首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although long-distance transport of marine organisms is constrained by numerous oceanic and biological factors, some species have evolved life-histories reliant on such movements. We examine the factors that promote long-distance transport in a transoceanic migrant, young loggerhead sea turtles (Caretta caretta), from the southeastern U.S. Empirical data from near-surface buoys and simulations in two ocean circulation models indicated that passive drifters are often retained for long periods shoreward of oceanic fronts that delineate coastal and offshore waters. Further simulations revealed that offshore swimming aided newly hatched turtles in moving past fronts and increased turtles’ probability of survival, reaching distant foraging grounds, and encountering favorable temperatures. Swimming was most beneficial in regions that were more favorable under scenarios assuming passive drift. These results have broad implications for understanding the movement processes of many marine species, highlighting likely retention of more planktonic species and potential for dispersal in more nektonic species.  相似文献   

2.
Evaluations of the potential distribution of invasive species can increase the efficiency of their management by focusing prevention measures. Generally, ecological models are built using occurrence data from a species' native range to predict the distribution in areas that the species may invade. However, historical and geographical constraints can limit a species' native distribution. Genetic Algorithm for Rule-set Production (GARP), an ecological niche modeling program, was used to predict the potential distribution of the invasive, freshwater New Zealand mudsnail, Potamopyrgus antipodarum, in Australia and North America. We compared the strength of the predictions made by models built with data from the snail's native range in New Zealand to models built with data from the locations invaded by the species. A time-series analysis of the Australian models demonstrated that range-of-invasion data can make better predictions about the potential distribution of invasive species than models built with native range data. Large differences among the model forecasts indicate that uncritical choice of the data set used in training the GARP models can result in misleading predictions. The models predict a large expansion in the range of P. antipodarum in both Australia and North America unless prevention measures are implemented rapidly.  相似文献   

3.
The spread of invasive species is a major ecological and economic problem. Dynamic spread modelling is a potentially valuable tool to assist regional and central government authorities to monitor and control invasive species. To date a lack of suitable data has meant that most broad scale dispersal models have not been validated with independent datasets, and so their predictive ability and reliability has remained unscrutinised. A dynamic, stochastic dispersal model of the widely invasive plant Buddleja davidii was calibrated on European spread data and then used to project the temporal progression of B. davidii's distribution in New Zealand, starting from several different historical distributions. To assess the model's performance, we constructed an occupancy map based on the average number of simulation realisations that have a population present. The application of Receiver Operating Characteristic (ROC) curves to occupancy maps is introduced, but with specificity substituted by the proportion of available area used in a realisation. A derivative measure, the partial area under these curves when assessed through time (pAUC), is introduced and used to assess overall performance of the spread model. The model was able to attain a high level of model sensitivity, encompassing all of the known locations within the occupancy envelope. However, attempting to simulate the spread of this invasive species beyond a decade had very low model specificity. This is due to several factors, including the exponential process of spread (the further a population spreads the more sites exist from which it can spread stochastically), and the Markovian chain property of the stochastic system whereby differences between realisations compound through time. These features are seen in many reports of spread models, without being explicitly acknowledged. Our measure of pAUC through time allows a model's temporal performance and its specificity to be simultaneously assessed. While the rapid deterioration in model performance limits the utility of this type of modelling for forecasting long-term broad-scale strategic management of biological invasions, it does not necessarily limit its attractiveness for informing smaller scale and shorter term invasion management activities such as surveillance, containment and local eradication.  相似文献   

4.
Over the past 1000 years New Zealand has lost 40–50% of its bird species, and over half of these extinctions are attributable to predation by introduced mammals. Populations of many extant forest bird species continue to be depredated by mammals, especially rats, possums, and mustelids. The management history of New Zealand's forests over the past 50 years presents a unique opportunity because a varied program of mammalian predator control has created a replicated management experiment. We conducted a meta-analysis of population-level responses of forest birds to different levels of mammal control recorded across New Zealand. We collected data from 32 uniquely treated sites and 20 extant bird species representing a total of 247 population responses to 3 intensities of invasive mammal control (zero, low, and high). The treatments varied from eradication of invasive mammals via ground-based techniques to periodic suppression of mammals via aerially sown toxin. We modeled population-level responses of birds according to key life history attributes to determine the biological processes that influence species’ responses to management. Large endemic species, such as the Kaka (Nestor meridionalis) and New Zealand Pigeon (Hemiphaga novaeseelandiae), responded positively at the population level to mammal control in 61 of 77 cases for species ≥20 g compared with 31 positive responses from 78 cases for species <20 g. The Fantail (Rhipidura fuliginosa) and Grey Warbler (Gerygone igata), both shallow endemic species, and 4 nonendemic species (Blackbird [Turdus merula], Chaffinch [Fringilla coelebs], Dunnock [Prunella modularis], and Silvereye [Zosterops lateralis]) that arrived in New Zealand in the last 200 years tended to have slight negative or neutral responses to mammal control (59 of 77 cases). Our results suggest that large, deeply endemic forest birds, especially cavity nesters, are most at risk of further decline in the absence of mammal control and, conversely suggest that 6 species apparently tolerate the presence of invasive mammals and may be sensitive to competition from larger endemic birds.  相似文献   

5.
Future ocean acidification will be amplified by hypoxia in coastal habitats   总被引:1,自引:0,他引:1  
Ocean acidification is elicited by anthropogenic carbon dioxide emissions and resulting oceanic uptake of excess CO2 and might constitute an abiotic stressor powerful enough to alter marine ecosystem structures. For surface waters in gas-exchange equilibrium with the atmosphere, models suggest increases in CO2 partial pressure (pCO2) from current values of ca. 390 μatm to ca. 700–1,000 μatm by the end of the century. However, in typically unequilibrated coastal hypoxic regions, much higher pCO2 values can be expected, as heterotrophic degradation of organic material is necessarily related to the production of CO2 (i.e., dissolved inorganic carbon). Here, we provide data and estimates that, even under current conditions, maximum pCO2 values of 1,700–3,200 μatm can easily be reached when all oxygen is consumed at salinities between 35 and 20, respectively. Due to the nonlinear nature of the carbonate system, the approximate doubling of seawater pCO2 in surface waters due to ocean acidification will most strongly affect coastal hypoxic zones as pCO2 during hypoxia will increase proportionally: we calculate maximum pCO2 values of ca. 4,500 μatm at a salinity of 20 (T = 10 °C) and ca. 3,400 μatm at a salinity of 35 (T = 10 °C) when all oxygen is consumed. Upwelling processes can bring these CO2-enriched waters in contact with shallow water ecosystems and may then affect species performance there as well. We conclude that (1) combined stressor experiments (pCO2 and pO2) are largely missing at the moment and that (2) coastal ocean acidification experimental designs need to be closely adjusted to carbonate system variability within the specific habitat. In general, the worldwide spread of coastal hypoxic zones also simultaneously is a spread of CO2-enriched zones. The magnitude of expected changes in pCO2 in these regions indicates that coastal systems may be more endangered by future global climate change than previously thought.  相似文献   

6.
Parasites were collected from over 400 albacore (Thunnus alalunga) caught by surface trolling and longlining in the south-west Pacific between 1985 and 1988. Parasites found included 1 apicomplexan, 3 nematode species, 4 cestode species, 1 acanthocephalan, 12 digenean species and 3 copepod species. Twelve of these parasite species which could be accurately recognised and counted were used in the subsequent analyses. Parasite data from albacore caught around New Zealand show a decrease in prevalence of three didymozoid parasites with increasing fish length up to a fork length of 70 to 79 cm. The subsequent increase in prevalence of these didymozoids in large longline-caught fish is consistent with fish returning from spawning in tropical waters where re-infection is presumed to occur. Albacore collected at widely separate locations in the south-west Pacific have differences in parasite prevalence, supporting an hypothesis that juvenile albacore move south to New Zealand from the tropics and do not return until the onset of sexual maturity. Albacore appear to move along the subtropical convergence zone, as indicated by a decline in prevalence and abundance ofAnisakis simplex andHepatoxylon trichiuri from New Zealand to the central South Pacific. This is supported by tagging and seasonal movements of the fishery.  相似文献   

7.
We used a combination of satellite telemetry, archival and conventional tags to show that white sharks made broad-scale movements consistent with mixing of the population across their entire Australasian range. The capture of one of these sharks in New Zealand, some 3,550 km from the point of tagging in South Australia, provides further confirmation that white sharks sometimes move into open ocean waters and cross deep ocean basins. However, most movements were confined to shelf waters, generally in areas of less than 100 m depth and in some cases into waters of less than 5 m depth. Sharks showed considerable plasticity in swimming patterns, which included many of the behaviours reported for other species. One of the archival-tagged sharks showed separate periods of distinct swimming behaviour as it moved into different habitats and travelled between them. The changes in swimming behaviour were abrupt and suggested rapid switching of hunting strategies for different prey types in these habitats. All tracked sharks showed both prolonged periods of directional swimming in coastal waters at swimming speeds of 2–3 km h−1 as well as temporary residency in particular regions. Movements of tagged white sharks, together with data from shark control programs and bycatch records, suggest a seasonal movement northward along the east coast of Australia during the autumn–winter months and south in spring–early summer. The consistency of paths taken by white sharks in Australian waters suggests that they may follow common routes or “highways” in some areas. If so, identifying such areas may assist in reducing interactions with fishing operations and thus reduce bycatch.  相似文献   

8.
The surf clam, Spisula solidissima (Dillwyn), population in the estuarine waters of Long Island Sound, New York, USA, was characterized in 1984 and again in 1988 by an age structure restricted to just two age-classes, and an apparent lifespan of only about 10 yr. In the inshore coastal waters off Fire Island, New York, a wide age range from 2 to 22 yr old was present. The age structure at Long Beach, New York, a third geographic region which is coastal but influenced by the Hudson River estuary, was similar to Long Island Sound. Juvenile surf clams grew at similar rates in all three geographic regions. However, adults from the Long Island Sound population grew significantly slower and reached an asymptotic maximum size which was 37% smaller than Fire Island adults. Long Beach adults had intermediate growth rates and maximum sizes. The shells of Long Island Sound clams were also 25% thinner than those from the other two regions. Density dependent effects on growth, evaluated over abundances ranging from 0.5 to 294 ind. m–2, were present but were too small to account for observed regional differences. Results suggest that adult surf clams may be physiologically stressed by the reduced salinity and more extreme temperatures found in estuarine waters.  相似文献   

9.
Polder lakes in Flanders are stagnant waters that were flooded by the sea in the past. Several of these systems are colonized by exotic species, but have hardly been studied until present. The aim of the present study was: (1) to assess the influence of exotic macrobenthic species on the outcome of the Multimetric Macroinvertebrate Index Flanders (MMIF) and (2) to use classification trees for evaluating to what extent physical-chemical characteristics affect the presence of exotic species.In total, 27 mollusc and 10 macro-crustacean species were present in the monitored lakes of which respectively five and four were exotic. The exclusion of the exotic species from the MMIF resulted in a significant decline of this ecological index (−0.03 ± 0.04; p = 0.00). This elimination often resulted into a lower ecological water quality class and more samples were classified into the bad and poor ecological water quality classes.Single-target classification trees for Gammarus tigrinus and Potamopyrgus antipodarum were constructed, relating environmental parameters and ecological status (MMIF) to the occurrence of both exotic invasive species. The major advantages of using single-target classification trees are the transparency of the rule sets and the possibility to use relatively small datasets. However, this classification technique only predicts a single-target attribute and the trees of the different species are often hard to integrate and use for water managers. As a solution, a multi-target approach was used in the present study. Exotic molluscs and crustaceans communities were modelled based on environmental parameters and the ecological status (MMIF) using multi-target classification trees. Multi-target classification trees can be used in management planning and investment decisions as they can lead to integrated decisions for the whole set of exotic species and avoid the construction of many models for each individual species. These trees provide general insights concerning the occurrence patterns of individual crustaceans and molluscs in an integrated way.  相似文献   

10.
G. J. Edgar 《Marine Biology》1987,95(4):599-610
The potential of drifting Macrocystis pyrifera kelp for transporting associated animals and plants long distances around the southern oceans was assessed by anchoring kelp holdfasts off the Tasmanian coast in 1985, monitoring the turnover of organisms, and relating species survival to water-transport times and species geographic distributions. Although most of the common animal species and approximately half of the plant species associated with Tasmanian M. pyrifera holdfasts were still present on kelp holdfasts after 191 d at sea, very few of these species have been recorded from New Zealand. It therefore seems unlikely that M. pyrifera plants with intact holdfasts are presently drifting to New Zealand. Drifting kelps probably become negatively buoyant in the Tasman Sea because dissolved nitrate concentrations are insufficient for normal plant growth. Moreover, even if some kelp plants do drift to New Zealand it is possible that their holdfasts rapidly disintegrate in the open ocean because of the abundance of the boring isopods Phycolimnoria spp. in Tasmanian holdfasts. In contrast to the restricted distributions of Tasmanian holdfast-inhabiting species, most of the identified species collected from M. pyrifera holdfasts at subantarctic Macquarie Island also occurred 5 000 km west at Kerguelen Island. Because of the extensive ranges of many subantarctic species, the good probability of survival of epifaunal species on drifting kelps, and the high surface-water nitrate concentrations and low holdfast-densities of Phycolimnoria spp. in the higher latitudes, it is likely that M. pyrifera-mediated transport of faunal and floral propagules has recently occurred, and is probably presently occurring, in subantarctic waters.  相似文献   

11.
Contamination profiles of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs) were determined in six fish species from three selected regions along coastal waters off Savannah, GA, USA. Concentrations of PCBs were predominant (12–493 ng g?1 lw) followed by PBDEs (10–337 ng g?1 lw), OCPs such as DDTs (2.7–153 ng g?1 lw), chlordanes (3.8–34 ng g?1 lw), cyclodienes (<0.1–35 ng g?1 lw), mirex (<0.1–8.6 ng g?1 lw), γ-hexachlorocyclohexane (<0.1–1.4 ng g?1 lw), and hexachlorobenzene (<0.1–0.68 ng g?1 lw). The results indicated no region-specific difference in the contaminants however inter-species as well as intra-species differences were evident. Comparison of DDTs, PCBs, and PBDEs profiles in fish with those from other countries revealed that fish from coastal waters off Savannah contained relatively less concentrations of PCBs and chlorinated pesticides, while PBDE concentrations were comparable or even higher than fish samples from other regions. Polychlorinated biphenyl congeners and chlorinated pesticide tempoal trend data exhibited no increase of contamination levels. The levels of PCBs and chlorinated pesticides in fish from Savannah coastal waters were below the Food and Drug Administrations (FDA) established limits for human consumption.  相似文献   

12.
The risks and benefits associated with efforts to control invasive alien species using classical biological control are being subjected to increasing scrutiny. A process-based population dynamics model was developed to explore the interactions between a folivorous biological control agent, Cleopus japonicus, and its plant host Buddleja davidii. The model revealed that climate could have a significant impact upon the interactions between B. davidii and C. japonicus. At the coolest sites, the impact of C. japonicus on B. davidii was slowed, but it was still eventually capable of controlling populations of B. davidii. At the warmer sites where both B. davidii and C. japonicus grew faster, B. davidii succumbed rapidly to weevil damage. We hypothesise that barring an encounter with a natural enemy, C. japonicus will eventually be able to provide sustained control B. davidii throughout the North Island of New Zealand. The model scenarios illustrate the potential for the C. japonicus population to attain high densities rapidly, and to defoliate patches of B. davidii, creating the potential for spill-over feeding on non-target plants. The potential magnitude of this threat will depend partly on the climate suitability for C. japonicus, the pattern by which it migrates in response to a reduction in the available leaf resource, and the suitability of non-target plants as hosts. In all migration scenarios considered, the pattern of population growth and resource consumption by C. japonicus was exponential, with a strong tendency toward complete utilisation of resource patches more quickly at the warmer compared to colder sites. In addition to providing some useful hypotheses about the effects of climate on the biological control system, and the non-target risks, it also provides some insight into the mechanisms by which climate affects the system.  相似文献   

13.
New Zealand sea lions (Phocarctos hookeri) are threatened by incidental bycatch in the trawl fishery for southern arrow squid (Nototodarus sloanii). An overlap between the fishery and foraging sea lions has previously been interpreted as one piece of evidence supporting resource competition for squid. However, there is currently no consensus about the importance of squid in the diet of New Zealand sea lions. Therefore, we investigated this importance independently of spatial and temporal differences in squid availability through a simultaneous study with sympatric New Zealand fur seals (Arctocephalus forsteri), a species known to target arrow squid. Diet sampling at The Snares (48°01′S 166°32′E), subantarctic New Zealand, in February 2012 coincided with peak annual catch in the nearby squid fishery. Diets were deduced by analyses of diagnostic prey remains from scats (faeces) and casts (regurgitations). The contribution of each prey species to the diet was quantified using the per cent index of relative importance (% IRI) that combined frequency of occurrence, mass and number of prey items. Arrow squid was a minor component in sea lion scats (2 % IRI), and none was found in their casts. In contrast, arrow squid was the major component in fur seal scats and casts (93 and 99 % IRI, respectively). This study found that New Zealand sea lions ate minimal squid at a time when squid was clearly available as evidenced by the diet of New Zealand fur seals; hence, there was no indication of resource competition between sea lions and the squid fishery.  相似文献   

14.
A number of models have been proposed to provide adaptive explanations of sex-ratio variation in mammals. Two models have been applied commonly to primates and ungulates with varying success—the Trivers-Willard (TW) hypothesis, and the local resource competition (LRC) hypothesis. For polygynous, sexually dimorphic mammals, where males are larger and disperse more readily, these models predict opposite outcomes of sex-ratio adjustment within the same environmental context (high-resource years: TW—more sons; LRC—more daughters). However, many of the predictions of these two models can vary depending on factors influencing resource availability, such as environmental stochasticity, resource predictability, and population density. The New Zealand fur seal (Arctocephalus forsteri) is a polygynous mammal showing marked sexual dimorphism (larger males), with higher variation in male reproductive success expected. We provide clear evidence of male-biased sex ratios from a large sample of A. forsteri pups captured around South Island, New Zealand during 1996/1998, even after accounting for a sex bias in capture probability. The extent of the bias depended upon year and, in 1998, strong climatic perturbations (El Niño/Southern Oscillation, ENSO) probably reduced food availability. Significant male-biased sex ratios were found in all years; however, there was a significant decline in the male bias in 1998. There was no relationship between sex ratio and population density. We suggest that the sex-ratio bias resulted from the production of relatively more male pups. Under the density-independent scenario, the strong male bias in A. forsteri sex ratios is support for the TW model within an environment of high resource predictability. We suggest that some plasticity in the determination of pup sex among years is a mechanism by which A. forsteri females in New Zealand, and perhaps other otariid seals, can maximise fitness benefits when living in regions of high, yet apparently predictable, environmental variability. We also suggest that much of the inconsistency in the reported sex ratios for otariid seals results from the complex interaction of population density and environmental stochasticity influencing relative food availability over time.  相似文献   

15.
We present a phylogeographic analysis of an abundant New Zealand endemic sea-star, Patiriella regularis, to help pinpoint the location of an important biogeographic disjunction in central New Zealand. The analysis incorporates 284 mtDNA control region sequences (approximately 800 bp) of P. regularis from 22 coastal locations around New Zealand. We detected 132 haplotypes, with a mean divergence of 0.96%. AMOVA analysis of New Zealand samples is consistent with a north-south biogeographic disjunction across central New Zealand (among-group genetic variance=6.10%; P=0.0005). Cook Strait, the shallow marine strait separating the main islands, is not correlated with the disjunction: samples from northern South Island are genetically indistinguishable from North Island samples (variance=1.69%; P=0.073). These results are consistent with the hypothesis that upwelling zones south of Cook Strait constitute a significant barrier to larval dispersal.Communicated by M.S. Johnson, Crawley  相似文献   

16.
Optimising the management of invasive plants requires the identification of the population size outcomes for alternative management strategies. Mathematical models can be useful tools for making such management strategy comparisons. In this paper we develop a generic landscape meta-population model and apply it to the weedy grass, Nassella trichotoma, an invasive species occupying approximately 800 land parcels, predominantly pastoral farms, in the Hurunui district, North Canterbury, New Zealand. Empirical evidence reveals that this meta-population is currently stable (at a median density of 6 plants ha−1) under a community strategy requiring manual removal (termed ‘grubbing’) of plants annually from all land parcels. Reduction in population size requires an alternative management strategy. Field data, collected over a 12 year period, were used to provide stochastic parameter values for land parcel size, carrying capacity, rates of local population growth and grubbing.The model reveals that at steady state, the most significant contribution to population growth on a land parcel comes from within the land parcel itself; the expected annual per capita growth on an individual land parcel is 4 orders of magnitude greater than the expected annual contribution from plants arising from other land parcels. This result implies that many of the farms currently supporting N. trichotoma may pose little or no threat to, nor are threatened themselves by, other farms infested by the weed. However, the steady state distribution (of the weed's population density) was sensitive to the spread rate, revealing a need for data on this process. It was also sensitive to how any increase in the grubbing rate is distributed; increasing it via a uniform distribution U(0, 1) where all rates between 0 and 100% year−1 are equally probable did not affect the steady state, whereas increasing the rates via the uniform distribution U(0.25, 0.75) resulted in fewer farms with high population densities. In general the model provides a basis for exploring the effects of a wide range of alternative grubbing strategies on population growth in N. trichotoma.  相似文献   

17.
We undertook a comprehensive study of Latrunculia in New Zealand to determine the relationship between taxonomic, environmental, and chemical variation within the genus. Sponges were collected from five locations around New Zealand: Three Kings Islands, Tutukaka, Wellington, Kaikoura, and Doubtful Sound. Allozyme electrophoresis at nine polymorphic loci indicated that sponges from each geographic location were genetically distinct, and that they displayed genetic differences of the magnitude usually associated with reproductively isolated species (Nei's D between locations =0.375-2.476). Additionally, the comparisons revealed that the green and brown colour morphs of Latrunculia that are sympatric at Three Kings Islands and Kaikoura are distinct from each other, and that there are two genetic groups within the green sponges in Doubtful Sound. On the basis of genetic data we conclude that there are at least eight species of Latrunculia in New Zealand waters, not one to four as had been previously thought. Morphological comparisons of the eight genetic species based on skeletal characters (i.e. skeletal organisation of the choanosome, spicule composition, size, and geometry) indicated that the eight Latrunculia species fell into only two morphological groups that could be easily diagnosed on the basis of discorhabd type. Within these two primary morphological groups, skeletal characteristics among the eight species largely overlap and are not diagnostic. These findings emphasise the limitations of traditional taxonomic methods based solely on skeletal characters for distinguishing species of Latrunculia. However, multivariate analysis (MANOVA and CDA) based on six measured skeletal variables did reveal significant morphological variation among the species (Pillai's Trace=3.28, F=6.90, P<0.0001), supporting the division of the genus into eight species. Comparisons of chemical extracts from Latrunculia also showed that the amounts of five different bioactive compounds (discorhabdins A, B, C, D, and J) varied predictably among the eight species. This finding suggests that discorhabdin variation within Latrunculia, previously thought to be associated with intra-specific environmental variability, is more likely to reflect differences among species rather than phenotypic plasticity. Our results also highlight the importance of thorough taxonomic studies associated with marine natural products research to understand fully the variation in bioactive properties among individuals. The potential processes underlying the unusually high speciation rates in New Zealand Latrunculia that are indicated in our study are discussed.  相似文献   

18.
Many authors have considered the common mussels in temperate waters of the Northern and Southern Hemispheres to be a single cosmopolitan species,Mytilus edulis Linnaeus, 1758. Others have divided these mussels into several subspecies or species. Samples of mussels were collected from 36 locations in the Northern Hemisphere and nine locations in the Southern Hemisphere. Electrophoretic evidence from eight loci indicates that the Northern Hemisphere samples consist of three electrophoretically distinguishable species:M. edulis from eastern North America and western Europe;M. galloprovincialis Lamarck, 1819 from the Mediterranean Sea, western Europe, California, and eastern Asia; andM. trossulus Gould, 1850 from the Baltic Sea, eastern Canada, western North America and the Pacific coast of Siberia. Mussels from Chile, Argentina, the Falkland Islands and the Kerguelen Islands contain alleles characteristic of all three Northern Hemisphere species, but because they are most similar toM. edulis from the Northern Hemisphere, we suggest that they tentatively be included inM. edulis. These South American samples are morphologically intermediate between Northern HemisphereM. edulis andM. trossulus. Mussels from Australia and New Zealand are similar in allele frequency and morphometric characters toM. galloprovincialis from the Northern Hemisphere. FossilMytilus sp. are present in Australia, New Zealand and South America, which suggests that the Southern Hemisphere populations may be native, rather than introduced by humans. Morphometric characters were measured on samples which the allozyme data indicated contained a single species. Canonical variates analysis of the morphometric characters yields functions which distinguish among our samples of the species in the Northern Hemisphere.  相似文献   

19.
Genetic diversity and population structure of snapper (Pagrus auratus, Bloch and Schneider), a coastal demersal sparid fish, were determined using six nuclear microsatellite loci and SSCP (single strand conformational polymorphism) analysis of themitochondrial (mt) DNA D-loop in samples collected across the range of the species in New Zealand. Microsatellite data showed similar results to allozyme data collected in the late 1970s that found differentiation between the north-east and southern populations. In addition, an isolated population of snapper in Tasman Bay was identified. The two data sets provide evidence for the temporal stability of the genetic population structure of snapper over 22 years, with differentiation over relatively small spatial scales separated by oceanographic boundaries rather than isolation by distance. In contrast to nuclear markers, mtDNA did not reveal any significant genetic heterogeneity among samples.  相似文献   

20.
Nucleotide variation in cytochrome c oxidase subunit I (COI) was used to examine population structure in three invasive bryozoans: Bugula neritina (Linnaeus, 1758), Watersipora subtorquata (d’Orbigny, 1852), and W. arcuata (Banta, 1969). These species are found on ship hulls and have a short (≤2 days) larval phase. Samples were collected from 1998–2001 at multiple sites in Australia, and in Hong Kong, New Zealand, Hawaii, California, Curaçao, and England. B. neritina is known to include three cryptic species, including species Type S (Davidson and Haygood in Biol Bull 196:273–280, 1999) which occurs on the east and west coasts of the USA. One haplotype recorded previously in the USA, S1, was found to be widespread, occurring throughout Australia and in Hong Kong, Curaçao, Hawaii, and England. W. subtorquata, a Caribbean–Atlantic species which has invaded southern Australia, New Zealand, and California, had low nucleotide diversity in these areas (π=0.0016±0.0014), consisting of three haplotypes connected by one or two nucleotide mutations. W. arcuata, an Eastern-Pacific native, had comparatively high diversity (π=0.0221±0.0115) in introduced populations from Australia and Hawaii. In each species, identical haplotypes were identified on separate coastlines providing evidence of widespread, rather than genetically independent, introductions. The major contrast in nucleotide diversity suggests that different propagule-source models explain introductions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号