首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Zhu Z  Deng Q  Zhou H  Ouyang T  Kuang Y  Huang N  Qiao Y 《Ambio》2002,31(3):226-230
The Pearl River Delta Economic Zone is the most dynamic economic area in South China. One of the major problems in the region is the sustainable utilization of the water resources. On the basis of analysis of the water environment status and pollution sources, it is suggested that domestic sewage is the primary cause of pollution. Two new concepts "degradation coefficient" and "degradation volume" of water resources, due to pollution, which may be used to assess macroscopically the carrying capacity of the water resources and sustainability of the water environment, are proposed by the authors. The results calculated indicate that the volumes of degraded water resources will be up to 204, 352, and 537 million m3 in 2002, 2010, and 2020. It is suggested that water for daily consumption and domestic sewage must be controlled more effectively and there should be cross-regional coordination in tackling problems of water environment.  相似文献   

2.
Chen L  Xu Z  Ding X  Zhang W  Huang Y  Fan R  Sun J  Liu M  Qian D  Feng Y 《Chemosphere》2012,88(5):612-619
Total mercury (THg) and methylmercury (MeHg) were measured in large number of soil samples collected from areas with different types of land use, different depth in the Pearl River Delta (PRD) of South China. THg and MeHg concentrations ranged from 16.7 to 3320 ng g−1 and 0.01 to 1.34 ng g−1, respectively. THg levels are highest in the top 0-20 cm soil layer, and decrease from the surface to bottom layer soil. Spatial variation was observed with different types of land use. Urban parks had the highest concentrations and the other areas tended to decrease in the order of residential areas, industrial areas, vegetable fields, cereal fields, and woodlands. Temporal variation was also noted, and two relatively high THg contamination zones located in the northwestern part of the PRD have significantly expanded over the last two decades. Both THg and MeHg concentrations were correlated significantly with soil organic matter (OM), but not with soil pH. THg pollution status was evaluated using two assessment methods.  相似文献   

3.
Using the Global Biosphere Emissions and Interactions System model (GloBEIS), 3 × 3 km gridded and hourly biogenic volatile organic compound (BVOC) emissions in the Pearl River Delta (PRD) were estimated for the year 2006. The study used newly available land cover database, observed meteorological data, and recent measurements of emission rates for tree species in China. The results show that the total BVOC emission in the PRD region in 2006 was 296 kt (2.2 × 1011 gC), of which isoprene contributes about 25% (73 kt, 6.4 × 1010 gC), monoterpenes about 34% (102 kt, 8.9 × 1010 gC), and other VOCs (OVOC) about 41% (121 kt, 6.8 × 1010 gC). BVOC emissions in the PRD region exhibit a marked seasonal pattern with the peak emission in July and the lowest emission in January, and are mainly distributed over the outlying areas of the PRD region, where the economy and land use are less developed. The uncertainties in BVOC emission estimates were quantified using Monte Carlo simulation; the results indicate high uncertainties in isoprene emission estimates, with a relative error of ?82 to +177%, ranging from 12.4 to 186.4 kt; ?41 to +58% uncertainty for monoterpenes emissions, ranging from 67.7 to 181.9 kt; and ?26 to +30% uncertainty in OVOC emissions, ranging from 88.8 to 156.2 kt on the 95% confidence intervals. The key uncertainty sources include emission factors and the model empirical coefficients α, CT1, CL, and Eopt for estimating isoprene emission, and emission factors and foliar density for estimating monoterpenes and OVOC emissions. This implies that determining these empirical coefficient values properly and conducting more field measurements of emission rates of tree species are key approaches for reducing uncertainties in BVOC emission estimates. Improving future BVOC emission inventory work in the PRD region requires giving priority to research on shrub land, coniferous forests, and irrigated cropland and pasture.  相似文献   

4.
A level IV fugacity model was applied to simulate the seasonal variation of polycyclic aromatic hydrocarbons (PAHs) in various bulk media in Pearl River Delta (PRD), China. The predictions were validated against monthly observed concentrations of gaseous and particulate phase PAHs in air and annual mean concentrations of all other bulk media. The uncertainty of the predictions was evaluated using Monte Carlo simulation. The influential parameters were identified using sensitivity analysis on both media concentrations and seasonal variations. The predicted concentrations and the patterns of seasonal variation generally agreed with the field observations. Concentrations of gaseous phase PAHs in air increased in the summer and decreased in the winter while concentrations of particulate phase PAHs in summer were lower than those in the winter. The relative variations of PAHs in the other bulk media were not as profound as those in air and the variation patterns were chemical compound dependent. Temperature and precipitation were the most important parameters leading to the seasonalities of PAH concentrations. Other key parameters included dry precipitation rate, advective water flow from upstream, and solid fractions in air and water.  相似文献   

5.
The pollution levels of typical semivolatile organic compounds (SVOCs) consisting of 15 polycyclic aromatic hydrocarbons (PAHs), 20 organic chlorinated pesticides (OCPs), and 15 phthalate esters (PAEs) were investigated in small rivers running through the flourishing cities in Pearl River Delta region, China. The concentrations of ∑15PAHs were 2.0–48 ng/L and 29–1.2?×?103 ng/g in the water and sediment samples, respectively. The ∑20OCPs were 6.6–57 ng/L and 9.3–6.0?×?102 ng/g in the water and sediment samples, respectively. The concentrations of ∑15PAEs were much higher both in the water and sediments. The partition process of the detected SVOCs between the water and sediment did not reach the equilibrium state at most of the sites when sampling. The combustion of petroleum products and coal was the major source of the detected PAHs. The OCPs were mainly historical residue, whereas the new inputs of dichlorodiphenyltrichloroethane (DDT), chlordane, and endosulfan were possible at several sites. The industrial and domestic sewage were the major source for the PAEs; storm water runoff accelerated the input of PAEs. No chronic risk of the SVOCs was identified by a health risk assessment through daily water consumption, except for the ∑20OCPs that might cause cancer at several sites. Nevertheless, the integrated health risk of the SVOCs should not be neglected and need intensive investigations.  相似文献   

6.
Heavy metals in agricultural soils of the Pearl River Delta,South China   总被引:49,自引:0,他引:49  
There is a growing public concern over the potential accumulation of heavy metals in agricultural soils in China owing to rapid urban and industrial development and increasing reliance on agrochemicals in the last several decades. Excessive accumulation of heavy metals in agricultural soils may not only result in environmental contamination, but elevated heavy metal uptake by crops may also affect food quality and safety. The present study is aimed at studying heavy metal concentrations of crop, paddy and natural soils in the Pearl River Delta, one of the most developed regions in China. In addition, some selected soil samples were analyzed for chemical partitioning of Co, Cu, Pb and Zn. The Pb isotopic composition of the extracted solutions was also determined. The analytical results indicated that the crop, paddy and natural soils in many sampling sites were enriched with Cd and Pb. Furthermore, heavy metal enrichment was most significant in the crop soils, which might be attributed to the use of agrochemicals. Flooding of the paddy soils and subsequent dissolution of Mn oxides may cause the loss of Cd and Co through leaching and percolation, resulting in low Cd and Co concentrations of the paddy soils. The chemical partitioning patterns of Pb, Zn and Cu indicated that Pb was largely associated with the Fe-Mn oxide and residual fractions, while Zn was predominantly found in the residual phase. A significant percent fraction of Cu was bound in the organic/sulphide and residual phases. Based on the 206Pb/207Pb ratios of the five fractions, it was evident that some of the soils were enriched with anthropogenic Pb, such as industrial and automobile Pb. The strong associations between anthropogenic Pb and the Fe-Mn oxide and organic/sulphide phases suggested that anthropogenic Pb was relatively stable after deposition in soils.  相似文献   

7.
For quantitative estimate of biogenic volatile organic compound emissions (BVOCs) in South China and their impact on the regional atmospheric chemistry, a 3-day tropical cyclone-related ozone episode was modeled using chemical transport model CMAQ, which was driven by the mesoscale meteorological model MM5. Hourly biogenic emission inventories were constructed using the Sparse Matrix Operator Kernel Emissions (SMOKE) model. The simulation results show good agreement with observation data in air temperature, ozone and NOx levels. The estimated biogenic emissions of isoprene, terpene, and other reactive VOCs (ORVOCs) during this tropical cyclone-related episode are 8500, 3400, and 11 300 ton day−1, respectively. The ratio of isoprene to the total BVOCs was 36.4%. Two test runs were carried out with one incorporated biogenic emissions and the other without. The simulations show that Guangdong province, particularly the Pearl River Delta (PRD) region, was the area most reactive to biogenic emissions in South China. More ozone was produced in all layers under 1500 m when biogenic emissions were included in comparison to that without BVOCs. The net formation of ozone from 9:00 to 15:00 h was the highest near the surface and could reach 38 ppb, which include 4 ppb attributed to biogenic impact. The enhanced ozone due to biogenic emissions first appeared in the PRD region and slowly spread to a greater area in South China. Process analysis indicated that the surface ozone budget was dominated by the vertical transport and dry deposition. The horizontal transport and gas-phase chemical production were relatively small in the surface layer. Presumably, ozone was produced in upper layers within the atmospheric boundary layer and convected down to surface where it is destroyed. When BVOCs was included, apart from the enhancement of gas-phase chemical production of ozone, both the surface deposition and vertical transport were also augmented.  相似文献   

8.
9.
Chen B  Duan JC  Mai BX  Luo XJ  Yang QS  Sheng GY  Fu JM 《Chemosphere》2006,63(4):652-661
The occurrence of alkylphenols (APs) was investigated in surface water and sediments from the Pearl River Delta and adjacent northern South China Sea. Most of the water samples contained detectable amounts of APs, ranging up to 0.628 microg l(-1) for nonylphenol (NP) and 0.068 microg l(-1) for octylphenol (OP). APs were found in all of the sediment samples with concentrations ranging from 59 to 7808 microg kg(-1) for NP and from 1 to 93 microg kg(-1) for OP. The Zhujiang River showed the highest concentrations of APs in both water and sediments. Significant decrease of APs concentrations going from the Zhujiang River to the Shiziyang River was observed. The Xijiang River contained concentrations of APs slightly higher in water but relatively lower in sediments than the Lingding Bay, which might be attributed to their different hydrodynamic and sedimentary characteristics. There was a decreasing trend of APs in water from the rivers to the estuary and further to the sea on the whole. In the Lingding Bay and its outer waters, concentrations of APs in sediments increased to a maximum and then decrease seaward, which was consistent with the distribution trend of the sediment organic carbon contents. Linear regression analyses showed the concentrations of APs were markedly correlated with the sediment organic carbon contents, indicating that the sediment organic carbon is an important factor controlling the levels of APs in sediments.  相似文献   

10.
This study focuses on the influences of a warm high-pressure meteorological system on aerosol pollutants, employing the simulations by the Models-3/CMAQ system and the observations collected during October 10–12, 2004, over the Pearl River Delta (PRD) region. The results show that the spatial distributions of air pollutants are generally circular near Guangzhou and Foshan, which are cities with high emissions rates. The primary pollutant is particulate matter (PM) over the PRD. MM5 shows reasonable performance for major meteorological variables (i.e., temperature, relative humidity, wind direction) with normalized mean biases (NMB) of 4.5–38.8% and for their time series. CMAQ can capture one peak of all air pollutant concentrations on October 11, but misses other peaks. The CMAQ model systematically underpredicts the mass concentrations of all air pollutants. Compared with chemical observations, SO2 and O3 are predicted well with a correlation coefficient of 0.70 and 0.65. PM2.5 and NO are significantly underpredicted with an NMB of 43% and 90%, respectively. The process analysis results show that the emission, dry deposition, horizontal transport, and vertical transport are four main processes affecting air pollutants. The contributions of each physical process are different for the various pollutants. The most important process for PM10 is dry deposition, and for NOx it is transport. The contributions of horizontal and vertical transport processes vary during the period, but these two processes mostly contribute to the removal of air pollutants at Guangzhou city, whose emissions are high. For this high-pressure case, the contributions of the various processes show high correlations in cities with the similar geographical attributes. According to the statistical results, cities in the PRD region are divided into four groups with different features. The contributions from local and nonlocal emission sources are discussed in different groups.
Implications: The characteristics of aerosol pollution episodes are intensively studied in this work using the high-resolution modeling system MM5/SMOKE/CMAQ, with special efforts on examining the contributions of different physical and chemical processes to air concentrations for each city over the PRD region by a process analysis method, so as to provide a scientific basis for understanding the formation mechanism of regional aerosol pollution under the high-pressure system over PRD.  相似文献   

11.
Fu J  Mai B  Sheng G  Zhang G  Wang X  Peng P  Xiao X  Ran R  Cheng F  Peng X  Wang Z  Tang UW 《Chemosphere》2003,52(9):1411-1422
In the Pearl River Delta of China, the rapidly developing industrial and agricultural activities, municipal development and use of chemicals caused serious environmental problems. This report summarizes the published scientific data on POPs in the environment of the Pearl River Delta, including the levels of POPs in the air, water, soil, river and estuarine sediments, the marine organisms like fish and shellfish in this region. The data preliminarily reveal the state of contamination in this region and give insight into the fate of POPs in this sub-tropical area. However, most research in this area is limited to a few kinds of POP compounds.  相似文献   

12.
Croplands contribute to atmospheric nitric oxide (NO), but very limited data are available about NO fluxes from intensively managed croplands in China. In this study, NO fluxes were measured in a typical vegetable field planted with flowering Chinese cabbage (Brassica campestris L. ssp. Chinensis var. utilis Tsen et Lee), which is the most widely cultivated vegetable in Guangdong province, south China. NO emission drastically increased after nitrogen fertilizer application, and other practices involving loosening the soil also enhanced NO emission. Mean NO emission flux was 47.5 ng N m−2 s–1 over a complete growth cycle. Annual NO emission from the vegetable field was about 10.1 kg N ha−1 yr−1. Fertilizer-induced NO emission factor was estimated to be 2.4%. Total NO emission from vegetable fields in Guangdong province was roughly estimated to be 11.7 Gg N yr−1 based on the vegetable field area and annual NO emission rate, and to be 13.3 Gg N yr−1 based on fertilizer-induced NO emission factor and background NO emission. This means that NO emission from vegetable fields was approximately 6% of NOx from commercial energy consumption in Guangdong province.  相似文献   

13.
Environmental Science and Pollution Research - Urbanization is one of the most significant human activities in the Anthropocene, with profound impacts on environmental quality. The lack of an...  相似文献   

14.
Size-resolved chemical compositions of non-refractory submicron aerosols were measured using a quadrupole Aerodyne aerosol mass spectrometer at a rural site near Guangzhou in the Pearl River Delta (PRD) of China in the summer of 2006. Two cases characterized as the outflows from the PRD urban region with plumes of high SO2 concentration were investigated. The evolution of sulfate size distributions was observed on a timescale of several hours. Namely mass concentrations of sulfate in the condensation mode (with vacuum aerodynamic diameters (Dva) < 300 nm) increased at a rate of about 0.17–0.37 ppbv h?1 during the daytime. This finding was consistent with the sulfuric acid production rates of about 0.17–0.3 ppbv h?1, as calculated from the observed gas-phase concentrations of OH (~3.3 × 106–1.7 × 107 cm?3) and SO2 (~3–21.2 ppbv). This implies that the growth of sulfate in the condensation mode was mainly due to gas-phase oxidation of SO2. The observed rapid increase was caused mainly by the concurrent high concentrations of OH and SO2 in the air mass. The evolution of the mass size distributions of m/z 44, a tracer for oxygenated organic aerosol (OOA), was very similar to that of sulfate. The mass loadings of m/z 44 were strongly correlated with those of sulfate (r2 = 0.99) in the condensation mode, indicating that OOA might also be formed by the gas-phase oxidation of volatile organic compound (VOC) precursors. It is likely that sulfate and OOA were internally mixed throughout the whole size range in the air mass.  相似文献   

15.
Li H  Tyler Mehler W  Lydy MJ  You J 《Chemosphere》2011,82(10):1373-1379
Sediment-associated pesticides, including organochlorine (OCP), organophosphate (OP), and pyrethroid insecticides, were analyzed in urban waterways in three cities (Guangzhou, Dongguan, and Shenzhen) in the Pearl River Delta (PRD), China. The OCPs represented 27.2% of the detectable insecticides in sediment, and chlordanes, DDTs, and endosulfans were the most frequently detected OCPs. The currently used insecticide chlorpyrifos was the only OP detected above the reporting limit (RL), with concentrations ranging from <RL to 100 ng g−1 dry weight (dw). Additionally, pyrethroids were detected in all sediments with the sum pyrethroid concentrations ranging from 4.26 to 384 ng g−1 dw and this represented 64.9% of the sum insecticide concentration. Despite their widespread use, no studies have been conducted investigating the occurrence and distribution of pyrethroids in China. As the first report of pyrethroids in urban waterways in China, the current study found cypermethrin was the most abundant insecticide detected in the PRD at concentrations ranging from 1.44 to 219 ng g−1 dw. Spatially, sediment from more populous and urbanized areas (Shenzhen and Tianhe district in Guangzhou) had higher insecticide residues than less populous agricultural areas. In the more modernized city of Shenzhen, the OCPs were seldom detected, whereas more diverse patterns of pyrethroids were observed. Potential sources of these insecticides, especially the frequently detected pyrethroids, were most likely from pest control during urban landscaping maintenance and from abatement programs targeting mosquitoes and ants. Results suggested that a shift in application pattern and elevated urbanization increased accumulation of currently used insecticides like pyrethroids in sediment, and made them the predominate insecticides in the PRD urban waterways.  相似文献   

16.
Zhang J  Zhou J  Jiang Y  Jiang J  Zhuang Z  Liu X  Wu Y 《Chemosphere》2007,66(2):199-202
Polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/Fs) concentrations in 31 fish samples from 19 commonly consumed freshwater and saltwater species from the Pearl River Delta Area were analyzed. The PCDD/Fs dietary intake from fish for the local population was evaluated to provide a database for setting the national PCDD/F limits in fish for the People's Republic of China. The median concentration from the 31 fish samples was 1.27 pg/g wet weight for the total of PCDD/Fs, and the median WHO-TEQ was 0.26 pg/g wet weight, and ranged from 0.063 to 1.30 pg WHO-TEQ/g wet weight. The dominant contributors to the WHO-TEQ were 1,2,3,7,8-PeCDD and 2,3,4,7,8-PeCDF, which accounted for 38% and 28%, respectively. The dietary intake of PCDD/Fs from fish for local people was estimated to be 0.47 pg WHO-TEQ/kg bw x day. In view of the findings, the dietary of PCDD/Fs from other foods of animal origins in China should be studied in more detail as soon as possible in order that standards can be put forward to protect human health.  相似文献   

17.
A highly resolved temporal and spatial Pearl River Delta (PRD) regional emission inventory for the year 2006 was developed with the use of best available domestic emission factors and activity data. The inventory covers major emission sources in the region and a bottom–up approach was adopted to compile the inventory for those sources where possible. The results show that the estimates for SO2, NOx, CO, PM10, PM2.5 and VOC emissions in the PRD region for the year 2006 are 711.4 kt, 891.9 kt, 3840.6 kt, 418.4 kt, 204.6 kt, and 1180.1 kt, respectively. About 91.4% of SO2 emissions were from power plant and industrial sources, and 87.2% of NOx emissions were from power plant and mobile sources. The industrial, mobile and power plant sources are major contributors to PM10 and PM2.5 emissions, accounting for 97.7% of the total PM10 and 97.2% of PM2.5 emissions, respectively. Mobile, biogenic and VOC product-related sources are responsible for 90.5% of the total VOC emissions. The emissions are spatially allocated onto grid cells with a resolution of 3 km × 3 km, showing that anthropogenic air pollutant emissions are mainly distributed over PRD central-southern city cluster areas. The preliminary temporal profiles were established for the power plant, industrial and on-road mobile sources. There is relatively low uncertainty in SO2 emission estimates with a range of −16% to +21% from power plant sources, medium to high uncertainty for the NOx emissions, and high uncertainties in the VOC, PM2.5, PM10 and CO emissions.  相似文献   

18.
Urban roadside levels of benzene, toluene, ethylbenzene and xylenes (BTEX) were investigated in three typical cities (Guangzhou, Macau and Nanhai) in the Pearl River Delta Region of south China. Air samples were collected at typical ground level microenvironments by multi-bed adsorbent tubes. The BTEX concentrations were determined by thermal desorption–gas chromatography–mass selective detector (TD–GC–MSD) technique. The mean concentrations of benzene, toluene, ethylbenzene and xylenes were, respectively, 51.5, 77.3, 17.8 and 81.6 μg/m3 in Guangzhou, 34.9, 85.9, 24.1, 95.6 μg/m3 in Macau, and 20.0, 39.1, 3.0 and 14.2 μg/m3 in Nanhai. The relative concentration distribution pattern and mutual correlation analysis indicated that in Macau BTEX were predominantly traffic-related while in Guangzhou benzene had sources other than vehicle emission. In Nanhai, both benzene and toluene had different sources other than vehicle emission. The samples collected from Guangzhou showed that BTEX had significant higher concentrations in November than those in July.  相似文献   

19.
Multi-year inventories of biomass burning emissions were established in the Pearl River Delta (PRD) region for the period 2003–2007 based on the collected activity data and emission factors. The results indicated that emissions of sulfur dioxide (SO2), nitrogen oxide (NOx), ammonia (NH3), methane (CH4), organic carbon (OC), non-methane volatile organic compounds (NMVOC), carbon monoxide (CO), and fine particulate matter (PM2.5) presented clear declining trends. Domestic biofuel burning was the major contributor, accounting for more than 60% of the total emissions. The preliminary temporal profiles were established with MODIS fire count information, showing that higher emissions were observed in winter (from November to March) than other seasons. The emissions were spatially allocated into grid cells with a resolution of 3 km × 3  km, using GIS-based land use data as spatial surrogates. Large amount of emissions were observed mostly in the less developed areas in the PRD region. The uncertainties in biomass burning emission estimates were quantified using Monte Carlo simulation; the results showed that there were higher uncertainties in organic carbon (OC) and elemental carbon (EC) emission estimates, ranging from ?71% to 133% and ?70% to 128%, and relatively lower uncertainties in SO2, NOx and CO emission estimates. The key uncertainty sources of the developed inventory included emission factors and parameters used for estimating biomass burning amounts.  相似文献   

20.
珠三角秋季臭氧污染来源解析   总被引:4,自引:0,他引:4  
秋季是珠三角臭氧污染最严重的季节,选取2004年秋季珠三角典型臭氧污染过程,运用臭氧来源解析技术等分析手段,研究珠三角臭氧污染特性,分析并量化各排放源区各类源对受体点的臭氧贡献。结果表明,东莞市对珠江口地区的臭氧峰值有重大贡献,下午2-3点东莞市前体物的臭氧贡献最大可达40ppb;而广州市区的前体物排放主要影响顺德区和南海区。在珠三角,排放源区一般对下风向40km范围内的地区臭氧贡献最大。秋季大多数情况下珠三角西部(江门东湖)臭氧受中部主要排放源区臭氧前体物排放与输送的影响很大,广州和佛山地区对江门东湖的臭氧峰值贡献达50ppb左右。交通尾气排放对珠三角各受体点的臭氧贡献最大,交通源对重污染区受体点臭氧的贡献最高可达40ppb~50ppb。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号