首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Photosynthetically active radiation (PAR) energy reaching on the vegetated surface is a key determinant of plant physiological processes. Most of biosphere or crop models use the ratio of PAR to incoming solar radiation (Rs), PAR/Rs, to convert Rs into PAR in order to reduce weather data-input requirements. Several existing models simply specify a constant ratio, PAR/Rs = 0.5. However, some field experiments have reported that the ratio PAR/Rs may not be constant. Previous empirical equations of PAR/Rs were derived based on the data of monthly or daily timescales collected from only a few measurement sites, hence they may not be appropriate to be used in current global biosphere models usually with hourly simulation time steps. Here, we represent the exponential correlation between PAR/Rs and sky clearness index (0-1) using hourly data from 54 Ameriflux measurement sites. It is found that PAR/Rs increases up to 0.6 in cloudy conditions when the clearness index (CI) is below ∼0.2, whereas it is nearly constant at ∼0.42 when CI is above 0.2. When the identified empirical equation is used in the model simulation, it results in −4 to 2% difference in the stomatal conductance compared to that using the constant ratio PAR/Rs = 0.5.  相似文献   

2.
D. Hanelt 《Marine Biology》1998,131(2):361-369
The capability of several macroalgal species to protect photosynthesis from excessive irradiance by dynamic photoinhibition was investigated relative to their depth distribution in summer 1995 in the Kongsfjord (79°N; 12°E, Ny Ålesund, Spitsbergen, Norway). Photoinhibition of photosynthesis was induced by exposure of algae from different water depths to a high photon fluence rate of 500?μmol?m?2?s?1 for 2?h. Changes in optimal quantum yield (F v/F m) were measured during the inhibition phase. Recovery of photosynthesis was subsequently induced by dim white light (10?μmol?m?2?s?1) and observed as changes in the variable fluorescence. With a newly developed mathematical model different parameters of the response kinetics of inhibition and recovery were calculated and related to the depth distribution of each algal species. It is shown that two components with slow and fast reaction kinetics, respectively, are involved in photoinhibition and recovery of photosynthesis. Their possible molecular bases are discussed. The half-life time (τ) of the inhibition and recovery phases, i.e. the time necessary to reach half maximal response, is clearly related to the depth distribution of the investigated species. Algae collected close to the water surface show a fast reaction of both photoinhibition and recovery and, hence, have a low τ. With increasing depth the reactions become slower and τ increases. τ was highest in deep water algae. Further analysis of the reaction kinetics in Laminaria saccharina shows that the relative proportion of the two kinetics involved change with the collection depth. In contrast, a significant difference in the reaction rates of both kinetics was not observed.  相似文献   

3.
Measurements of the photosynthetic activity of symbiotic zooxanthellae in corals under natural growth conditions has been limited until recently, and this is one of the first reports on utilising a newly developed underwater pulse amplitude modulated (PAM) fluorometer (the Diving-PAM, Walz Gmbh, Germany) for such studies in situ. Photosynthetic responses to irradiance (photosynthetic photon flux, PPF) of the two faviid corals Favia favus (Forskål) and Platygyra lamellina (Ehrenberg) were measured while snorkelling or SCUBA diving (in August 1997), and we report here the results in terms of effective quantum yields of photosystem II (Y?) and estimated rates of photosynthetic electron transport (ETR, calculated as Y?×?0.5?× PPF?×?FA, where FA is the estimated fraction of light absorbed by the photosymbiont-containing tissue). Both species showed a reduction in Y with increasing actinic irradiances produced by the instrument above 500?μmol photons m?2 s?1, and the corresponding ETR values yielded apparently typical photosynthesis versus irradiance (P-I?) curves, which saturated between 1500 and 2000?μmol photons m?2 s?1. It was found that 30?s irradiation at each PPF level was sufficient to give optimal ETR values and, therefore, each P-I curve could be obtained within a few minutes. In situ point measurements from various areas of colonies under ambient light showed average ETR values within the range expected from the P-I curves. In order to test the Diving-PAM in an eco-physiologically relevant experiment, photosynthetic ETR versus PPF was measured for three sections of a large P. lamellina, each section of which received different natural irradiance levels. The results clearly demonstrated adaptations to the ambient light field in that vertical and downward-facing portions of the colony showed gradually lower maximal ETRs, steeper initial slopes of the P-I curves and, accordingly, lower light saturation points than upward-facing areas receiving higher light levels. Based on these trials, some evaluations are given as to the applicability of the Diving-PAM for photosynthetic measurements when monitoring similar corals.  相似文献   

4.
The effect of light intensity on nitrate uptake by natural populations of phytoplankton was examined by 15N traceruptake experiments during the spring (March–May 1987) in Auke Bay, Alaska. The data were fit to a rectangular hyperbolic model which included a term for dark uptake. Three types of curves described nitrate uptake as a function of light intensity. The first (Type I) had a low half-saturation light intensity (K I), low chlorophyll-specific uptakes rates, no dark uptake and occasional photoinhibition. These were observed during a period of biomass decrease, accompanied by low daily light and strong wind, prior to the major bloom. The second type (Type II) had relatively high K I, high chlorophyll-specific uptake rates, and no dark uptake. Type II curves were observed during most of the period prior to nitrate depletion in the surface waters. Types I and II both appeared prior to nitrate depletion in the water and reflected variations in the light history of the phytoplankton population. The third type (Type III) occurred in nitrate-deplete conditions, when nitrate uptake was less dependent on light intensity (i.e., high rates of dark uptake and lower K I). Decreased light-dependency during this period was coupled with physiological nitrogen deficiency in the population. Comparing these parameters to those of photosynthetic carbon fixation, K Ivalues of nitrate uptake were generally higher than those of photosynthesis prior to nitrate depletion, and lower during nutrient-deplete conditions.  相似文献   

5.
The effects of ultraviolet radiation on phytoplankton are usually described as a function of dose (J m–2, weighted appropriately). Experiments conducted in 1988 and 1989 on a marine diatom,Thalassiosira pseudonana (Clone 3H), demonstrate that during lightlimited photosynthesis in visible radiation, the inhibition of photosynthesis by supplemental ultraviolet radiation (principally UV-B: 280 to 320 nm) is a function of irradiance (W m–2) as well as of dose: for equal doses of UV-B, a relatively short exposure to high UV-B irradiance is more damaging to photosynthesis than a longer exposure to lower irradiance. In fact, photoinhibition by UV-B is well described as a monotonic, nonlinear function of irradiance for time scales of 0.5 to 4 h. A nitrate-limited culture was about nine times more sensitive to UV-B than was a nutrient-replete culture, but the kinetics of photoinhibition were similar. These results have some bearing on efforts to describe the effects of ultraviolet radiation on marine primary productivity. Action spectra of photoinhibition by UV can be constructed, but they should only be used to describe photoinhibition for specified time scales. Vertical profiles of relative photoinhibition must be interpreted cautiously because photoinhibition by UV-B is likely to be a function of incubation time and results must therefore be interpreted in the context of vertical mixing.  相似文献   

6.
Spring diatom flowerings in Bedford Basin, Nova Scotia, almost exhausted the available nitrogen supplies. The supply of nitrate appeared to regulate the magnitude of the bloom. Other nutrient supplies may also have been limiting. Certain alterations in quantities of major metabolites could be interpreted in terms of nitrogen limitation. Nitrate, (nitrite), and ammonium were generally utilized simultaneously by Thalassiosira nordenskioldii, the dominant bloom organism. This species did not effectively utilize urea in either laboratory culture or in the natural environment. T. fluviatilis simultaneously utilized all nitrogen sources provided in laboratory experiments simulating natural nutrient conditions.  相似文献   

7.
Gametophytes of two species of Porphyra collected around San Juan Island, Washington in 1986 and acclimated to low light conditions in culture showed different resistances to photoinhibition of photosynthesis. The intertidal species P. perforata J. Agardh exhibited photoinhibition at one-third the rate exhibited by the subtidal species P. nereocystis Anderson following treatments at 2000 mol photons m-2 s-1 under conditions of full hydration and optimal temperature. The greater resistance of P. perforata to photoinhibition could not be attributed to reduced photosynthetic pigment concentration, higher photosynthetic capacity, avoidance of light by chloroplast movement or to enhanced rates of photorespiration. Total carotenoid concentrations were similar in the two species. It is probable that the mechanisms of this resistance are operating at the level of the thylakoid membranes. Resistance to photoinhibition represents an adaptation of photosynthesis in P. perforata which may contribute to its persistance in the extreme environment of its intertidal habitat.  相似文献   

8.
Statements comparing photosynthetic performance characteristics of species rely upon empirical data, usually light-saturation curves (photosynthesis, P, versus incidentlight flux-density, I o, relationships) derived from instantaneous measurements. The specific comparative parameters are initial slope and maximum photosynthesis, P max. For phytoplankton, diurnal variation in specific productivity at maximum incident light, I max is typically asymmetrical, i.e., there is a morning maximum followed by an afternoon depression. Five seaweed species, numerical dominants from the Outer Banks of North Carolina, were examined for patterns of diurnal photosynthetic performance in sunlight of habitat equivalence. These were Codium decorticatum (Woodw.) Howe and Ulva curvata (Kütz.) De Toni in the Chlorophyceae, Dictyota dichotoma (Huds.) Lamour. and Petalonia fascia (O.F. Müll.) Küntze in the Phaeophyceae, and Gracilaria foliifera (Forssk.) Børg. in the Rhodophyceae. Diurnal patterns of oxygen exchange were varied, some symmetrical about the midday axis, others asymmetrical, and were specific for (1) species, (2) derived habitat, (3) thallus absorptance (1-I/I o, where I is the transmitted light), (4) developmental stage, and (5) diurnal photosynthetically active radiation (PAR) history. All species show a depression in oxygen exchange rates at less than 0.1 I max, and show varying degrees of recovery when I o decreases from that value. Diurnal photosynthetic performance of some species at 0.03 I o (total diurnal maximum) exceeds several times that at 0.70 I o (total diurnal maximum), an observation not predicted by instantaneous measurements. Specific day-rate integrals of I o vary, producing transient initial slope and P max values. Thus, initial slope and P max values derived from instantaneous measurements in the laboratory bear little relationship to actual diurnal production. At this time there appears to be no substitute for direct measurement of diurnal photosynthesis.  相似文献   

9.
Flocculation of phytoplankters into large, rapidly sinking aggregates has been implicated as a mechanism of vertical transport of phytoplankton to the sea floor which could have global significance. The formation rate of phytoplankton aggregates depends on the rate at which single cells collide, which is mainly physically controlled, and on the probability of adhesion upon collision (=coagulation efficiency, stickiness), which depends on physico-chemical and biological properties of the cells. We describe here an experimental method to quantify the stickiness of phytoplankton cells and demonstrate that three species of diatoms grown in the laboratory (Phaeodactylum tricornutum, Thalassiosira pseudonana, Skeletonema costatum) are indeed significantly sticky and form aggregates upon collision. The dependency of stickiness on nutrient limitation and growth was studied in the two latter species by investigating variation in stickiness as batch cultures aged. In nutrient repleteT. pseudonana cells stickiness is very low (< 5 × 10?3), but increases by more than two orders of magnitude as cell growth ceases and the cells become nutrient limited. Stickiness ofS. costatum cells is much less variable, and even nutrient replete cells are significantly sticky. Stickiness is highest (> 10?1) forS. costatum cells in the transition between the exponential and the stationary growth phase. The implications for phytoplankton aggregate formation and subsequent sedimentation in the sea of these two different types of stickiness patterns are discussed.  相似文献   

10.
Proliferation of macroalgal mats is a frequent consequence of nutrient-driven eutrophication in shallow, photic coastal marine ecosystems. These macroalgae have the potential to significantly modify water quality, plankton productivity, nutrient cycling, and dissolved oxygen dynamics. We developed a model for Ulva lactuca and Gracilaria tikvahiae in Greenwich Bay, RI (USA), a shallow sub-estuary of Narragansett Bay, as part of a larger estuarine ecosystem model. The model predicts the biomass of both species in units of carbon, nitrogen, and phosphorus as a function of primary production, respiration, grazing, decay, and physical exchange, with particular attention to the effects of biomass layering on light attenuation and suppression of metabolic rates. The model successfully reproduced the magnitude and seasonal cycle of area-weighted and peak biomass in Greenwich Bay along with tissue C:N ratios, and highlighted the importance of grazing and inclusion of self-limitation primarily in the form of self-shading to overcome an order of magnitude difference in rates of production and respiration. Inclusion of luxury nutrient uptake demonstrated the importance of internal nutrient storage in fueling production when nutrients are limiting. Macroalgae were predicted to contribute a small fraction of total system primary production and their removal had little effect on predicted water quality. Despite a lack of data for calibration and a fair amount of sensitivity to individual parameter values, which highlights the need for further autecological studies to constrain formulations, the model successfully predicted macroalgal biomass dynamics and their role in ecosystem functioning. Our formulations should be exportable to other temperate systems where macroalgae occur in abundance.  相似文献   

11.
Iron availability strongly governs the growth of Southern Ocean phytoplankton. To investigate how iron limitation affects photosynthesis as well as the uptake of carbon and iron in the Antarctic diatom Chaetoceros simplex, a combination of chlorophyll a fluorescence measurements and radiotracer incubations in the presence and absence of chemical inhibitors was conducted. Iron limitation in C. simplex led to a decline in growth rates, photochemical efficiency and structural changes in photosystem II (PSII), including a reorganisation of photosynthetic units in PSII and an increase in size of the functional absorption cross section of PSII. Iron-limited cells further exhibited a reduced plastoquinone pool and decreased photosynthetic electron transport rate, while non-photochemical quenching and relative xanthophyll pigment content were strongly increased, suggesting a photoprotective response. Additionally, iron limitation resulted in a strong decline in carbon fixation and thus the particulate organic carbon quotas. Inhibitor studies demonstrated that, independent of the iron supply, carbon fixation was dependent on internal, but not on extracellular carbonic anhydrase activity. Orthovanadate more strongly inhibited iron uptake in iron-limited cells, indicating that P-type ATPase transporters are involved in iron uptake. The stronger reduction in iron uptake by ascorbate in iron-limited cells suggests that the re-oxidation of iron is required before it can be taken up and further supports the presence of a high-affinity iron transport pathway. The measured changes to photosystem architecture and shifts in carbon and iron uptake strategies in C. simplex as a result of iron limitation provide evidence for a complex interaction of these processes to balance the iron requirements for photosynthesis and carbon demand for sustained growth in iron-limited waters.  相似文献   

12.
Using dynamic energy budget (DEB) theory, this paper explores the potential of excess and harmful radiation, notably UV, to cause changes in performance and, ultimately, bleaching in scleractinian corals for a range of ambient nitrogen and (beneficial) photosynthetically active radiation levels. Two negative impacts of radiation are considered: a reduction in the capacity of the symbiont to generate energy through photosynthesis (defined in this paper as photoinhibition); an increase in the costs for the symbiont to remain viable due to repair of damage (defined in this paper as photodamage). Model predictions indicate that although both types of impact reduce the growth potential of host and symbiont, photoinhibition predominantly affects host features, except at very low ambient nitrogen levels, under which conditions the severity of nitrogen limitation is so strong that a reduction in photosynthetic rates due to photoinhibition has minimal impact. In steady state, photoinhibition leads to a reduction in host biomass, and an increase in symbiont density, implying that photoinhibition (as defined in this paper) is unlikely to cause bleaching. In contrast, the impact of photodamage is mostly affecting symbiont features, including a decline in symbiont density. Thus, photodamage may contribute to coral bleaching. Furthermore, the model predicts that, with both photoinhibition and photodamage, an increasing ratio of harmful to beneficial radiation accelerates the suppression of growth rates of symbiont and host, implying that coral health deteriorates progressively faster with increasing harmful radiation, such as UVb.  相似文献   

13.
 Effects of nutrient treatments on photoacclimation of the hermatypic coral Stylophora pistillata (Esper) were studied. Studies on photoacclimation of colonies from different light regimes in the field were evaluated and used to design laboratory experiments. Coral colonies were collected in the Gulf of Eilat (Israel) from January to March 1993. Exterior branches of colonies from different depths (1 to 40 m) displayed different trends in production characteristics at reduced and very low levels of illumination. From 24 ± 3% to 12 ± 2% of incident surface photosynthetic active radiation (PARo), zooxanthella population density and chlorophyll a+c per 106 zooxanthellae increased, a trend seen in the range of light levels optimal for coral growth (90 to 30% PARo). The P max of CO2 per 106 zooxanthellae decreased, while P max of CO2 per 103 polyps increased, indicating an increase in zooxanthella population density at low light levels. Proliferous zooxanthella frequency (PZF, a measure of zooxanthella division) declined significantly at light levels <18 ± 3% PARo. At the lowest levels of illumination (<5% PARo), zooxanthella population density decreased, as did the PZF; chl a+c per 106 zooxanthellae was unchanged. In 28-d experiments, exterior coral branches from the upper surfaces of colonies from 3 m depth (65 ± 4% PARo) were incubated in aquaria under bright (80 to 90% PARo), reduced (20 to 30% PARo), and extremely low (2 to 4% PARo) light intensities. At each light intensity, the corals were maintained in three feeding treatments: sea water (SW); ammonium enriched SW (SW + N); SW with Artemia salina nauplii (SW + A). An increase in P max of CO2 per 103 polyps was found in corals acclimated to reduced light (20 to 30% PARo) in nutrient-enriched SW, while in SW, where the increase in zooxanthella population density was smaller, it did not occur. Nutrient enrichments (SW + N at 2 to 4% PARo and SW + A at 20 to 30% PARo) increased zooxanthella population density, but had no effect on chl a+c per 106 zooxanthellae. Acclimation for 14 d to reduced (10 to 20% PARo) and extremely low (1 to 3% PARo) light intensities shifted 14C photoassimilation into glycerol and other compounds (probably glycerides), rather than sugars. Both ammonium addition and feeding with Artemia salina nauplii resulted in an increase in photosynthetic assimilation of 14C into amino acids. We conclude that acclimation to reduced light consists of two processes: an increase in photosynthetic pigments and in zooxanthella population density. Both processes require nitrogen, the increase in zooxanthella population density needing more; this adaptation is therefore limited in nitrogen-poor sea water. Received: 19 June 1998 / Accepted: 13 June 2000  相似文献   

14.
Observations at sea of large variations in the cellular fluorescence of phytoplankton prompted a study of the fluorescence responses in marine diatoms to light and nutrient stress. When older cultures of Lauderia borealis were exposed to intense light, the in vivo fluorescence of chlorophyll a declined within the first 2 min of exposure. This initial response to light stress appeared to be correlated with a contraction of the chloroplasts. Continued exposure led to a second decline in fluorescence, which required 30 to 60 min for completion. A movement of chloroplasts to the valvar ends of the cell caused this secondary response. Both the contraction and intracellular movement of chloroplasts appeared to be related to both photoinhibition of photosynthesis and diel fluctuations in cellular fluorescence. An investigation of continuous cultures of Cyclotella nana showed that in vivo chlorophyll a fluoresced more strongly in nitrogen-starved cells than in enriched ones. Photoinhibition of cellular fluorescence also increased with the cell's state of nitrogen deficiency.  相似文献   

15.
The photosynthetic characteristics of prokaryotic phycoerythrin-rich populations of cyanobacteriaSynechococcus spp. and larger eukaryotic algae were compared at a neritic frontal station (Pl), in a warm-core eddy (P2), and at Wilkinson's Basin (P3) during a cruise in the Northwest Atlantic Ocean in the summer of 1984.Synechococcus spp. numerically dominated the 0.6 to 1 m fraction, and to a lesser extent the 1 to 5 m size fractions, at most depths at all stations. At P2 and P3, all three size categories of phytoplankton (0.6 to 1 m, 1 to 5 m, and >5 m) exhibited similar depth-dependent chages in both the timing and amplitude of diurnal periodicities of chlorophyllbased and cell-based photosynthetic capacity. Midday maxima in photosynthesis were observed in the upper watercolumn which damped-out in all size fractions sampled just below the thermocline. For all size fractions sampled near the bottom of the euphotic zone, the highest photosynthetic capacity was observed at dawn. At all depths, theSynechococcus spp.-dominated size fractions had lower assimilation rates than larger phytoplankton size fractions. This observation takes exception with the view that there is an inverse size-dependency in algal photosynthesis. Results also indicated that the size-specific contribution to potential primary production in surface waters did not vary appreciably over the day. However, estimates of the percent contribution ofSynechococcus spp. to total primary productivity in surface waters at the neritic front were significantly higher when derived from short-term incubator measurements of photosynthetic capacity rather than from dawn-to-duskin situ measurements of carbon fixation. The discrepancy was not due to photoinhibitory effects on photosynthesis, but appeared to reflect increased selective grazing pressure onSynechococcus spp. in dawn-to-dusk samples. Low-light photoadaptation was evident in analyses of the depth-dependency ofP-I parameters (photosynthetic capacity,P max; light-limited slope, alpha;P max alpha,I k ; light-intensity beyond which photoinhibition occurs,I b ) of the > 0.6 m communities at all three stations and was attributable to stratification of the water column. There was a decrease in assimilation rates andI k with depth that was associated with increases in light-limited rates of photosynthesis. No midday photoinhibition ofP max orI b was observed in any surface station. Marked photoinhibition was detected only in the chlorophyll maximum at the neritic front and below the surface mixed-layer at Wilkinson's Basin, where susceptibility to photoinhibition increased with the depth of the collected sample. The 0.6 to 1 m fraction always had lower light requirements for light-saturated photosynthesis than the > 5 m size fraction within the same sample. Saturation intensities for the 1 to 5 m and 0.6 to 1 m size fractions were more similar whenSynechococcus spp. abundances were high in the 1 to 5 m fraction. The > 5 m fraction appeared to be the prime contributor to photoinhibitory features displayed in mixed samples (> 0.6 m) taken from the chlorophyll maxima. InSynechococcus spp.-dominated 0.6 to 1 and 1 to 5 m size fractions, cellular chlorophylla content increased 50- to 100-fold with depth and could be related to increases in maximum daytime rates of cellularP max at the base of the euphotic zone. Furthermore, the 0.6 to 1 m and > 5 m fractions sampled at the chlorophyll maximum in the warm-core eddy had lower light requirements for photosynthesis than comparable surface samples from the same station. Results suggest that photoadaptation in natural populations ofSynechococcus spp. is accomplished primarily by changing photosynthetic unit number, occuring in conjuction with other accommodations in the efficiency of photosynthetic light reactions.  相似文献   

16.
M.F. Macedo  P. Duarte   《Ecological modelling》2006,190(3-4):299-316
Phytoplankton productivity is usually determined from water samples incubated at a number of irradiance levels during several hours. The resultant productivity-irradiance (PE) curves are then used to estimate local and/or global phytoplankton production. However, there is growing evidence that these curves, referred as static, underestimate phytoplankton photosynthesis to a great deal, by assuming a stable response to light over the incubation period. One of the drawbacks of static PE curves is the overestimation of photoinhibition.In this work, three one-dimensional vertically resolved models were developed as simply as possible, to investigate differences between static and dynamic phytoplankton productivity in three marine ecosystems: a turbid estuary, a coastal area and an open ocean ecosystem. The results show that, when photoinhibition development time is considered (dynamic model), the primary production estimates are always higher than when calculated with the static model. The quantitative importance of these differences varies with the type of ecosystem and it appears to be more important in coastal areas and estuaries (from 21 to 72%) than in oceanic waters (10%). Thus, these results suggest that primary production estimates, obtained under the assumption of a static behaviour response to light, may underestimate the real values of global phytoplankton primary production. Calculations suggest that the quantitative importance of this underestimation may be larger than the global missing carbon sink.  相似文献   

17.
Phytoplankton sampled at the chlorophyll maximum during the spring bloom at Loch Ewe, Scotland during 1986, were analysed using high-performance liquid chromatography for chloropigments and carotenoids. The day-to-day proportions of the pigments remained relatively stable throughout the bloom, with good preservation of chlorophyll a even at the sediment surface. Chlorophyllide a and phaeophorbide a appeared towards the end of the bloom. The major carotenoids remained stable throughout the bloom, but became rapidly degraded on sedimentation under the oxic conditions. The pigment data is related to the nutrient status of the bloom, when slow steady growth occurred without nutrient limitation. These data contrast sharply with data from the 1983 spring bloom at Loch Ewe when acute nutrient limitation took place.  相似文献   

18.
Marine Synechococcus spp. are sufficiently abundant to make a significant contribution to primary productivity in the ocean. They are characterized by containing high cellular levels of phycoerythrin which is highly fluorescent in vivo. We sought (Jan.–Apr., 1984) to determine the adaptive photosynthetic features of two clonal types of Synechococcus spp., and to provide a reliable physiological basis for interpreting remote sensing data in terms of the biomass and productivity of this group in natural assemblages. It was found that the two major clonal types optimize growth and photosynthesis at low photon flux densities by increasing the numbers of photosynthetic units per cell and by decreasing photosynthetic unit size. The cells of clone WH 7803 exhibited dramatic photoinhibition of photosynthesis and reduction in growth rate at high photon flux densities, accompanied by a large and significant increase in phycoerythrin fluorescence. Maximal photosynthesis of cells grown under 10–50 E m-2 s-1 was reduced by 20 to 30% when the cells were exposed to photon flux densities greater than 150 E m-2 s-1. However, steady-state levels of photosynthesis maintained for brief periods under these conditions were higher than those of cells grown continuously at high photon flux densities. No photoinhibition occurred in clone WH 8018 and rates of photosynthesis were greater than in WH 7803. Yields of in-vivo phycoerythrin fluorescence under all growth photon flux densities were lower in clone WH 8018 compared to clone WH 7803. Since significant inverse correlations were obtained between phycoerythrin fluorescence and Pmax and for both clones grown in laboratory culture, it may be possible to provide a reliable means of assessing the physiological state, photosynthetic capacity and growth rate of Synechococcus spp. in natural assemblages by remote sensing of phycoerythrin fluorescence. Poor correlations between phycoerythrin fluorescene and pigment content indicate that phycoerythrin fluorescence may not accurately estimate Synechococcus spp. biomass based on pigment content alone.  相似文献   

19.
Modeling compensated root water and nutrient uptake   总被引:1,自引:0,他引:1  
Plant root water and nutrient uptake is one of the most important processes in subsurface unsaturated flow and transport modeling, as root uptake controls actual plant evapotranspiration, water recharge and nutrient leaching to the groundwater, and exerts a major influence on predictions of global climate models. In general, unsaturated models describe root uptake relatively simple. For example, root water uptake is mostly uncompensated and nutrient uptake is simulated assuming that all uptake is passive, through the water uptake pathway only. We present a new compensated root water and nutrient uptake model, implemented in HYDRUS. The so-called root adaptability factor represents a threshold value above which reduced root water or nutrient uptake in water- or nutrient-stressed parts of the root zone is fully compensated for by increased uptake in other soil regions that are less stressed. Using a critical value of the water stress index, water uptake compensation is proportional to the water stress response function. Total root nutrient uptake is determined from the total of active and passive nutrient uptake. The partitioning between passive and active uptake is controlled by the a priori defined concentration value cmax. Passive nutrient uptake is simulated by multiplying root water uptake with the dissolved nutrient concentration, for soil solution concentration values below cmax. Passive nutrient uptake is thus zero when cmax is equal to zero. As the active nutrient uptake is obtained from the difference between plant nutrient demand and passive nutrient uptake (using Michaelis–Menten kinetics), the presented model thus implies that reduced passive nutrient uptake is compensated for by active nutrient uptake. In addition, the proposed root uptake model includes compensation for active nutrient uptake, in a similar way as used for root water uptake. The proposed root water and nutrient uptake model is demonstrated by several hypothetical examples, for plants supplied by water due to capillary rise from groundwater and surface drip irrigation.  相似文献   

20.
The evaluation of biophysical models is usually carried out by estimating the agreement between measured and simulated data and, more rarely, by using indices for other aspects, like model complexity and overparameterization. In spite of the importance of model robustness, especially for large area applications, no proposals for its quantification are available. In this paper, we would like to open a discussion on this issue, proposing a first approach for a quantification of robustness based on the variability of model error to variability of explored conditions ratio. We used modelling efficiency (EF) for quantifying error in model predictions and a normalized agrometeorological index (SAM) based on cumulated rainfall and reference evapotranspiration to characterize the conditions of application. Population standard deviations of EF and SAM were used to quantify their variability. The indicator was tested for models estimating meteorological variables and crop state variables. The values provided by the robustness indicator (IR) were discussed according to the models’ features and to the typology and number of processes simulated. IR increased with the number of processes simulated and, within the same typology of model, with the degree of overparameterization. No correlation were found between IR and two of the most used indices of model error (RRMSE, EF). This supports its inclusion in integrated systems for model evaluation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号