首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于实验对4个不同形状的20L容器内的油气爆燃过程进行了研究,探讨了不同形状受限空间内爆炸压力荷载的变化和火焰行为的区别。结果表明:管道(短管和长管)的压力时序曲线较容积式受限空间(球形容器和立方体容器)的压力时序曲线更复杂,并且出现压力振荡;随着初始浓度的增加,超压值和平均升压速率均先增大后减小,在浓度为1.74%时达到最大值,此时,超压从大到小依次为:长管>短管>立方体>球形容器,平均升压速率从大到小依次为:短管>立方体>长管>球形容器;在爆燃初期,立方体中火焰行为为半球状层流火焰→扁平层流火焰,火焰速度先增大后减小,最大速度为12.5 m/s,长管中火焰行为为半球状层流火焰→拉伸指状火焰,火焰速度一直增大,最大速度为40 m/s。  相似文献   

2.
Experiments using an open space dust explosion apparatus and a standard 20 L explosion apparatus on nano and micron polymethyl methacrylate dust explosions were conducted to reveal the differences in flame and pressure evolutions. Then the effect of combustion and flame propagation regimes on the explosion overpressure characteristics was discussed. The results showed that the flame propagation behavior, flame temperature distribution and ion current distribution all demonstrated the different flame structures for nano and micron dust explosions. The combustion and flame propagation of 100 nm and 30 μm PMMA dust clouds were mainly controlled by the heat transfer efficiency between the particles and external heat sources. Compared with the cluster diffusion dominant combustion of 30 μm dust flame, the premixed-gas dominant combustion of 100 nm dust flame determined a quicker pyrolysis and combustion reaction rate, a faster flame propagation velocity, a stronger combustion reaction intensity, a quicker heat release rate and a higher amount of released reaction heat, which resulted in an earlier pressure rise, a larger maximum overpressure and a higher explosion hazard class. The complex combustion and propagation regime of agglomerated particles strongly influenced the nano flame propagation and explosion pressure evolution characteristics, and limited the maximum overpressure.  相似文献   

3.
为了研究分岔管道不同封闭状态下瓦斯爆燃火焰阵面传播规律,在自制的T型透明分岔管道内,设置支管端口完全封闭、直管左端口弱封闭,采用光电传感器和压力传感器测试了直管右端弱封闭、完全封闭2种情况下,预混甲烷-空气可燃气体爆燃火焰传播过程中速度、超压参数的变化情况。结果表明:由于分岔的存在,2种封闭状态在支管端点火后瓦斯爆燃火焰阵面在支管中的传播速度均先增大后减小;直管右端弱封闭时,经过分岔后火焰加速向直管两端传播速度基本一致,分别达到86.29 m/s和88.07 m/s;直管右端完全封闭时,火焰向弱封闭端传播速度增大至166.67 m/s,火焰向完全封闭端传播时并不断压缩未燃气体产生高压振荡反馈导致火焰振荡传播现象,火焰速度不断减小至4.84 m/s;管道内瓦斯爆燃超压均迅速上升到达峰值,之后受压缩气体的膨胀和冲击后爆燃产物的振荡作用迅速下降。  相似文献   

4.
Experiments about the influence of ultrafine water mist on the methane/air explosion were carried out in a fully sealed visual vessel with methane concentrations of 8%, 9.5%, 11% and 12.5%. Water mists were generated by two nozzles and the droplets' Sauter Mean Diameters (SMD) were 28.2 μm and 43.3 μm respectively which were measured by Phase Doppler Particle Anemometer (PDPA). A high speed camera was used to record the flame propagation processes. The results show that the maximum explosion overpressure, pressure rising rate and flame propagation velocity of methane explosions in various concentrations increased significantly after spraying. Furthermore, the brightness of explosion flame got much higher after spraying. Besides, the mist with a larger diameter had a stronger turbulent effect and could lead to a more violent explosion reaction.  相似文献   

5.
为了探究不同含水率煤尘在瓦斯爆炸诱导下的爆炸传播规律,利用自行搭建的直管瓦斯爆炸诱导煤尘二次爆炸实验系统,从冲击波压力和火焰传播速度2个方面,研究了不同含水率沉积煤尘在瓦斯爆炸诱导下的爆炸传播规律和原因。研究结果表明:当煤尘含水率小于40%时,管道内沉积煤尘会在瓦斯爆炸诱导下产生二次爆炸,同时沉积煤尘总量一定时,沉积煤尘二次爆炸产生的冲击波超压峰值和火焰传播速度随着煤尘含水率的增加先增大后减小;当沉积煤尘含水率为20% 时,煤尘二次爆炸产生的冲击波超压峰值、火焰传播速度峰值达到最大值,分别为1.657 MPa和468.060 m/s;当沉积煤尘含水率大于40%时,沉积煤尘无法产生二次爆炸,此时爆炸产生的威力小于单一瓦斯爆炸,火焰传播速度衰减较无煤尘的瓦斯爆炸更快,沉积煤尘起到抑制瓦斯爆炸传播的作用。研究结果可以为防治煤尘二次爆炸提供理论依据。  相似文献   

6.
为研究新型网状高分子材料对油气爆炸的抑制作用,搭建了狭长受限空间油气爆炸抑制实验系统,进行了油气爆炸抑制实验,通过对比是否按留空率规范填充抑爆材料所达到的3种工况,分析了爆炸超压值、升压速率、火焰强度和火焰持续时间等特性参数变化情况。实验结果表明:新型网状高分子材料对油气爆炸产生的最大爆炸超压值、升压速率和火焰强度有明显的抑制作用;新型网状高分子材料对火焰的传播有明显的阻滞作用,使火焰传播速度减小;当新型材料按照规范填充时,最大爆炸超压值和升压速率分别下降了84.36%和 39.18%以上,火焰被完全熄灭,并且距离点火端越远,抑爆效果越明显。  相似文献   

7.
市政排污空间作为城市公共基础设施的重要组成部分,易积聚可燃气体形成爆炸性环境。结合排污空间的特殊环境条件,采用Fluidyn-MP多物理场数值模拟软件,建立了20 L球形爆炸罐分析模型,通过改变初始温度和初始压力,对排污空间甲烷-空气混合物爆燃特性及其变化规律进行模拟研究。结果表明:初始温度升高导致甲烷-空气混合物最大爆炸压力降低,缩短了到达最大爆炸压力的时间;初始压力增加导致最大爆炸压力急剧升高,并延长了到达最大爆炸压力的时间;最大爆炸压力对初始压力的敏感程度远大于初始温度的影响。此外,随着初始温度和初始压力的升高,爆炸火焰平均传播速度增加,而火焰传播速度对初始温度较敏感。  相似文献   

8.
A 20 L spherical explosive device with a venting diameter of 110 mm was used to study the vented pressure and flame propagation characteristics of corn dust explosion with an activation pressure of 0.78–2.1 bar and a dust concentration of 400∼900 g/m3. And the formation and prevention of secondary vented flame are analyzed and discussed. The results show that the maximum reduced explosion overpressure increases with the activation pressure, and the vented flame length and propagation speed increase first and then decrease with time. The pressure and flame venting process models are established, and the region where the secondary flame occurs is predicted. Whether there is pressure accompanying or not in the venting process, the flame venting process is divided into two stages: overpressure venting and normal pressure venting. In the overpressure venting stage, the flame shape gradually changes from under-expanded jet flame to turbulent jet flame. In the normal pressure venting stage, the flame form is a turbulent combustion flame, and a secondary flame occurs under certain conditions. The bleed flames within the test range are divided into three regions and four types according to the shape of the flame and whether there is a secondary flame. The analysis found that when the activation pressure is 0.78 bar and the dust concentration is less than 500 g/m3, there will be no secondary flame. Therefore, to prevent secondary flames, it is necessary to reduce the activation pressure and dust concentration. When the dust concentration is greater than 600 g/m3, the critical dust concentration of the secondary flame gradually increases with the increase of the activation pressure. Therefore, when the dust concentration is not controllable, a higher activation pressure can be selected based on comprehensive consideration of the activation pressure and destruction pressure of the device to prevent the occurrence of the secondary flame.  相似文献   

9.
通过搭建长为20m、截面为0.08m×0.08m的非绝热开口钢管,研究了甲烷与空气预混气体发生爆炸后的火焰和压力发展特征。实验结果表明:火焰信号最强的时刻对应于火焰前锋反应区内某时刻,而火焰信号起始上升时刻与火焰前锋预热区起始时刻接近,应选择某点火焰信号起始上升时刻作为该点的火焰到达时间。随着远离点火源距离的增加,火焰厚度呈现先变薄后变厚的变化趋势,最大超压呈现先减小、后增大、再减小的趋势,火焰传播速度则呈先增大后减小的变化过程。非绝热开口钢管的实验条件对爆炸超压和火焰传播速度的影响较大。研究成果可为甲烷爆炸致灾机制及防控的研究提供参考。  相似文献   

10.
为了解CO2-超细水雾对瓦斯/煤尘爆炸抑制特性,用自行搭建的实验系统,从超压、火焰传播速度和火焰结构3个方面研究了CO2-超细水雾形成的气液两相介质对9.5%瓦斯/煤尘复合体系爆炸的抑爆效果、影响因素与原因。研究结果表明:随着CO2体积分数和超细水雾质量浓度的增加,爆炸火焰最大传播速度、爆炸超压峰值均出现明显下降,火焰到达泄爆口时间显著延迟;尤其当CO2体积分数达到14%与超细水雾的共同抑爆效果凸显,瓦斯/煤尘复合体系爆炸超压的“震荡平台”消失,同时火焰结构呈现“整体孔隙化”。所得结论为煤矿井下高效防爆抑爆技术进行了完善和增强。  相似文献   

11.
Flame behavior and blast waves generated during unconfined hydrogen deflagrations were experimentally studied using infrared photography. Infrared photography enables expanding spherical flame behaviors to be measured and flame acceleration exponents to be evaluated. In the present experiments, hydrogen/air mixtures of various concentrations were filled in a plastic tent of thin vinyl sheet of 1 m3 and ignited by an electric spark. The onset of accelerative dynamics on the flame propagation was analyzed by the time histories of the flame radius and the stretched flame speed. The results demonstrated that the self-acceleration of the flame, which was caused by diffusional-thermal and hydrodynamic instabilities of the blast wave, was influenced by hydrogen deflagrations in unconfined areas. In particular, it was demonstrated that the overpressure rapidly increased with time. The burning velocity acceleration was greatly enhanced with spontaneous-turbulization.  相似文献   

12.
In view of the invalidity of suppression and isolation apparatus for gas explosion, a closed vacuum chamber structure for explosion suppression with a fragile plane was designed on the base of the suction of vacuum. Using methane as combustible gas, a series of experiments on gas explosion were carried out to check the feasibility of the vacuum chamber suppressing explosion by changing methane concentration and geometric structure of the vacuum chamber. When the vacuum chamber was not connected to the tunnel, detonation would happen in the tunnel at methane volume fraction from 9.3% to 11.5%, with flame propagation velocity exceeding 2000 m/s, maximum peak value overpressure reaching 0.7 MPa, and specific impulse of shock wave running up to 20 kPa s. When the vacuum chamber with 5/34 of the tunnel volume was connected to the flank of the tunnel, gas explosion of the same concentration would greatly weaken with flame propagation velocity declining to about 200 m/s, the quenching distance decreasing to 3/4 of the tunnel length, maximum peak value overpressure running down to 0.1-0.15 MPa and specific impulse of shock wave below 0.9 kPa s. The closer the position accessed to the ignition end, the greater explosion intensity weakened. There was no significant difference between larger section and smaller vacuum chambers in degree of maximum peak value overpressure and specific impulse declining, except that quenching fire effect of the former was superior to the latter. The distance of fire quenching could be improved by increasing the number of the vacuum chambers.  相似文献   

13.
An experimental study of flame propagation, acceleration and transition to detonation in hydrogen–air mixture in 2-m-long rectangular cross-section channel filled with obstacles located at the bottom wall was performed. The initial conditions of the hydrogen–air mixture were 0.1 MPa and 293 K and stoichiometric composition (29.6% H2 in air). The channel width was 0.11 m and blockage ratio was 0.5 in all experiments. The effect of channel geometrical scale on flame propagation was studied by using four channel heights H of 0.01, 0.02, 0.04, and 0.08 m. In each case, the obstacle height was equal to H/2 and the obstacle spacing was 2H.

The propagation of flame and pressure waves was monitored by four pressure transducers and four ion probes. The pairs of transducers and probes were placed at various locations along the channel in order to get information about the progress of the phenomena along the channel.

As a result of the experiments, the deflagration and detonation regimes and velocities of flame propagation in the obstructed channel were established.  相似文献   


14.
In order to investigate the effects of branch tunnels on explosion propagation, experiments were performed in five different configuration tunnels (straight configuration and configurations with 1 branch, 2 branches, 3 branches and 4 branches). Pressure and flame transducers were used to record the history of the pressure development and track the velocity of the flame front. It was shown that the branch tunnels had ability to enhance the maximum overpressure, rate of overpressure rise, and deflagration index (KG) of the gasoline–air mixture explosion due to the turbulence induced by the branch tunnels. The overpressure rise rate and KG of the explosion increased as a function of the number of branch tunnels. Experiments also showed that the maximum flame speed increased as the branch number increasing from 0 to 3 due to the enlargement of turbulence induced by the branch tunnels. However, an increase of branch number did not always lead to an enhancement of flame speed because the heat loss was intensified resulting from the increase of flame surface caused by the branch tunnels. When the number of branch tunnels exceeded 3, the maximum flame speed dropped.  相似文献   

15.
Decomposing detonation and deflagration properties of ozone/oxygen mixtures   总被引:2,自引:0,他引:2  
In this study, the decomposing detonation and deflagration properties of ozone/oxygen mixtures of up to 20 vol.% of ozone in oxygen under high pressure of up to 1.0 MPa in a tube were experimentally investigated. The mixtures were ignited by an electric spark at the end of the tube. Flame propagation properties such as flame velocity and pressure were measured with thermocouples and piezo electric transducers mounted along the tube. Slow and constant flame propagation profiles were obtained. We also investigated the quenching ability of a wire gauze as well as the concentration limit for flame propagation. However, in spite of slow flame propagation velocity and easy flame quenching properties under these experimental conditions, direct initiation of detonation by the driver detonation of the stoichiometric oxy-hydrogen mixture was easily achieved at much lower concentrations than the limit of deflagration. The observed detonation properties, such as wave velocity and pressure, agreed fairly well with CJ calculated values. The detonation velocity (900–1200 m/s) and the pressure ratio to initial pressures (5–9.5) were not affected by the initial pressure of the mixtures. Near the detonation limit, typical spinning detonations with oscillatory pressure waves were observed.  相似文献   

16.
Ducts are often recommended in the design of dust explosion venting in order to discharge materials to safe locations. However, the maximum reduced overpressure increases in a duct-vented vessel rather than in a simply vented vessel. This needs to be studied further for understanding the duct-venting mechanism. Numerous duct-vented dust explosion experiments were conducted, using a 20 L spherical chamber at elevated static activation overpressures, ranging from 1.8 bar to 6 bar. Duct diameters of 15 mm and 28 mm, and duct lengths of 0 m (simply venting), 1 m and 2 m, were selected. Explosion pressures both in the vessel and in the duct were recorded by pressure sensors, with a frequency of 5 kHz. Flame signals in the duct were also obtained by phototransistors. Results indicate that the secondary explosion occurring in the duct increases the maximum reduced overpressure in the vessel. The secondary explosion is greatly affected by the duct diameter and static activation overpressure, and hence influences the amplification of the maximum reduced overpressure. Larger static activation overpressure decreases the severity of the secondary explosion, and hence decreases the increment in the maximum reduced overpressure. The secondary pressure peak is more obvious as the pressure accumulation is easier in a duct with a smaller diameter. However, the increment of the maximum reduced overpressure is smaller because blockage effect, flame front distortion, and turbulent mixing due to secondary explosion are weaker in a narrow duct. The influence of duct length on the maximum reduced overpressure is small at elevated static activation overpressures, ranging from 1.8 bar to 6 bar at 15 mm and 28 mm duct diameters.  相似文献   

17.
利用球形发展火焰研究了常温常压下不同当量比,不同相态时2,5-二甲基呋喃-空气的层流燃烧速度和马克斯坦长度,分析了火焰拉伸对火焰传播速度的影响。研究结果表明:随着当量比的增加,2,5-二甲基呋喃-空气混合气的马克斯坦长度减少,火焰的稳定性减弱。并且分别计算出当量比为1.25和1.5的层流燃烧速度,分别为:1.189m/s,1.135m/s.。对于同一当量比1.5的情况下,不同相态的2,5-二甲基呋喃-空气混合物,在相同时刻的气液两相混合物的火焰半径已经拉伸火焰传播速度远远大于纯气相的混合物。  相似文献   

18.
Flame propagation and combustion characteristics of methane/air mixed gas in gas explosion were studied in a constant volume combustion bomb. Stretched flame propagation velocity, unstretched laminar flame propagation velocity, unstretched laminar combustion velocity and Markstein length were obtained at various ratios of nitrogen to gas mixture. Combustion stability at various ratios of nitrogen to gas mixture was analyzed by analyzing the pictures of flame propagation. Furthermore, the effect of initial pressure on the flame propagation and combustion characteristics of methane/air mixed gas in gas explosion was analyzed. The results show that the unstretched laminar flame propagation velocity, the unstretched laminar combustion velocity, Markstein length, flame stability, and the maximum combustion pressure decrease distinctly with the increase of nitrogen fraction in the gas mixture. At the same ratios of nitrogen to gas mixture, Markstein length, unstretched laminar flame propagation velocity and unstretched laminar combustion velocity decrease and the maximum combustion pressure increase with the increase of initial pressure of the gas mixture. When nitrogen fraction in the gas mixture is over 20%, the flame will be unstable and is easy to exterminate.  相似文献   

19.
The flammability of refrigerants is a major cause of refrigerant explosion incidents. Studying the explosion characteristics of refrigerants at different initial temperatures can provide significant benefits for solving the safety problems of refrigerants under actual working conditions. This paper studied the effects of the initial temperature and refrigerant concentration on the explosion characteristics of refrigerant 2, 3, 3, 3-tetrafluoropropene (R1234yf) at 0.1 MPa. The curves of explosion characteristics with different initial temperature revealed the same variation trend ranged from 25 °C to 115 °C. Specifically, as the refrigerant concentration was raised, the peak overpressure, the maximum rate of pressure rise, and laminar burning velocity increased initially and decreased afterwards, along with maximum values at the refrigerant concentration of 7.6%. When the refrigerant concentration was 7.6%, the peak overpressure declined exponentially with the initial temperature rise, while the maximum rate of pressure rise increased linearly. The laminar burning velocity calculated from the spherical expansion method indicated that the flame propagation was gradually accelerated by the increase of initial temperature, which coincided with the change of the maximum rate of pressure rise. Meanwhile, experiments and CHEMKIN simulation results demonstrated the effects of elevated temperature from 20 °C to 50 °C on the explosion limits of R1234yf. The lower explosion limit reduced and the upper explosion limit increased with rising initial temperature. In general, R1234yf exhibited moderate combustion and lower explosion risk, compared with traditional refrigerants.  相似文献   

20.
The explosion of the methane/air mixture and the methane/coal dust/air mixture under 40 J center spark ignition condition was experimentally studied in a large-scale system of 10 m3 vessel. Five pressure sensors were arranged in space with different distances from the ignition point. A high-speed camera system was used to record the growth of the flame. The maximum overpressure of the methane/air mixture appeared at 0.75 m away from the ignition point; the thickness of the flame was about 10 mm and the propagation speed of the flame fluctuated around 2.5 m/s with the methane concentration of 9.5%. The maximum overpressure of the methane/coal dust/air mixture appeared at 0.5 m. The flame had a structure of three concentric zones from outside were the red zone, the yellow illuminating zone and the bright white illuminating zone respectively; the thickness and the propagation speed of the flame increased gradually, the thickness of red zone and yellow illuminating zone reached 3.5 cm and 1 cm, the speed reached 9.2 m/s at 28 ms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号