首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Free amino acid (FAA) levels were measured from May through October 1991 in gill tissues of two groups of juvenile oysters (Crassostrea virginica Gmelin), one transferred from a low salinity field site (8) to a field site of high salinity (20) and high Perkinsus marinus (Mackin, Owen, and Collier) prevalence, the other kept at the low salinity field site. Within 24 h, glycine levels in the oysters transferred to high salinity increased 8-fold, taurine concentrations doubled and the total FAA pool rose from 150 mol g–1 dry wt to 400 mol g–1 dry wt. Taurine levels reached a plateau within 20 d after transfer to high salinity and remained at that level until P. marinus infections were detected 85 d after transfer. Taurine and glycine levels declined by 40% in the high salinity population as infection intensity increased between 70 and 105 d. Total FAA declined by approximately 33% over this period. The oysters kept at low salinity were not infected and continued to grow while the infected high salinity oysters showed no increase in shell length after Day 85. FAA levels in the low salinity group remained relatively constant throughout the experiment except for an initial rise triggered by an increase in ambient salinity from 8 to 12. The results suggest that salinity tolerance mechanisms in C. virginica may be impaired by P. marinus infection.  相似文献   

2.
A study was undertaken to establish the role of free amino acids (FAA) in aerobic energy dissipation in embryos of turbot (Scophthalmus maximus) which contain an oil globule in the egg. Laboratory-reared developing eggs and larvae (15°C, 34 salinity) were measured for oxygen uptake, ammonia excretion, contents of FAA, protein, and ammonium, and volumes of yolksac and oil globule. Newly spawned eggs from different batches contained 55 to 90 nmol egg–1 of FAA. Resorption of FAA occurred in parallel with the consumption of yolk. Resorption of the oil globule, however, occurred predominantly after hatching and mainly after yolk resorption. The combined data suggest that approximately 70% of the FAA are utilized as an energy substrate, while the rest are polymerized into body proteins. FAA become a significant energy substrate in the early egg stage and account for 100% of the aerobic energy dissipation 2 d after Fertilization then decrease to ca. 60% at the time of hatching. Lipids derived from the oil globule seem to be the main fuel after hatching and account for ca. 90% of the energy dissipation at the onset of first-feeding. Thus, the energetics of fish embryos which contain an oil globule seems to be different from those that depend exclusively on the nutritional reserves of the yolk.  相似文献   

3.
Efficient delivery of nutrients is necessary for the successful study of aquatic larval nutrition. Conventional artificial food particles for larval shrimp (Penaeus vannamei) have poor water stability and poor nutrient retention or both. We developed a novel food particle type that retained low-molecular weight, water-soluble nutrients (vitamins and glucose) within lipid-wall microcapsules embedded with dietary ingredients in particles of gelled alginate-gelatin. The combination of lipid-wall microcapsules (LWMs) embedded in gelled food particles was termed complex microcapsules (CXMs). Eighty-five percent of 14C-activity associated with encapsulated 14C-glucose was retained by CXMs (after 18 h of suspension in seawater). Bioavailability of CXM-encapsulated molecules was demonstrated by release of encapsulated dye marker into the gut lumen of larval shrimp, and by uptake of 14C from encapsulated 14C-glucose. Minimum ingestion rates, calculated from 14C-uptake for larval shrimp (Mysis-1 through Postlarva-2) fed CXMs, ranged from 48 to 99 g dry wt larva-1 d-1, and were similar to literature values reported for ingestion of live rotifers by penaeid larvae. Complex microcapsules described in this study will be a valuable new tool for studying nutrition of suspension-feeders in that both micro-and macronutrients can be delivered to these animals by one particle type.  相似文献   

4.
Using the starvation technique, changes in protein and free amino acids were examined in Penaeus esculentus Haswell collected from Moreton Bay, Australia, by trawling in 1985. Prawns of 17.7±0.26 g wet weight were held at 25°C until 2 d after moulting. Groups of seven or eight were then starved fro 5, 10, or 15 d, with appropriate control groups. At the end of each period, ecreted amino acids were collected for 24 h and whole-muscle amino acids and free amino acids (FAA) g-1 in each prawn were analysed. Concentrations of whole-muscle amino acids showed only minor changes with starvation, but concentrations of many of the FAA changed significantly. Total FAA averaged 1 182±45 mol g-1 dry weight. Individual FAA, in order of abundance, were glycine, arginine, proline, taurine, threonine, hydroxyproline, alanine, glutamic acid, valine, aspartic acid and lysine; the remaining FAA each contributed <0.2% of the total. Only taurine and alanine did not show significant changes with starvation. Concentrations of glycine, arginine, hydroxyproline, glutamic and aspartic acid increased, while those of proline, threonine, valine and lysine decreased with starvation, that of proline approaching zero after 15 d starvation. Excreted amino acid-nitrogen represented <2% of excreted ammonianitrogen ornithine being the most abundant (35%), followed by leucine (22%) and lysine (17%). The relative abundance of excreted amino acids did not correspond with those of the FAA. It is suggested that, as starvation progresses, the muscle protein is progressively hydrolysed, but with the remaining muscle maintaining its amino acid composition. The liberated amino acids enter the FAA pool and become available for energy production. Proline may have an important role as an energy source, but the ability to synthesise proline may be limited, and thus the artificial food of penaeid prawns may be improved by its addition.  相似文献   

5.
The distribution of eggs and early larval stages of the myctophid fish Benthosema pterotum was studied during three cruises to the Gulf of Oman during January to February 1981 and February 1983. The eggs and yolk sac larvae were identified and described after artificial fertilization on board the Research Vessel Dr. Fridtjof Nansen. The mature fish spawn in the Gulf at 300 to 100 m depths during early night. The eggs and smallest larvae were found at 300 to 200 m depths. The eggs hatch within 12 h at 21°C. Hatching occurs before the slightly bouyant eggs reach the upper 50 m of the water column.  相似文献   

6.
Free amino acids (FAA) and protein have been measured in whole laboratory-readed halibut larvae and on dissected individuals separated into yolk and body compartments. At hatching both FAA and protein are mainly located in the yolk compartment. During the first 12 d of the yolk-sac stage more than 70% of the FAA pool disappeared from the yolk without any significant changes in the yolk protein pool. This suggests different uptake mechanisms for FAA and protein from the yolk, and a sequential utilisation of the endogeneous reservoirs of free and protein amino acids in Atlantic halibut larvae. The data suggest that in the early yolk-sac stage FAA enter the embryo from the yolk and are utilised both for energy and protein synthesis. Later on when the free pool cannot fulfil the nutritional requirements, additional amino acids are recruited from yolk protein. Of the total amino acids (free + protein amino acids) present at hatching ca. 60% will be used as precursors for body protein synthesis while the remaining 40% are used as fuel in the larval energy metabolism.  相似文献   

7.
The effects of long-term exposure to low levels of water-accommodated fractions of Kuwait Crude oil, or to shortterm exposure to chemically dispersed oil, on the gill performance of the clam Venus verrucosa were investigated. Reduced pumping activities of the lateral cilia as well as interference with the normal beating activities of the eulaterofrontal cirri led to reduced clearance rates and retention efficiencies of food particles less than 6 m in diameter. On the other hand, frontal ciliary activities were significantly accelerated, while any retained oil droplets were conducted to the mouth region as food particles. The activities of terminal and sensory cilia were also enhanced and mucus production increased. The significance of these responses to the clam's energy budget is discussed.  相似文献   

8.
Glycine was the most abundant free amino acid (FAA) in abdominal muscle of grass shrimp Palaemonetes pugio, accounting for over 50% of the total pool. Arginine, alanine, proline, taurine and serine were also present at relatively high concentrations. Following transfer from 17%. to 2 and 32%. S, new steady-state levels of total FAA were observed at 72 h. Total FAA and the sum of glycine, alanine and proline exhibited a positive correlation with salinity. Exposure to Aroclor 1254 did not have appreciable effects on total FAA levels, indicating that disruption of intracellular osmoregulation was not a major consequence of PCB toxicity. However, changes in individual amino acid concentrations in exposed shrimp were reflective of an altered metabolic state. Glycine, which did not show changes immediately following exposure, underwent large decreases after transfer to PCB-free water and indicated a delayed effect of PCB exposure. A correlation between salinity and the sum of glycine, alanine and proline did not exist in exposed shrimp.  相似文献   

9.
Following isopycnic sedimentation in density gradients of colloidal silica (Ludox AM), zooplankton segregated into 3 broad bands of increasing density which included, respectively, fish eggs, invertebrates, and fish larvae. The zone of fish eggs was contaminated with Sagitta spp. and the zone of fish larvae was overlapped partially by mysids and euphausids. We have sought to minimize contamination through modifications of the silica gradients which might shift banding densities of the ichthyoplankton or of the contaminating invertebrates. Density shifts in fact occurred in different commercial formulations of silica sols and in gradients modified by small amounts of polymers, osmotica or charged small molecules. Sagitta were specifically shifted out of the zone of fish eggs by the addition, of 1% w/v dextran sulfate or in a silica sol composed of very small particles of silica (Nalcoag 1115). Fish larvae were shifted to higher densities by the addition of 1% w/v trimetaphosphate or 1% w/v dextran sulfate. Additions of 1% w/v polyvinyl alcohol, and of 10 mM glycine, and potassium phosphate had intermediate effects. The same banding densities of plankton in silica gradients were reached in less than 10 h at one gravity, independent of the immediate pretreatment of the sample.  相似文献   

10.
The present paper studied the influence of different food regimes on the free amino acid (FAA) pool, the rate of protein turnover, the flux of amino acids, and their relation to growth of larval turbot (Scophthalmus maximus L.) from first feeding until metamorphosis. The amino acid profile of protein was stable during the larval period although some small, but significant, differences were found. Turbot larvae had proteins which were rich in leucine and aspartate, and poor in glutamate, suggesting a high leucine requirement. The profile of the FAA pool was highly variable and quite different from the amino acid profile in protein. The proportion of essential FAA decreased with development. High contents of free tyrosine and phenylalanine were found on Day 3, while free taurine was present at high levels throughout the experimental period. Larval growth rates were positively correlated with taurine levels, suggesting a dietary dependency for taurine and/or sulphur amino acids. Reduced growth rates in Artemia-fed larvae were associated with lower levels of free methionine, indicating that this diet is deficient in methionine for turbot larvae. Leucine might also be limiting turbot growth as the different diet organisms had lower levels of this amino acid in the free pool than was found in the larval protein. A previously presented model was used to describe the flux of amino acids in growing turbot larvae. The FAA pool was found to be small and variable. It was estimated that the daily dietary amino acid intake might be up to ten times the larval FAA pool. In addition, protein synthesis and protein degradation might daily remove and return, respectively, the equivalent of up to 20 and 10 times the size of the FAA pool. In an early phase (Day 11) high growth rates were associated with a relatively low protein turnover, while at a later stage (Day 17), a much higher turnover was observed. Received: 19 March 1997 / Accepted: 14 April 1997  相似文献   

11.
 Free amino acid (FAA) and protein content were measured in various developmental stages of Artemia franciscana, from cysts to Instar III metanauplii. In addition, decapsulated cysts of 15 Artemia populations from different localities were compared with respect to their FAA and protein content. Furthermore, the content and composition of the FAA pool were modulated by hatching the cysts at various salinities, and by enriching the nauplii with algae or a lipid-enrichment emulsion. The FAA content increased threefold from cysts to nauplii, and Instar III metanauplii contained nearly 50% taurine of total FAA. Cysts of A. franciscana were found to contain one-third the amount of FAA compared to the other Artemia species investigated. The content and pool composition of FAA was successfully modulated in 11 of 13 populations, where by the content of FAA was significantly increased when hatched at high salinity. Finally, enrichment elevated the content of FAA and changed the pool composition, thereby showing a dietary effect. Algal enrichment also increased the protein content. Received: 27 September 1999 / Accepted: 17 July 2000  相似文献   

12.
Prey selection shortly after the onset of feeding by laboratory-reared gilthead seabream, Sparus aurata L., larvae was studied using larvae fed on two types of microcapsule (hard- and soft-walled) having diameters ranging from 25 to 300 m. Preferences between inert food and live prey (rotifers and Artemia sp. nauplii) were also studied. Seabream larvae were able to ingest inert food from first feeding. Larvae of all size classes ingested hard microcapsules with diameters in the range 25 to 250 m. However, larvae with a total length (TL) below 4 mm preferentially selected particles 25 to 50 m in diameter, larvae of TL 4 and 5 mm preferred particles 51 to 100 m in diameter, while larvae above 5 mm TL preferred particles 101 to 150 m in diameter. With soft microcapsules, larvae always preferred particles larger than in the previous case, and above 4.5 mm TL they preferentially selected particles 201 to 250 m in diameter. In addition, the gradual increase of preferred diameters with increasing TL was more pronounced when larvae were increasing TL was more pronounced when larvae were fed on soft particles. Mean values for prey width/mouth width ratios were approximately 0.24 and 0.30 when larvae were fed on hard-walled and soft-walled microcapsules, respectively, irrespective of the absolute value of larval length. When a mixed diet of live and inert food items was offered, live prey were always preferentially selected, even if the prey width/mouth width ratio was apparently not favourable. Only a physical constraint such as excessive prey width could counter this preference for living prey vs inert microcapsules. These results contribute to our knowledge in larval feeding behaviour, especially in the presence of inert food, and represent a fundamental step in developing prepared food for marine fish larvae.  相似文献   

13.
Effects of maternal food environment and season were examined during spring and autumn on females, eggs and nauplii of Calanus finmarchicus, in different natural prey suspensions or cultures of Rhodomonas baltica. Females sampled in spring were in general larger, had higher protein content, and showed higher egg production and hatching rates, than in autumn. The cumulative egg production was almost double in spring compared to autumn (females fed R. baltica). Females had higher content of free amino acids (FAA) and free essential amino acids (EAA) in autumn than in the spring. Also, the FAA contents in eggs and nauplii were higher in autumn than in spring. In contrast, the composition of EAA in eggs was constant between seasons, indicating maternal regulation. The highest cumulative egg production was correlated with a high similarity in the free pool of EAA in the food suspension and the female copepod. Thus, the data support the hypothesis that similarity in the free pool of EAA of diet and female promotes high fecundity and egg hatching success in C. finmarchicus.  相似文献   

14.
In the larvae of many marine teleosts, the stomach is absent until they approach or attain metamorphosis. Consequently, the formation of chyme containing specific free amino acids from the gastric digestion of protein, which are believed to be signals initiating the release of the digestive hormone cholecystokinin (CCK), is lacking. CCK, when secreted into the blood circulation from specialized intestinal cells, stimulates gallbladder motility and is a key factor causing the release of pancreatic digestive enzymes into the gut lumen. Using first-feeding Atlantic herring larvae (Clupea harengus) as a model, the aim of the present study was to determine if a CCK response together with tryptic activity could be elicited in larvae ingesting dietary protein and/or FAA. Larvae were tube fed single lamellar liposome vesicles (SLV) containing: (1) physiological saline (PS), (2) bovine serum albumin (BSA), (3) specific free amino acids (FAA), or (4) a ratio (1:1) of BSA and FAA. The CCK and trypsin levels were then assayed (radio-immunoassay) at 0, 15, 60 and 120 min after tube feeding. A marked CCK response was elicited in all treatments compared to the PS control at 15 and 30 min and was significant (p<0.05) at 120 min after tube feeding. Larvae tube fed the FAA treatment exhibited CCK levels that increased linearly from 1.6 to 5.6 fmol mg-1 dry weight (DW) after 2 h of digestion, although this response was below the BSA and BSA:FAA treatments. The BSA and BSA:FAA treatments, after 15 min of digestion, showed a rapid CCK increase, over the PS and the FAA liposome treatments, to 8.1 and 5.4 fmol mg-1 DW, respectively. At the end of the assay, BSA and BSA:FAA demonstrated similar levels (10.2 and 9.2 fmol mg-1 DW, respectively). Larvae tube fed the PS control or the FAA liposome treatment did not demonstrate any appreciable increase in tryptic activity during the 2 h digestion period (0.03-0.071 and 0.03-0.048 mU mg-1 DW, respectively). In contrast, the BSA:FAA treatment increased from 0.03-0.148 mU mg-1 DW 1 h after feeding, which was significantly (p<0.05) higher than the PS and FAA liposomes, and then decreased markedly (0.085 mU mg-1 DW) after 2 h of digestion. The larvae tube fed BSA liposomes, however, demonstrated steadily increasing tryptic activity throughout the sampling period, attaining 0.255 mU mg-1 DW after 2 h, which was significantly (p<0.05) more than all the other treatments. The results showed that ingested liposomes containing FAA or the protein BSA or a combination of these two nutrients effectively stimulated CCK production in first-feeding herring larvae. In contrast, liposomes containing only physiological saline did not elicit a CCK response. In addition, liposomes containing BSA stimulated tryptic activity in herring larvae, which was not observed in fish fed liposomes that included only FAA or PS. This suggests that a suitable protein substrate is required to regulate protein digestion.  相似文献   

15.
The content of free amino acids (FAA) in the cod (Gadus morhua L.) egg is about 200 nmol at spawning, decreasing by about 100 nmol/egg during the egg stage and about 75 nmol/larva during the yolksac larval stage. Together, alanine, leucine, serine, isoleucine, lysine, and valine account for about 75% of the decrease. Ammonium accumulates gradually during the egg stage and is quickly excreted after hatching. The body protein content is maintained during the egg and yolksac larval stages. The measured oxygen uptake of the cod embryo during the egg and yolksac larval stages accounts for about 85% of the oxygen necessary to catabolize the FAA disappearing during this period. Ammonia excretion of the cod embryo, as taken from literature data, is similar to the expected ammonia production from catabolism of the FAA. Our data suggest that FAA are a major substrate for aerobic energy production in cod eggs and yolksac larvae. The implication of this finding for the production of a favourable first-feed for cod and other cultivated marine fish larvae, and for the selection of high quality eggs of marine fishes, is stressed.  相似文献   

16.
From July to September 1982 feeding experiments were conducted with 138-mm fork length Atlantic menhaden Brevoortia tyrannus (Latrobe) (Pisces: Clupeidae) to determine their particle size-specific feeding abilities. Monoculture clearing-rate experiments showed that the minimum size of particles filtered, the minimum size threshold, for 138-mm fish is 7 to 9 m. Filtration efficiency for three species of phytoplankton below the minimum size threshold. Pseudoisochrysis paradoxa, Monochrysis lutheri, and Isochrysis galbana, averaged 1.0% (n=14). Tetraselmis suecica, Prorocentrum minimum, and 2-celled Skeleionema costatum, phytoplankton which are larger than the minimum size threshold and smaller than the 20-m upper limit for nanoplankton, were filtered at efficiencies averaging 21% (n=24). S. costatum chains of 3 to 6 cells, prey particles exceeding the size limits of nanoplankton, were filtered at average efficiencies ranging from 22 to 84%. The mean filtration efficiency for Artemia sp. nauplii (San Francisco Bay Brand) of 36% (n=7) was lower than for smaller phytoplankton prey. The presence of detritus at concentrations usually encountered in nature enhanced filtering efficiency and lowered minimum size thresholds at which phytoplankton were retained. For small food particles, filtering efficiency decreased as swimming speed of the menhaden increased. As menhaden grow, their feeding tepertoire shifts to larger planktonic organisms.Contribution No. 1201 Virginia Institute of Marine Science  相似文献   

17.
Relation of fish larvae and zooplankton biomass in the Gulf of Aden   总被引:2,自引:0,他引:2  
This study is based on zooplankton samples collected in the upper 50 m by the F.R.V. Manihine in the Gulf of Aden during October–November, 1966 and February–March, 1967. Generally, the displacement volume of zooplankton varied between 20 and 67 ml/m2. Some higher values, up to 100 ml/m2, were also observed. The number of larval fish in positive hauls ranged from 2 to 282 larvae/m2. An inverse relationship between the number of larval fish and the accompanying volume of zooplankton was noted. This relationship is discussed. It is hypothesized that larval mortality due to predation in the Gulf of Aden during the northeast monsoon (November, February and March) was very high.  相似文献   

18.
We assessed the ontogenetic changes in protein content and free amino acids (FAA) in eggs and early larvae of Engraulis ringens (anchoveta) off central Chile on different dates during the spawning season. On all sampling dates, a reduction in embryonic yolk-sac volume, proteins and FAA concentrations occurred during development. Protein electrophoresis (SDS–PAGE) of eggs and larvae showed at least 22 protein bands: 11 were consumed early and not detected after hatching. The proportion of essential FAA (EFAA) was higher than the proportion of non-essential FAA (NEFAA) in early eggs and in 7 day-old larvae (82.5-73% EFAA respectively). During egg development, the FAA pool was dominated by leucine, alanine and lysine, three amino acids contributing 35–44% of the total FAA in eggs. During larval development, histidine was the most abundant FAA. In July, total FAA constituted 13–18% of the egg dry weight. A similar proportion (45–51%) occurred in July between protein plus FAA and total lipids. The differences in egg size during the spawning season along with variability in batch composition suggests that the female spawning condition is a major factor determining egg quality and early offspring success.  相似文献   

19.
Contents of free amino acids (FAA), protein and ammonium ions together with rates of ammonia excretion and oxygen consumption were measured in order to study the role of FAA as an energy substrate in developing eggs and larvae of seabass (Lates calcarifer) maintained in seawater (30 ppt) at 28 °C without feeding. Initially eggs contained 25.3 nmol ind−1 of FAA of which 21.5 nmol was rapidly utilised by the developing eggs and larvae during the period up to 40 h post spawning (PS) when nearly all the yolk had been resorbed. During the same period, a net increase in protein content of 1.7 μg ind−1 was observed, indicating that the major part of the amino acids lost from the free pool had been polymerised into body proteins. Assuming that the balance of the FAA after protein synthesis was used entirely for energy metabolism, FAA appeared to be an important energy substrate during the embryonic stages (2 to 16 h PS); after hatching, the contribution of FAA to energy metabolism was less significant. From 50 h PS until the end of the study period at 100 h PS, amino acids derived from somatic protein were used for energy metabolism. For the overall period from just after spawning up to 100 h PS, the data indicate that ca. 14% of the total aerobic energy metabolism was derived from amino acid catabolism. Received: 26 September 1997 / Accepted: 1 April 1998  相似文献   

20.
Mechanisms initiating trypsinogen secretion were studied in laboratory reared herring larvae (Clupea harengus L.) exposed to physical and chemical stimuli. Pancreatic secretion of trypsinogen was quantified for each stimulus type as the increase above pre-stimulus level of intestinal trypsin content. Larval prey types were: nauplii, copepodites or adult Acartia tonsa, small polystyrene spheres (diameter 94 m), small (diameter 79 m) or large (diameter 170 m) polystyrene-latex spheres. Intestinal trypsin content can be expressed as a function of two variables: meal size and content of pancreatic trypsinogen. Trypsinogen secretion increases with different prey items in the order: small spheres, nauplii and copepodites. Larvae which eat large spheres secrete more enzyme than if fed small spheres but trypsinogen secretion is similar in fish larvae fed copepodites and large spheres. The fact that the size of non-biodegradable particles exerts a major control over trypsinogen secretion suggests neural — as opposed to chemically mediated — initiation of secretion. A cephalic phase of secretory stimulation could not be demonstrated during swallowing of copepods or exposure for 2 to 3 h to compounds which leak from live copepodites. As cephalic and gastric phases of secretory stimulation are absent, initiation of trypsinogen secretion must take place in the intestine. Larval herring retain trypsin in the intestine. Ca. 4.5 h after a meal, 3/4 of the enzyme is located in the intestinal fluid, presumably available for hydrolysis of subsequent meals, and the high proportion (ca. 25%) of the pancreatic trypsinogen content which is secreted for copepodite prey may thus not be energetically wasteful for the larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号