首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is generally accepted as a useful and workable hypothesis that when an ecosystem receives an inflow of exergy (energy that can do work) it will utilize this flow of exergy to move as far away from thermodynamic equilibrium as possible after the exergy (energy) for maintenance has been covered. If more combinations of system components including organisms are offered, the combination of components and processes that will bring the system most away from thermodynamic equilibrium will win.The amino acid sequences of the proteins e.g. enzymes determine and control the life processes of the organisms and may be viewed as information sensu lato. The free energy of oxidation of the amino acids and the peptide bonds of the cell enzymes expresses therefore the exergy content, eco-exergy or work capacity that the information contributes to “moving further away from thermodynamic equilibrium”. In this paper eco-exergy is calculated and plotted versus the β-values (a measure of the information contained in the genome) for different organisms. The eco-exergy density was previously (see [J?rgensen et al., 1995] and [J?rgensen et al., 2005]) proposed to be calculated as the summation of the product of the β-values representing the information of the genome multiplied by the concentrations of the respective ecosystem components. This analysis shows a strong correlation between the β-values and free energy released when oxidizing the enzymes. The β-values can therefore be assumed to represent the free energy that the organisms have invested in genetic information.  相似文献   

2.
A teacher of ours used to say, “Like ice in a fire, something for nothing you will never acquire”, which is a poetic equivalent of “there is no such a thing as a free lunch”. Human economies are dependent on high quality fossil fuels and will likely continue depending on them for some time to come. Value of a resource is not only what one pays for it, or what can be extracted from it, but also value can be attributed to the “effort” required in its production. In this analysis we apply the emergy synthesis method to evaluate the work invested by the geobiosphere to generate the global storages of fossil energy resources. The upgrading of raw resources to secondary fuels is also evaluated. The analysis relies on published estimates of historic, global net primary production (NPP) on land and oceans, published preservation and conversion factors of organic matter, and assessments of the present total global storages of coal, petroleum, and natural gas. Results show that the production of coal resources over geologic time required between 6.63E4 (±0.51E4) seJ/J and 9.71E4 (±0.79E4) seJ/J, while, oil and natural gas resources required about 1.48E5 (±0.07 E5) seJ/J and 1.70E5 (±0.06E5) seJ/J, respectively. These values are between 1.5 and 2.5 times larger than previous estimates and acknowledge a far greater power of fossil fuels in driving and shaping modern society.  相似文献   

3.
Water vapor flux and carbon dioxide (CO2) exchange in croplands are crucial to water and carbon cycle research as well as to global warming evaluation. In this study, a standard three-layer feed-forward back propagation neural network technique associated with the Bayesian technique of automatic relevance determination (ARD) was employed to investigate water vapor and CO2 exchange between the canopy of summer maize and atmosphere in responses to variations of environmental and physiological factors. These factors, namely the photosynthetically active radiation (PAR), air temperature (T), vapor pressure deficient (VPD), leaf-area index (LAI), soil water content in root zone (W), and friction velocity (U*), were used as inputs in neural network analysis. Results showed that PAR, VPD, T and LAI were the primary factors regulating both water vapor and CO2 fluxes with VPD and W more critical to water vapor flux and PAR and T more crucial to CO2 exchange. Furthermore, two time variables “day of the year (DOY)” and “time of the day (TOD)” could also improve the simulation results of neural network analysis. The important factors identified by the neural network technique used in this study were in the order of PAR > T > VPD > LAI > U* > TOD for water vapor flux and in the order of VPD > W > LAI > T > PAR > DOY for CO2 exchange. This study suggests that neural network technique associated with ARD could be a useful tool for identifying important factors regulating water vapor and CO2 fluxes in terrestrial ecosystem.  相似文献   

4.
In this paper we present a simple hybrid gap-filling model (GFM) designed with a minimum number of parameters necessary to capture the ecological processes important for filling medium-to-large gaps in Flux data. As the model is process-based, the model has potential to be used in filling large gaps exhibiting a broad range of micro-meteorological and site conditions. The GFM performance was evaluated using “Punch hole” and extrapolation experiments based on data collected in west-central New Brunswick. These experiments indicated that the GFM is able to provide acceptable results (r2 > 0.80) when >500 data points are used in model parameterization. The GFM was shown to address daytime evolution of NEP reasonably well for a wide range of weather and site conditions. An analysis of residuals indicated that for the most part no obvious trends were evident; although a slight bias was detected in NEP with soil temperature. To explore the portability of the GFM across ecosystem types, a transcontinental validation was conducted using NEP and ancillary data from seven ecosystems along a north-south transect (i.e., temperature–moisture gradient) from northern Europe (Finland) to the Middle East (Israel). The GFM was shown to explain over 75% of the variability in NEP measured at most ecosystems, which strongly suggests that the GFM maybe successfully applied to forest ecosystems outside Canada.  相似文献   

5.
In this work, competition for two nitrogen resources (nitrate-, nitrite-nitrogen) between three hydrogen oxidizing denitrifying populations (Acidovorax sp. strain Ic3 (X1), Paracoccus sp. strain Ic1 (X2), and Acinetobacter sp. strain Ic2 (X3)) was examined. The dynamics of three systems of microbial populations (system I: X1 − X3, system II: X2 − X3, and system III: X1 − X2 − X3), grown in a chemostat, was studied using bifurcation analysis. The chemostat is the most common type of biological reactor used for the study of microbial growth under controlled conditions. The effect of the operating parameters (i.e., dilution rate and feed nitrate nitrogen concentration) on the long-term behavior of the systems showed that X3 was the predominant population for a wide range of combinations of dilution rate and feed nitrate nitrogen concentration. Also, coexistence of two populations (X2X3, X1X3) was observed. The results of the bifurcation analysis were also used to determine the denitrification rate and the nitrite nitrogen accumulation for each of the three systems as a function of the dilution rate (up to 0.17 h−1) and the feed nitrate nitrogen concentration (up to 300 mg/L). The highest denitrification rate was achieved by system I (28 mg/Lh). A comparison between the three systems showed that the nitrite nitrogen concentration in system I was less than the one in system III, while the two systems gave similar denitrification rates. The second system had the greatest accumulation of nitrites with the lowest denitrification rate.  相似文献   

6.
Dissolved organic carbon (DOC) concentrations in south-western Nova Scotia streams, sampled at weekly to biweekly intervals, varied across streams from about 3 to 40 mg L−1, being highest mid-summer to fall, and lowest during winter to spring. A 3-parameter model (DOC-3) was proposed to project daily stream DOC concentrations and fluxes from modelled estimates for daily soil temperature and moisture, year-round, and in relation to basin size and wetness. The parameters of this model refer to (i) a basin-specific DOC release parameter “kDOC, related to the wet- and open-water area percentages per basin, (ii) the lag time “τ” between DOC production and subsequent stream DOC emergence, related to the catchment area above the stream sampling location; and (iii) the activation energy “Ea”, to deal with the temperature effect on DOC production. This model was calibrated with the 1988-2006 DOC concentration data from three streams (Pine Marten, Moosepit Brook, and the Mersey River sampled at or near Kejimkujik National Park, or KNP), and was used to interpret the biweekly 1999-2003 DOC concentrations data (stream, ground and lake water, soil lysimeters) of the Pockwock-Bowater Watershed Project near Halifax, Nova Scotia. The data and the model revealed that the DOC concentrations within the streams were not correlated to the DOC concentrations within the soil- and groundwater, but were predictable based on (i) the hydrologically inferred weather-induced changes in soil moisture and temperature next to each stream, and (ii) the topographically inferred basin area and wet- and open-water area percentages associated with each stream (R2 = 0.53; RMSE = 3.5 mg L−1). Model-predicted fluxes accounted 74% of the hydrometrically determined DOC exports at KNP.  相似文献   

7.
A simulation study was carried out to investigate simultaneously the effects of eco-physiological parameters on competitive asymmetry, self-thinning, stand biomass and NPP in a temperate forest using an atmosphere–vegetation dynamics interactive model (MINoSGI). In this study, we selected three eco-physiological relevant parameters as foliage profiles (i.e. vertical distribution of leaf area density) of individual trees (distribution pattern is described by the parameter η), biomass allocation pattern in individual tree growth (χ) and the maximum carboxylation velocity (Vmax). The position of the maximal leaf area density shifts upward in the canopy with increasing η. For scenarios with η < 4 (foliage concentrated in the lowest canopy layer) or η > 12 (foliage concentrated in the uppermost canopy layer), a low degree of competitive asymmetry was produced. These scenarios resulted in the survival of subordinate trees due to a brighter lower canopy environment when η < 4 or the generation of spatially separated foliage profiles between dominant and subordinate trees when η > 12. In contrast, competition between trees was most asymmetric when 4 ≤ η ≤ 12 (vertically widespread foliage profile in the canopy), especially when η = 8. In such cases, vertically widespread foliage of dominant trees lowered the opportunity of light acquisition for subordinate trees and reduced their carbon gain. The resulting reduction in carbon gain of subordinate trees yielded a higher degree of competitive asymmetry and ultimately higher mortality of subordinate trees. It was also shown that 4 ≤ η ≤ 12 generated higher self-thinning speed, smaller accumulated NPP, litter-fall and potential stand biomass as compared with the scenarios with η < 4 or η > 12. In contrast, our simulation revealed small effects of χ or Vmax on the above-mentioned variables as compared with those of η. In particular, it is notable that greater Vmax would not produce greater potential stand biomass and accumulated NPP although it has been thought that physiological parameters relevant to photosynthesis such as Vmax influence dynamic changes in forest stand biomass and NPP (e.g. the greater the Vmax, the greater the NPP). Overall, it is suggested that foliage profiles rather than biomass allocation or maximum carboxylation velocity greatly govern forest dynamics, stand biomass, NPP and litter-fall.  相似文献   

8.
Climate variability is increasingly recognized as an important regulatory factor, capable of influencing the structural properties of aquatic ecosystems. Lakes appear to be particularly sensitive to the ecological impacts of climate variability, and several long time series have shown a close coupling between climate, lake thermal properties and individual organism physiology, population abundance, community structure, and food web dynamics. Thus, understanding the complex interplay among meteorological forcing, hydrological variability, and ecosystem functioning is essential for improving the credibility of model-based water resources/fisheries management. Our objective herein is to examine the relative importance of the ecological mechanisms underlying plankton seasonal variability in Lake Washington, Washington State (USA), over a 35-year period (1964–1998). Our analysis is founded upon an intermediate complexity plankton model that is used to reproduce the limiting nutrient (phosphate)–phytoplankton–zooplankton–detritus (particulate phosphorus) dynamics in the lake. Model parameterization is based on a Bayesian calibration scheme that offers insights into the degree of information the data contain about model inputs and allows obtaining predictions along with uncertainty bounds for modeled output variables. The model accurately reproduces the key seasonal planktonic patterns in Lake Washington and provides realistic estimates of predictive uncertainty for water quality variables of environmental management interest. A principal component analysis of the annual estimates of the underlying ecological processes highlighted the significant role of the phosphorus recycling stemming from the zooplankton excretion on the planktonic food web variability. We also identified a moderately significant signature of the local climatic conditions (air temperature) on phytoplankton growth (r = 0.41), herbivorous grazing (r = 0.38), and detritus mineralization (r = 0.39). Our study seeks linkages with the conceptual food web model proposed by Hampton et al. [Hampton, S.E., Scheuerell, M.D., Schindler, D.E., 2006b. Coalescence in the Lake Washington story: interaction strengths in a planktonic food web. Limnol. Oceanogr. 51, 2042–2051.] to emphasize the “bottom-up” control of the Lake Washington plankton phenology. The posterior predictive distributions of the plankton model are also used to assess the exceedance frequency and confidence of compliance with total phosphorus (15 μg L−1) and chlorophyll a (4 μg L−1) threshold levels during the summer-stratified period in Lake Washington. Finally, we conclude by underscoring the importance of explicitly acknowledging the uncertainty in ecological forecasts to the management of freshwater ecosystems under a changing global environment.  相似文献   

9.
Mass balanced trophic models for kelp ecosystems which include subsystems dominated by Macrocystis integrifolia, Lessonia trabeculata and areas of barren ground (BG) were constructed for subtidal areas near the Mejillones Peninsula (SE Pacific), Chile. Information on biomass, P/B ratios, catches, food spectrum, consumption and dynamics of commercial and non-commercial populations was obtained and examined using Ecopath with Ecosim software analyses. The biomass of blades of L. trabeculata and M. integrifolia represented the compartments most relevant to the subsystems studied. Within the herbivores, the sea urchin Tetrapigus niger was dominant, followed by the snails Turritella sp. and Tegula sp. The fishes Pinguipes chilensis and Cheilodactylus variegatus were the dominant predators, followed by the asteroids Heliaster helianthus and Meyenaster gelatinosus. The highest system throughput (72,512 g wet weight m−2 year−1) was calculated for the subsystem dominated by M. integrifolia. The mean trophic level of the catch ranged from 1.1 (subsystem dominated by L. trabeculata) to 1.3 (subsystem dominated by M. integrifolia) to 3.2 (barren ground subsystem), showing that harvesting in each system was concentrated either on primary producers (blades of kelp species) or top predator fishes. Although the values for the Relative Ascendency (A/C) fluctuated from 36.5 to 45%, suggesting that all the systems were immature, the subsystem dominated by M. integrifolia emerged as the least resistant to external disturbances (e.g. fisheries). This result agreed with the high value of the system recovery time (SRT) for the M. integrifolia subsystem as a response to combined fisheries scenarios. The results obtained using mixed trophic impact (MTI) and Ecosim [increasing the fishing mortality Fi by 4×] showed that in most of the cases the predictions had the same qualitative tendencies. One of the most important results obtained in this study was that exploitation of kelp blades as an alternative strategy to harvesting the whole plants appeared to be ecologically sustainable, since harvesting the blades propagated only small effects on the entire subsystem. The fish P. chilensis may be considered as a top predator species with a strong top-down control since an increase in its fishing mortality in the subsystem dominated by M. integrifolia produced a high SRT value, and the FMSY was less than the originally entered Fi in Ecopath. Based on the results obtained, it was concluded that the trophic mass balanced models and simulated management scenarios offered good possibilities for the planning of interventions and manipulations or the planning of more sustainable management strategies in highly disturbed natural systems.  相似文献   

10.
A process-based crop growth model (Vegetation Interface Processes (VIP) model) is used to estimate crop yield with remote sensing over the North China Plain. Spatial pattern of the key parameter—maximum catalytic capacity of Rubisco (Vcmax) for assimilation is retrieved from Normalized Difference of Vegetation Index (NDVI) from Terra-MODIS and statistical yield records. The regional simulation shows that the agreements between the simulated winter wheat yields and census data at county-level are quite well with R2 being 0.41-0.50 during 2001-2005. Spatial variability of photosynthetic capacity and yield in irrigated regions depend greatly on nitrogen input. Due to the heavy soil salinity, the photosynthetic capacity and yield in coastal region is less than 50 μmol C m−2 s−1 and 3000 kg ha−1, respectively, which are much lower than that in non-salinized region, 84.5 μmol C m−2 s−1 and 5700 kg ha−1. The predicted yield for irrigated wheat ranges from 4000 to 7800 kg ha−1, which is significantly larger than that of rainfed, 1500-3000 kg ha−1. According to the path coefficient analysis, nitrogen significantly affects yield, by which water exerts noticeably indirect influences on yield. The effect of water on yield is regulated, to a certain extent, by crop photosynthetic capacity and nitrogen application. It is believed that photosynthetic parameters retrieved from remote sensing are reliable for regional production prediction with a process-based model.  相似文献   

11.
Global emissions trading allows for agricultural measures to be accounted for the carbon sequestration in soils. The Environmental Policy Integrated Climate (EPIC) model was tested for central European site conditions by means of agricultural extensification scenarios. Results of soil and management analyses of different management systems (cultivation with mouldboard plough, reduced tillage, and grassland/fallow establishment) on 13 representative sites in the German State Baden-Württemberg were used to calibrate the EPIC model. Calibration results were compared to those of the Intergovernmental Panel on Climate Change (IPCC) prognosis tool. The first calibration step included adjustments in (a) N depositions, (b) N2-fixation by bacteria during fallow, and (c) nutrient content of organic fertilisers according to regional values. The mixing efficiency of implements used for reduced tillage and four crop parameters were adapted to site conditions as a second step of the iterative calibration process, which should optimise the agreement between measured and simulated humus changes. Thus, general rules were obtained for the calibration of EPIC for different criteria and regions. EPIC simulated an average increase of +0.341 Mg humus-C ha−1 a−1 for on average 11.3 years of reduced tillage compared to land cultivated with mouldboard plough during the same time scale. Field measurements revealed an average increase of +0.343 Mg C ha−1 a−1 and the IPCC prognosis tool +0.345 Mg C ha−1 a−1. EPIC simulated an average increase of +1.253 Mg C ha−1 a−1 for on average 10.6 years of grassland/fallow establishment compared to an average increase of +1.342 Mg humus-C ha−1 a−1 measured by field measurements and +1.254 Mg C ha−1 a−1 according to the IPCC prognosis tool. The comparison of simulated and measured humus C stocks was r2 ≥ 0.825 for all treatments. However, on some sites deviations between simulated and measured results were considerable. The result for the simulation of yields was similar. In 49% of the cases the simulated yields differed from the surveyed ones by more than 20%. Some explanations could be found by qualitative cause analyses. Yet, for quantitative analyses the available information from farmers was not sufficient. Altogether EPIC is able to represent the expected changes by reduced tillage or grassland/fallow establishment acceptably under central European site conditions of south-western Germany.  相似文献   

12.
Soil carbon (C) models are important tools for examining complex interactions between climate, crop and soil management practices, and to evaluate the long-term effects of management practices on C-storage potential in soils. CQESTR is a process-based carbon balance model that relates crop residue additions and crop and soil management to soil organic matter (SOM) accretion or loss. This model was developed for national use in U.S and calibrated initially in the Pacific Northwest. Our objectives were: (i) to revise the model, making it more applicable for wider geographic areas including potential international application, by modifying the thermal effect and incorporating soil texture and drainage effects, and (ii) to recalibrate and validate it for an extended range of soil properties and climate conditions. The current version of CQESTR (v. 2.0) is presented with the algorithms necessary to simulate SOM at field scale. Input data for SOM calculation include crop rotation, aboveground and belowground biomass additions, tillage, weather, and the nitrogen content of crop residues and any organic amendments. The model was validated with long-term data from across North America. Regression analysis of 306 pairs of predicted and measured SOM data under diverse climate, soil texture and drainage classes, and agronomic practices at 13 agricultural sites having a range of SOM (7.3–57.9 g SOM kg−1), resulted in a linear relationship with an r2 of 0.95 (P < 0.0001) and a 95% confidence interval of 4.3 g SOM kg−1. Using the same data the version 1.0 of CQESTR had an r2 of 0.71 with a 95% confidence interval of 5.5 g SOM kg−1. The model can be used as a tool to predict and evaluate SOM changes from various management practices and offers the potential to estimate C accretion required for C credits.  相似文献   

13.
Potential evapotranspiration (PET) is an important component of water cycle. For traditional models derived from the principle of aerodynamics and the surface energy balance, its calculation always includes many parameters, such as net radiation, water vapor pressure, air temperature and wind speed. We found that it can be acquired in an easier way in specific regions. In this study, a new PET model (PETP model) derived from two empirical models of soil respiration was evaluated using the Penman-Monteith equation as a standard method. The results indicate that the PETP model estimation concur with the Penman-Monteith equation in sites where annual precipitation ranges from 717.71 mm to 1727.37 mm (R2 = 0.68, p = 0.0002), but show large discrepancies in all sites (R2 = 0.07, p = 0.1280). Then we applied our PETP model at the global scale to the regions with precipitation higher than 700 mm using 2.5° CMAP data to obtain the annual PET for 2006. As expected, the spatial pattern is satisfactory overall, with the highest PET values distributed in the lower latitudes or coastal regions, and with an average of 1292.60 ± 540.15 mm year−1. This PETP model provides a convenient approach to estimate PET at regional scales.  相似文献   

14.
The nitrification process in many river water quality models has been approximated by a simple first order dependency on the water column ammonia concentration, while the benthic contribution has routinely been neglected. In this study a mathematical framework was developed for sediment bed nitrification based on mass transfer theory and Monod bacterial growth kinetics. The model describes ammonia transport across the boundary layer and consumption within the biofilm to quantify the overall nitrification flux. Model results suggest that nitrification is usually controlled by the boundary layer thickness, and we estimated a nitrification velocity range between 0.14 and 0.97 m d−1, assuming typical boundary thicknesses of 0.1–1.0 mm. These ranges compared favorably with reported literature values, including our own measurements. The model was applied to several river systems of different depths where nitrification rates and river depths were available. Assuming that nitrification is exclusively a benthic process, the average velocity of all the rivers evaluated was 0.85 m d−1 (r2 = 0.72).  相似文献   

15.
This article presents results concerning the local calibration of the transport parameters (longitudinal and transversal diffusions and decay coefficient) for a two-dimensional problem of water quality at Igapó I Lake, located in Londrina, Paraná, Brazil, using fecal coliforms as an indicator of water quality. The simulation of fecal coliforms concentrations all over the water body is conducted by means of a structured discretization of the geometry of Igapó I Lake, together with the finite difference and finite element methods. By using the velocity field, modeled by the Navier-Stokes and Poisson equations, the flow of fecal coliforms is described by means of a transport model, which considers advective and diffusive processes, as well as a process of fecal coliforms decay. In the checkpoint, the longitudinal and transversal diffusion coefficients and the coliforms decay coefficient that best fitted the value of the fecal coliforms concentration were Dx = Dy = 0.001 m2/h and k = 0.5 d−1 = 0.02083 h−1. A qualitative and quantitative analysis of the numerical simulations conducted in function of the diffusion coefficients and of the coliforms decay parameter provided a better understanding of the local water quality at Igapó I Lake.  相似文献   

16.
Using a dynamic model of Lake Chozas developed by Marchi et al. (2011), we tested three hypotheses about recovery of the indigenous community and water quality after radical changes caused by introduction of an invasive allochthonous crayfish, Procambarus clarkii:
1.
Can the lake resist the pressure of an invasive species, like P. clarkii, by adaptation?
2.
Can the ecosystem recover when all the crayfish are removed and low phosphorus concentrations persist in inflow water?
3.
Does the simulated recovery of submerged vegetation occur at a total phosphorus concentration below 100 mg TP m−3, as estimated by Scheffer et al. (1993), Scheffer (1997), Jeppesen et al. (1998) and Zhang et al. (2003)?
We obtained the following answers:
1.
Lake Chozas can at least partly resist by adaptation. A combination of possible parameter changes could lead to a significant increase in eco-exergy.
2.
Removal of the phosphorus represented by crayfish (by harvesting) implies complete recovery of the lake and its eco-exergy, albeit not necessarily with the same organisms having the same properties.
3.
The expected hysteresis created by introduction and harvesting of crayfish is observed under the following conditions: phytoplankton dominance at total phosphorus ≥ about 200-250 mg TP m−3 and submerged vegetation returns at total phosphorus < 100 mg TP m−3.
  相似文献   

17.
In order to simulate forest growth response to pre-commercial thinning (PCT), TRIPLEX1.0 - a process-based model designed to predict forest growth as well as carbon (C) and nitrogen (N) dynamics - was modified and improved to also simulate managed forest ecosystem thinning practices. A three-parameter Weibull distribution model was integrated to simulate thinning treatments within the newly developed TRIPLEX-Management model. The thinning intensity component within the model allows users to simulate thinning treatments by applying basal area, stand density and volume to quantify thinning intensity. Natural mortality decreased following thinning due to an increase in growing space for residual stems. Predicted litterfall pools also increased after thinning events took place. The TRIPLEX-Management model was tested against published observational data for Jack Pine (Pinus banksiana Lamb.) stands subjected to PCT in Northwestern Ontario, Canada. The coefficients of determination (R2) between the predicted and observed variables including stand density, mean DBH (diameter at breast height), the quadratic mean DBH, total volume and merchantable volume as well as belowground, aboveground, and total biomass ranged from 0.50 to 0.88 (n = 20, P < 0.001) with the exception of mean tree height (R2 = 0.25, n = 20, P < 0.05). Overall, the Willmott index of agreement between predicted and observed variables ranged from 0.97 to 1.00. Results show that the TRIPLEX-Management model is generally capable of simulating growth response to PCT for Jack Pine stands.  相似文献   

18.
G. R. Parsons 《Marine Biology》1990,104(3):363-367
Routine metabolic rates of bonnethead sharks,Sphyrna tiburo, of 95 to 4 650 g, ranged from 70.4 to 15.0 kcal kg–1 d–1. Over the size range 34 to 95 cm total length, shark swimming-velocities varied from about 29 to 67 cm s–1. Swimming velocities predicted using Weih's cost-optimization model were similar to observed velocities. The total cost of transport (the energetic cost of transporting 1 unit of body mass 1 km distance) for 1 to 8 kg sharks varied from 0.67 to 0.40 cal g–1 km–1. The energetic range (an estimation of the distance traveled after a 25% reduction in body weight) indicates that a 1 kg bonnethead shark would travel 500 km distance in 17 d before displaying a 25% reduction in weight. An 8 kg individual would travel 830 km in 23 d. Although the bonnethead shark is a continuously active species, its routine metabolic rate and the efficiency of its locomotory system may be similar to that of typical bony fishes.  相似文献   

19.
Polder lakes in Flanders are stagnant waters that were flooded by the sea in the past. Several of these systems are colonized by exotic species, but have hardly been studied until present. The aim of the present study was: (1) to assess the influence of exotic macrobenthic species on the outcome of the Multimetric Macroinvertebrate Index Flanders (MMIF) and (2) to use classification trees for evaluating to what extent physical-chemical characteristics affect the presence of exotic species.In total, 27 mollusc and 10 macro-crustacean species were present in the monitored lakes of which respectively five and four were exotic. The exclusion of the exotic species from the MMIF resulted in a significant decline of this ecological index (−0.03 ± 0.04; p = 0.00). This elimination often resulted into a lower ecological water quality class and more samples were classified into the bad and poor ecological water quality classes.Single-target classification trees for Gammarus tigrinus and Potamopyrgus antipodarum were constructed, relating environmental parameters and ecological status (MMIF) to the occurrence of both exotic invasive species. The major advantages of using single-target classification trees are the transparency of the rule sets and the possibility to use relatively small datasets. However, this classification technique only predicts a single-target attribute and the trees of the different species are often hard to integrate and use for water managers. As a solution, a multi-target approach was used in the present study. Exotic molluscs and crustaceans communities were modelled based on environmental parameters and the ecological status (MMIF) using multi-target classification trees. Multi-target classification trees can be used in management planning and investment decisions as they can lead to integrated decisions for the whole set of exotic species and avoid the construction of many models for each individual species. These trees provide general insights concerning the occurrence patterns of individual crustaceans and molluscs in an integrated way.  相似文献   

20.
The economic models that prescribe Pigovian taxation as the first-best means of reducing energy-related externalities are typically based on the neoclassical model of rational consumer choice. Yet, consumer behavior in markets for energy-using durables is generally thought to be far from efficient, giving rise to the concept of the “energy-efficiency gap.” This paper presents a welfare analysis of energy policies that is based on a behavioral model of temptation and self-control, introduced by Gul and Pesendorfer 23 and 24. We find that, in the presence of temptation, (i) Pigovian taxes alone do not yield a first-best outcome, (ii) when viewed as substitutes, energy efficiency standards can dominate Pigovian taxes, and (iii) a policy combining standards with a Pigovian tax can yield higher social welfare than a Pigovian tax alone, implying that the two instruments should be viewed as complements rather than substitutes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号