organoclays with pH change. The model shows that the values of Kdphen are higher than those of Kdphen for all investigated initial phenol concentrations.The inspection of the FTIR spectrum of BTMA-bentonite loaded with phenol in the regions 1300–1600 and 1620–1680 cm−1 shows the features of π–π electron interaction between the benzene rings of phenol and the BTMA cation together with the phenol–water hydrogen bond strengthened by this interaction.  相似文献   

2.
The ability of free and polysulphone immobilized biomass of Arthrobacter sp. to remove Cu2+ ions from aqueous solution was studied in batch and continuous systems. The Langmuir and Freundlich isotherm models were applied to the data. The Langmuir isotherm model was found to fit the sorption data indicating that sorption was monolayer and uptake capacity (Qo) was 175.87 and 158.7 mg/g for free and immobilized biomass respectively at pH 5.0 and 30 °C temperature, which was also confirmed by a high correlation coefficient, a low RMSE and a low Chi-square value. A kinetic study was carried out with pseudo-first-order reaction and pseudo-second-order reaction equations and it was found that the Cu2+ uptake process followed the pseudo-second-order rate expression. The diffusivity of Cu2+ on immobilized beads increased (0.402 × 10−4 to 0.435 × 10−4 cm2/s) with increasing concentration from 50 to 150 mg/L. The maximum percentage Cu2+ removal (89.56%) and uptake (32.64 mg/g) were found at 3.5 mL/min and 20 cm bed height. In addition to this the Bed Depth Service Time (BDST) model was in good agreement with the experimental data with a high correlation coefficient (>0.995). Furthermore, sorption and desorption studies were also carried out which showed that polysulphone immobilized biomass could be reused for up to six sorption–desorption cycles.  相似文献   

3.
Two pulp and paper industrial wastes, lime mud (LM) and recovery boiler ash (RB), have low moisture contents, low heavy metal contaminations and contain various carbonate compounds which contribute to a high pH. Metal finishing wastewater (MF-WW) has a low pH, high levels of TDS and high contaminations from Cr, Cu, Pb and Zn. The heavy metals from MF-WW were removed by sorption and precipitation mechanisms. LM gave better results in removing heavy metals from MF-WW than RB. At a reaction time of 45 min, the maximum removal efficiencies for Cr (93%) and Cu (99%) were obtained at 110 g L−1 of LM, but at 80 g L−1 for Pb (96%) and Zn (99%). Treatment with LM gives a higher sludge volume than with RB. However, the leachability of heavy metals from LM is lower. Leachability of heavy metals in the sediment for all selected treatment conditions is within government standards.  相似文献   

4.
Lignocellulosic materials are good precursors for the production of activated carbon. In this work, coffee residue has been used as raw material in the preparation of powder activated carbon by the method of chemical activation with zinc chloride for the sorption of Pb(II) from dilute aqueous solutions.The influence of impregnation ratio (ZnCl2/coffee residue) on the physical and chemical properties of the prepared carbons was studied in order to optimize this parameter. The optimum experimental condition for preparing predominantly microporous activated carbons with high pore surface area (890 m2/g) and micropore volume (0.772 cm3/g) is an impregnation ratio of 100%. The developed activated carbon shows substantial capability to sorb lead(II) ions from aqueous solutions and for relative impregnation ratios of 75 and 100%, the maximum uptake is practically the same. Thus, 75% represents the optimal impregnation ratio.Batch experiments were conducted to study the effects of the main parameters such as contact time, initial concentration of Pb(II), solution pH, ionic strength and temperature. The maximum uptake of lead(II) at 25 °C was about 63 mg/g of adsorbent at pH 5.8, initial Pb(II) concentration of 10 mg/L, agitation speed of 200 rpm and ionic strength of 0.005 M. The kinetic data were fitted to the models of pseudo-first order and pseudo-second order, and follow closely the pseudo-second order model. Equilibrium sorption isotherms of Pb(II) were analyzed by the Langmuir, Freundlich and Temkin isotherm models. The Freundlich model gives a better fit than the others.Results from this study suggest that activated carbon produced from coffee residue is an effective adsorbent for the removal of lead from aqueous solutions and that ZnCl2 is a suitable activating agent for the preparation of high-porosity carbons.  相似文献   

5.
In this work several Li4SiO4-based sorbents from fly ashes for CO2 capture at high temperatures have been developed. Three fly ash samples were collected and subjected to calcination at 950 °C in the presence of Li2CO3. Both pure Li4SiO4 and fly ash-based sorbents were characterised and tested for CO2 sorption at different temperatures between 400 and 650 °C and adding different amounts of K2CO3 (0–40 mol%). To examine the sorbents performance, multiple CO2 sorption/desorption cycles were carried out. The temperature and the presence of K2CO3 strongly affect the CO2 sorption capacity for the sorbents prepared from fly ashes. When the sorption temperature increases by up to 600 °C both the CO2 sorption capacity and the sorption rate increase significantly. Moreover when the amount of K2CO3 increases, the CO2 sorption capacity also increases. At optimal experimental conditions (600 °C and 40 mol% K2CO3), the maximum CO2 sorption capacity for the sorbent derived from fly ash was 107 mg CO2/g sorbent. The Li4SiO4-based sorbents can maintain its original capacity during 10 cycle processes and reach the plateau of maximum capture capacity in less than 15 min, while pure Li4SiO4 presents a continual upward tendency for the 15 min of the capture step and attains no equilibrium capacity.  相似文献   

6.
Lead levels in different environmental media (soil, grass leaves, water, ceramics, pencil, paint, crayons and cosmetics) were determined to assess the major sources of lead exposure in Thohoyandou, South Africa. Soil and plant leaves were used as indicators of Pb pollution from vehicle exhaust emissions. After digestion with concentrated acids (HNO3, HCl and HClO4) Pb concentrations were determined in triplicate using a flame atomic absorption spectrometer. The mean Pb concentrations at the kerb of selected busy roads were 205.5 ± 90, 273.0 ± 90 and 312.8 ± 81 μg g−1 and 154.7 ± 67, 182.9 ± 76 and 240.6 ± 66 μg g−1 for soil and plant leaves (dry weight) respectively. These concentrations were substantially higher than the values found on soils 50 m away from the roads (97.4 ± 11 μg g−1). Pb concentrations in plants collected further away from the road (50 m) were substantially lower (71.8 ± 9.0 μg g−1). The observed levels on soil are lower than the UK critical value of 500 μg g−1 for gardens and allotments; and 2000 μg g−1 for parks and open space as well as the Canadian values for agricultural (375 μg g−1), residential (500 μg g−1 and industrial (1000 μg g−1). From these data it was clear that Pb concentrations in soil samples were substantially higher than the levels obtained for plant leaves. The Pb levels in green crayons, blue crayons, pencils (from China & Germany), were 10650 ± 75.2, 8200 ± 52.4, 1160 ± 50.2, 79 ± 10.1 μg g−1 for the inner contents; and 4870 ± 58.1, 5650 ± 55.5, 1950 ± 46.6, 60 ± 12.9 μg g−1 for the outer surface paint respectively. The ceramics showed Pb levels of 630 ± 50.3 μg g−1 (saucer) and 560 ± 32.2 μg g−1 (cup), while the inner contents and outer surface paint showed 480 ± 32.4 and 318 ± 21.2 μg g−1 of Pb respectively. Early morning tap water flush gave a Pb level of 20.6 ± 5.6 μg Pb l−1. This value is higher than the WHO and FDA maximum permissible concentrations of 10 μg l−1 and 15 μg l−1 respectively.  相似文献   

7.
The biosorption of the heavy metals Cu2+ and Zn2+ by dried marine green macroalga (Chaetomorpha linum) was investigated. The biosorption capacities of the dried alga for copper and zinc were studied at different solution pH values (2–6), different algal particle sizes (100–800 μm) and different initial metal solution concentrations (0.5–10 mM). An optimum pH value of 5 was found suitable for both metal ions biosorption for both metal ions. At the optimum particle size (100–315 μm), biosorbent dosage (20 g/l) and initial solution pH (pH 5), the dried alga produced maximum copper and zinc uptakes values (qmax) of 1.46 and 1.97 mmol/g respectively (according to the Langmuir model). The kinetic data obtained at different initial metal concentrations indicated that the biosorption rate was fast and most of the process was completed within 120 min. This study illustrated an alternative technique for the management of unwanted biological materials using processed algal material. C. linum is one of the fast-growing marine algae in the lake of Tunis and could be utilized as a biosorbent for the treatment of Cu2+ and Zn2+ contaminated wastewater streams.  相似文献   

8.
Groundwater contamination was characterised using a methodology which combines shallow groundwater geochemistry data from 17 piezometers over a 2 yr period in a statistical framework and hydrogeological techniques. Nitrate–N (NO3-N) contaminant mass flux was calculated across three control planes (rows of piezometers) in six isolated plots. Results showed natural attenuation occurs on site although the method does not directly differentiate between dilution and denitrification. It was further investigated whether NO3-N concentration in shallow groundwater (<5 m below ground level) generated from an agricultural point source on a 4.2 ha site on a beef farm in SE Ireland could be predicted from saturated hydraulic conductivity (Ksat) measurements, ground elevation (m Above Ordnance Datum), elevation of groundwater sampling (screen opening interval) (m AOD) and distance from a dirty water point pollution source. Tobit regression, using a background concentration threshold of 2.6 mg NO3-N L−1 showed, when assessed individually in a step wise procedure, Ksat was significantly related to groundwater NO3-N concentration. Distance of the point dirty water pollution source becomes significant when included with Ksat in the model. The model relationships show areas with higher Ksat values have less time for denitrification to occur, whereas lower Ksat values allow denitrification to occur. Areas with higher permeability transport greater NO3-N fluxes to ground and surface waters. When the distribution of Cl was examined by the model, Ksat and ground elevation had the most explanatory power but Ksat was not significant pointing to dilution having an effect. Areas with low NO3 concentration and unaffected Cl concentration points to denitrification, low NO3 concentration and low Cl chloride concentration points to dilution and combining these findings allows areas of denitrification and dilution to be inferred. The effect of denitrification is further supported as mean groundwater NO3-N was significantly (P < 0.05) related to groundwater N2/Ar ratio, redox potential (Eh), dissolved O2 and N2 and was close to being significant with N2O (P = 0.08). Calculating contaminant mass flux across more than one control plane is a useful tool to monitor natural attenuation. This tool allows the identification of hot spot areas where intervention other than natural attenuation may be needed to protect receptors.  相似文献   

9.
The Sequencing Batch Reactor (SBR) system employing activated sludge process is an alternative wastewater treatment technology. A cycle of the conventional SBR system generally consists of five periods, with complete aeration during the React period to oxidize the organic matter and nitrify the ammonium-nitrogen of wastewater. Laboratory-scale reactors were used to evaluate the feasibility of incorporating alternative aerobic-anoxic-aerobic stages within the React period for simultaneous removal of organic matter, N and P. Two cycles of SBR process per day were maintained.Under the operation strategy of 0.75-h fill, 8-h react (with continuous aeration), 3.25-h settle, draw and idle periods, the treatment performance became consistent after running the system for two to four cycles (1–2 days). The percentages of both BOD5 and COD removal were around 94% from Cycle 2 onwards, the BOD5 content dropped from initial 251 mg L−1 to less than 14 mg L−1 in the final effluent. A steady nitrification (about 97%) was obtained from Cycle 4 onwards, with 1 mg NH4+-N L−1 and 25 mg NO3-N L−1 present in the final effluent. This suggested that the time required for SBR system to acclimate and reach an equilibrium state was relatively short when compared with the time needed for continuous flow activated sludge system. The findings also show that 4-h aeration during the react period was long enough to achieve more than 90% nitrification. With the incorporation of a 3-h anoxic stage after the initial 4-h aeration of the react period, a satisfactory denitrification process was observed, with nitrate level dropped from 27 to around 8 mg L−1 within 3 h. The second aeration stage did not cause significant change in wastewater nitrogen content. The wastewater phosphate content declined rapidly during the initial 4-h aeration and P-release was not observed during the anoxic stage. A slight reduction of P was found in the second aeration stage suggesting that more P-uptake occurred in this stage. A 12-h cyclic SBR system with the incorporation of 4-h aerobic, 3-h anoxic and final 1-h aerobic stages into the 8-h react period was demonstrated to be able to remove C, N and P simultaneously.  相似文献   

10.
The rise in aluminium demand in the world has significantly increased the generation of bauxite residue which occupies huge areas of land worldwide. Direct revegetation of residue storage areas has been unsuccessful because of the high alkalinity and salinity, and poor nutrient contents of the fine residue (red mud). This paper describes glasshouse and field experiments evaluating the potential use of sewage sludge as an organic ameliorant for gypsum amended red mud. The growth of Agropyron elongatum in red mud receiving gypsum (0 and 38.5 t ha−1) and sewage sludge (0, 38.5 and 77 t ha−1) amendment was assessed in a glasshouse study. Leachate and soil analyses revealed that gypsum was effective in reducing the pH, EC and ESP of red mud, while sewage sludge gave additional reductions in EC, Na and ESP. No evidence of any significant increases in heavy metal contents were observed in the leachates following sewage sludge amendment. However, soil Al contents were more available in red mud receiving only sewage sludge treatment. Sewage sludge amendment significantly increased dry weight yield and provided sufficient nutrients for plant growth except K which was marginal. No heavy metal accumulation was observed in Agropyron. Following that, a field experiment was performed having red mud amended with sewage sludge (38.5, 77 and 154 t ha−1) and gypsum (38.5 and 77 t ha−1) to evaluate their effects on soil physical properties of red mud. Sewage sludge significantly reduced soil bulk density (25%) and particle density (9%) and increased the total porosity of red mud (8%). Hydraulic conductivity also increased from 1.5 to 23 × 10−5 m s−1. Plant cover percentage and dry weight yield of Agropyron increased with an increase in gypsum and sewage sludge amendment. The results confirm that sewage sludge is effective in improving both soil structure and nutrient status of gypsum amended red mud. The use of sewage sludge for red mud revegetation provides not just an option for sludge disposal, but also a cost effective revegetation strategy for bauxite refining industry.  相似文献   

11.
Studies have been made of the growth characteristics of water hyacinth, Eichhornia crassipes (Mart.) Solms, and its ability to remove N, P and K, in a secondary settling pond of a small secondary sewage treatment plant serving both the academic and residential blocks of the Swire Marine Laboratory, University of Hong Kong. The treatment plant consists of, in series, a primary settling tank, a trickling filter compartment and a secondary settling pond from which part of the treated wastewater is recycled to the primary settling tank while the remaining effluent (1 to 2 m3 daily) mixes with and hence is diluted by the outflowing seawater from the aquarium system of the Swire Marine Laboratory before discharge to the sea. Samples of wastewater have been taken regularly from the primary sedimentation pond, the outflow of the trickling filter, the secondary settling pond and the effluent of the treatment plant (before mixing with aquarium outflow) since January, 1992. Physical, chemical and biological characteristics of the samples have been determined and are typical of secondary effluents, with a mean pH of about 7.5, total solids 1200 mg L−1, suspended solids 45 mg L−1, conductivity 2000 μS cm−1, salinity 1 ppt, dissolved oxygen 2 mg L−1, BOD5 45 mg L−1, Kjeldahl-N 30 mg L−1, NH4,-N 25 mg L−1, NO3-N 4 mg L−1, total P 10 mg L−1, K 35 mg L−1 and total coliforms of less than 105 colonies 100 ml−1.Water hyacinth plants have been stocked in the secondary settling pond as an integral part of the treatment plant so as to improve the quality of, as well as to retrieving and recycling nutrient elements from, the wastewater. The plants are periodically harvested to maintain an active growing crop. The growth rate, standing crop biomass, tissue nutrient composition, nutrient storage and accumulation rate of two growth cycles, one from February 25 to March 18 (mean temperature 17.6°C) and the other from 22 April to 12 May (24.8°C) are reported. The water hyacinth assumed a relatively high standing crop biomass of 10 kg m−2 (5 to 6 t DM ha−1), and growth rates of 48 and 225 g m−2 day−1, respectively, for the first and second growth period. Nutrient storage capacities were relatively high, at about 20, 7.5 and 16.5 g m−2 for N, P and K, respectively. The nutrient composition was very high, reaching 5.42% for N, 1.97 for P, and 4.57 for K. Both the stem and lamina accumulated high levels of N, while the petiole had the highest level of P and K. Apart from nutrient removal, the water hyacinth also helped to decrease the suspended solids, BOD5 value and total coliforms of the wastewater.It is concluded that water hyacinth improves the quality of wastewater in such small-scale sewage treatment plants and it is recommended that frequent harvests of water hyacinth would increase the treatment efficiency, especially during the active growing season with high temperatures coupled with intense solar radiation.  相似文献   

12.
A method for quality screening is suggested to detect volatile impurities in inorganic coagulants that are used for drinking water treatment. Static headspace gas chromatography with mass spectrometry detection (HS–GCMS) is sensitive and selective to detect volatiles in low concentrations. This study has discovered that volatile organic impurities are detectable in ferric and aluminium-based coagulants which are used for drinking water treatment. For ferric chloride, 2-propanol was detected at a level of 17–24 μg ml−1, acetone at 0.7–1.7 μg ml−1, 1,1,1-trichloroacetone at 0.02–0.04 μg ml−1, trichloromethane at 0.01–0.02 μg ml−1 and toluene at 0.01–0.12 μg ml−1. For ferric chloride sulfate, acetone was detected at a level of 0.12 μg ml−1, 1,1,1-trichloroacetone at 0.06–0.08 μg ml−1, trichloromethane at 0.13–0.23 μg ml−1, bromodichloromethane at 0.04–0.06 μg ml−1 and dibromochloromethane at 0.04–0.05 μg ml−1. For aluminium hydroxide chloride, only trichloromethane was detectable, but below the method detection limits (MDL). Although the concentrations of these impurities in commercial coagulants are low, this observation is important and should have impact on water industries for them to pay attention to the chemicals they are using for drinking water production.  相似文献   

13.
Biohythane production via single-stage anaerobic digestion (AD) is an effective way for sustainable energy recovery from lignocellulosic biomass. In this paper, biohythane was produced through the AD process from pineapple peel waste substrate using purely cultured Methanosarcina mazei with the enhancement of palm oil mill effluent (POME) sludge as the inoculum. This study focuses on the effects of the lignocellulosic pre-treatment method, the addition of POME sludge into M. mazei culture medium as inoculum, and various operational conditions (food to microorganisms (F/M) ratios, temperature, pH) on gas production performances. The experimental results indicate that these parameters influenced the efficiency of biohythane production by producing the peak maximum biohythane production rate values (HPRmax) and (MPRmax), H2:CH4 = 1.93:0.67 L/L-d, and biohythane yield (HY) and (MY), H2:CH4 = 1.18:0.55 mL/L-substrate. This study demonstrates that biohythane gas (H2 + CH4 + CO2) production from pineapple waste can be accelerated by M. mazei only with the enhancement of POME sludge through single-stage AD system under mesophilic batch process conditions.  相似文献   

14.
This study investigated the removal of Pb(II) from aqueous solutions by a maize (Zea mays) stalk sponge. Equilibrium and kinetic models for Pb(II) sorption were developed by considering the effect of the contact time and concentration at the optimum pH of 6 ± 0.2. The Freundlich model was found to describe the sorption energetics of Pb(II) by Z. mays stalk sponge, and a maximum Pb(II) loading capacity of 80 mg g?1 was determined. The kinetic parameters were obtained by fitting data from experiments measuring the effect of contact time on adsorption capacity into pseudo-first and second-order equations. The kinetics of Pb(II) sorption onto Z. mays biosorbent were well defined using linearity coefficients (R2) by the pseudo-second-order equation (0.9998). The results obtained showed that Zea may stalk sponge was a useful biomaterial for Pb(II) sorption and that pH has an important effect on metal biosorption capacity.  相似文献   

15.
The rice fields, depleted of O2, contain large amount of moisture and organic substrates to provide an ideal anaerobic environment for methanogenesis and are one of the principal anthropogenic sources of methane. In order to mitigate this emission Alternative Electron Acceptors (AEA) were altered in the soil. The experiments were carried out in four seasons at the site of Balarampur, near Baruipur, South 24 Parganas, West Bengal, namely September–December, 2005 (Cultivar: Sundari), February–May, 2006 (Cultivar: Sundari), September–December, 2006 and February–May, 2007 (Cultivar: Swarna-Pankaj). The seasonal average methane flux (Fe treated), for the cultivar type “Sundari” (season: September–December, 2005), is 4.41 t ha−1, as compared to the value of 6.40 t ha−1 for the untreated soil. Similarly for February–May, 2006, the seasonal average methane flux (Fe treated) is 5.52 t ha−1, whereas the untreated flux is 5.69 t ha−1. In the third and fourth seasons we had two treatments with Ammonium Thiosulphate and Ferric Hydroxide. The seasonal average methane flux (treatment: Ammonium Thiosulphate) is 4.35 t ha−1 and 5.41 t ha−1 respectively, whereas for the ferric hydroxide treated soil it is 4.35 t ha−1 and 6.14 t ha−1 respectively. The properties related to the nutrient quality of the harvested paddy seeds supplement these results.  相似文献   

16.
In the present study, an adsorbent was prepared from tamarind seeds and used after activation for the removal of Cr(VI) from aqueous solutions. The tamarind seeds were activated by treating them with concentrated sulfuric acid (98% w/w) at a temperature of 150 °C. The adsorption of Cr(VI) was found to be maximum at low values of initial pH in the range of 1–3. The adsorption process of Cr(VI) was tested with Langmuir, Freundlich, Redlich–Peterson, Koble–Corrigan, Tempkin, Dubinin–Radushkevich and Generalized isotherm models. Application of the Langmuir isotherm to the system yielded a maximum adsorption capacity of 29.7 mg/g at an equilibrium pH value ranging from 1.12 to 1.46. The adsorption process followed second-order kinetics and the corresponding rate constants obtained were 2.605 × 10−3, 0.818 × 10−3, 0.557 × 10−3 and 0.811 × 10−3 g/mg min−1 for 50, 200, 300 and 400 mg/L of initial Cr(VI) concentration, respectively. The regenerated activated tamarind seeds showed more than 95% Cr(VI) removal of that obtained using the fresh activated tamarind seeds. A feasible solution is proposed for the disposal of the contaminants (acid and base solutions) containing high concentrations of Cr(VI) obtained during the regeneration (desorption) process.  相似文献   

17.
Conversion of leather wastes to useful products   总被引:1,自引:0,他引:1  
The main objective of the present study is to investigate the production of useful materials from different kinds of leather waste. Three different types of tannery wastes (chromium- and vegetable-tanned shavings, and buffing dust) were pyrolyzed in a fixed bed reactor at temperatures of 450 and 600 °C under N2 atmosphere. Gas, oil, ammonium carbonate and carboneous residue were obtained by pyrolysis. The effect of temperature and type of leather waste on product distribution of pyrolysis was investigated. Buffing dust gave the highest yield of oil (ca. 23%), while other wastes recorded yields of ca. 9%. Results of elemental analysis and column chromatography showed that pyrolysis oils could be used as fuel or chemical feedstock after re-treatment. The yields of carboneous residue (chars) were between 37.5% and 48.5% and their calorific value was between 4300 and 6000 kcal kg−1, suitable for use as solid fuel. In addition, these chars were activated by CO2 to obtain the activated carbon. The activated carbon having highest surface area (799.5 m2 g−1) was obtained from chromium-tanned shavings. Activated carbons prepared from chromium-tanned leather were presented as an adsorbant for the adsorption of dyes from aqueous solution.  相似文献   

18.
Five levels of oily sludge application were made to the surface layer of a desert sandy soil in Kuwait. The migration of the constituents of the sludge to subsurface soil layers was investigated at intervals over a period of 29 months. The data show very limited mobility to subsurface soil layer (40–70 cm depth) but not to 70–90 cm depth. The environmental impact of the added sludge is related to soil pH and to the Zn equivalent value of the sludge. Zn equivalent for the soil treated with oily sludge was 612 mg kg−1, which is much lower than permissible limits. This soil can accept more than 1000 t ha−1 from this type of sludge. However, due to the heterogeneous composition of sludge the Zn equivalent value should be calculated for each batch. Addition of oily sludge to the desert soil susceptible to wind erosion had a significant effect on minimizing soil loss under wind tunnel conditions. This effect is attributed to aggregation of the soil particles in the surface soil layers.  相似文献   

19.
The results of an investigation characterizing the nutrients and suspended solids contained in stormwater from Kranji Catchment in Singapore are reported in this paper. Stormwater samples were collected from 4 locations and analyzed for the following eleven analytes: TOC, DOC, TN, TDN, NH4+, NO2 + NO3 (NOx), TP, TDP, OP, SiO2 and TSS. Stormwater was sampled from catchments with various proportions of rural and urban land use, including forested areas, grassed areas, agricultural and residential and commercial areas. The event mean concentrations (EMCs) of nutrients and TSS from sampling stations which have agricultural land use activities upstream were found to be higher. Comparison of site EMCs (SMCs) with published data showed that the SMCs of the nutrients and TSS are generally higher than SMCs reported for forested areas but lower than published SMCs for urban areas. Positive correlations (p < 5%) were found between loading and peak flow at locations most impacted by ubanisation or agricultural activities. Correlation between loading and rainfall variables was less distinct. EMC was found to correlate less with rainfall and flow variables compared to pollutant loading. Unlike loading, no consistent pattern exists linking EMC to any particular storm or flow variable in any of the catchments. Lastly, positive correlations were obtained between the particulate forms of nitrogen and phosphorus and TSS.  相似文献   

20.
This study aims to prepare a low-cost, environmentally friendly, and alternative, biosorbent to remove chromium Cr (III) and lead Pb (II) from polluted water and to find out the highest removal efficiencies using 2k factorial experiments. The Cr (III) and Pb (II) tolerant fungal strain identified as Penicillium chrysogenum was isolated from ceramic industrial sludge. The impact of process variables on biosorption of Cr (III) and Pb (II) by P. chrysogenum was first evaluated with the Taguchi screening design. Factors and levels were determined to optimize Cr (III) and Pb (II) removal efficiency. According to this, five factors; initial concentration, pH, biosorbent dose, temperature, and inactivation methods were determined for both metals, each factor defined as a fixed factor with two levels. Optimization of the parameters affecting the removal process was determined by the Taguchi method and the signal-to-noise (S/N) ratios are calculated. The maximum removal efficiency (99.92%) was observed at pH 7, biosorbent 1 mg L–1, inactivation with autoclaving, and at 20°C with an initial metal concentration of 50 mg L–1 Cr (III). On the other hand, the maximum removal efficiency (98.99%) was observed at pH 4, biosorbent 5 mg L–1, inactivation with autoclaving, and at 20°C with an initial metal concentration of 50 mg L–1 Pb (II). Furthermore, metal ions removal by P. chrysogenum was also confirmed by scanning electron microscopy (SEM) combined with an energy dispersive X-ray spectrometer (EDS). The presence of functional groups on fungal cells of metal binding was investigated by Fourier transform infrared (FT-IR).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号