首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Coexistence of defended and undefended plants may be maintained by herbivory. In the present paper this phenomenon is analyzed by means of evolutionary game theory. The plants in the model play either a defensive or a non-defensive strategy and they interact indirectly: when a plant is grazed its competitive ability decreases, because of this a neighboring plant makes a profit. The solution to the game leads to three qualitatively different cases depending on whether the profit is equal for the two strategies, defended and undefended, or if the profit is higher for one type than for the other. When the results are applied to intea-specific interactions, the model predicts that polymorphic populations should be expected only under certain specific conditions. When the results are applied to inter-specific interactions, the model predicts either stable coexistence, i.e., increased diversity, or a paradoxical situation without increased diversity.Offprint requests to: M. Augner  相似文献   

2.
Conservation biologists increasingly rely on spatial predictive models of biodiversity to support decision-making. Therefore, highly accurate and ecologically meaningful models are required at relatively broad spatial scales. While statistical techniques have been optimized to improve model accuracy, less focus has been given to the question: How does the autecology of a single species affect model quality? We compare a direct modelling approach versus a cumulative modelling approach for predicting plant species richness, where the latter gives more weight to the ecology of functional species groups. In the direct modelling approach, species richness is predicted by a single model calibrated for all species. In the cumulative modelling approach, the species were partitioned into functional groups, with each group calibrated separately and species richness of each group was cumulated to predict total species richness. We hypothesized that model accuracy depends on the ecology of individual species and that the cumulative modelling approach would predict species richness more accurately. The predictors explained plant species richness by ca. 25%. However, depending on the functional group the deviance explained varied from 3 to 67%. While both modelling approaches performed equally well, the models of the different functional groups highly varied in their quality and their spatial richness pattern. This variability helps to improve our understanding on how plant functional groups respond to ecological gradients.  相似文献   

3.
Flynn DF  Mirotchnick N  Jain M  Palmer MI  Naeem S 《Ecology》2011,92(8):1573-1581
How closely does variability in ecologically important traits reflect evolutionary divergence? The use of phylogenetic diversity (PD) to predict biodiversity effects on ecosystem functioning, and more generally the use of phylogenetic information in community ecology, depends in part on the answer to this question. However, comparisons of the predictive power of phylogenetic diversity and functional diversity (FD) have not been conducted across a range of experiments. To address how phylogenetic diversity and functional trait variation control biodiversity effects on biomass production, we summarized the results of 29 grassland plant experiments where both the phylogeny of plant species used in the experiments is well described and where extensive trait data are available. Functional trait variation was only partially related to phylogenetic distances between species, and the resulting FD values therefore correlate only partially with PD. Despite these differences, FD and PD predicted biodiversity effects across all experiments with similar strength, including in subsets that excluded plots with legumes and that focused on fertilization experiments. Two- and three-trait combinations of the five traits used here (leaf nitrogen percentage, height, specific root length, leaf mass per unit area, and nitrogen fixation) resulted in the FD values with the greatest predictive power. Both PD and FD can be valuable predictors of the effect of biodiversity on ecosystem functioning, which suggests that a focus on both community trait diversity and evolutionary history can improve understanding of the consequences of biodiversity loss.  相似文献   

4.
Economists have understood that the open-access nature of fishing grounds can cause the long-run fishery supply to bend backward. There is also increasing speculation that fishermen respond to falling output price either by increasing or decreasing effort, depending on the circumstances. This suggests a short-run backward-bending supply of fishing labor. A dynamic, utility-theoretic model of fishermen's behavior is developed to address this possibility. The model highlights both contemporaneous and intertemporal trade-offs between labor and leisure. The model is tested and the results indicate that the short-run labor supply in fisheries may exhibit backward-bending properties. In addition, changes in current prices may trigger changes in expectations of future prices, causing potentially greater counterintuitive behavior. These results challenge many traditional regulatory strategies (e.g., output taxes) that address problems of open access.  相似文献   

5.
基于数据库的植物功能性状研究现状文献计量学分析   总被引:2,自引:0,他引:2  
植物功能性状数据库是功能生态学研究的重要工具.了解基于植物功能性状数据库的植物功能性状研究现状,对探讨功能多样性和生物多样性具有重要的指导意义.介绍植物功能性状数据库的类型、影响力的评价方法和使用方法,并整理了17个植物功能性状库(附表).同时,通过Web of Science检索了2008-2018年间基于植物功能性...  相似文献   

6.
Gagnon PR  Passmore HA  Platt WJ  Myers JA  Paine CE  Harms KE 《Ecology》2010,91(12):3481-6; discussion 3503-14
Pyrogenic plants dominate many fire-prone ecosystems. Their prevalence suggests some advantage to their enhanced flammability, but researchers have had difficulty tying pyrogenicity to individual-level advantages. Based on our review, we propose that enhanced flammability in fire-prone ecosystems should protect the belowground organs and nearby propagules of certain individual plants during fires. We base this hypothesis on five points: (1) organs and propagules by which many fire-adapted plants survive fires are vulnerable to elevated soil temperatures during fires; (2) the degree to which burning plant fuels heat the soil depends mainly on residence times of fires and on fuel location relative to the soil; (3) fires and fire effects are locally heterogeneous, meaning that individual plants can affect local soil heating via their fuels; (4) how a plant burns can thus affect its fitness; and (5) in many cases, natural selection in fire-prone habitats should therefore favor plants that burn rapidly and retain fuels off the ground. We predict an advantage of enhanced flammability for plants whose fuels influence local fire characteristics and whose regenerative tissues or propagules are affected by local variation in fires. Our "pyrogenicity as protection" hypothesis has the potential to apply to a range of life histories. We discuss implications for ecological and evolutionary theory and suggest considerations for testing the hypothesis.  相似文献   

7.
von Arx G  Edwards PJ  Dietz H 《Ecology》2006,87(3):665-674
Relatively little is known about how the life histories of perennial forb species, and especially their lifetime patterns of growth, vary across environmental gradients. We used a post hoc approach (herb-chronology) to determine plant age and previous growth (width of successive annual rings in roots) in three species of perennial forb (two long-lived species [Penstemon venustus, Lupinus laxiflorus] and one short-lived [Rudbeckia occidentalis]) along a 1000-m altitudinal gradient in the Wallowa Mountains (northeast Oregon, USA). Plants from the highest altitude tended to be considerably older and produced up to five times as many flowering shoots as lowland plants. In addition, mean ring widths of high-altitude plants were about half those of lowland plants. In plants from low and intermediate altitudes, ring width either decreased linearly or varied inconsistently during the life of the plant. In contrast, ring widths of high-altitude plants increased at first and later decreased, resulting in curvilinear growth trajectories that were highly consistent among species. Together, these data for three ecologically distinct forb species provide evidence of a consistent shift toward more conservative and strongly constrained life histories at higher altitudes. More generally, the results indicate the possible importance of changes in selection pressures across strong environmental gradients on life history strategies within a single species.  相似文献   

8.
Plant conservation initiatives lag behind and receive considerably less funding than animal conservation projects. We explored a potential reason for this bias: a tendency among humans to neither notice nor value plants in the environment. Experimental research and surveys have demonstrated higher preference for, superior recall of, and better visual detection of animals compared with plants. This bias has been attributed to perceptual factors such as lack of motion by plants and the tendency of plants to visually blend together but also to cultural factors such as a greater focus on animals in formal biological education. In contrast, ethnographic research reveals that many social groups have strong bonds with plants, including nonhierarchical kinship relationships. We argue that plant blindness is common, but not inevitable. If immersed in a plant‐affiliated culture, the individual will experience language and practices that enhance capacity to detect, recall, and value plants, something less likely to occur in zoocentric societies. Therefore, conservation programs can contribute to reducing this bias. We considered strategies that might reduce this bias and encourage plant conservation behavior. Psychological research demonstrates that people are more likely to support conservation of species that have human‐like characteristics and that support for conservation can be increased by encouraging people to practice empathy and anthropomorphism of nonhuman species. We argue that support for plant conservation may be garnered through strategies that promote identification and empathy with plants.  相似文献   

9.
The elevational gradient in plant and animal diversity is one of the most widely documented patterns in ecology and, although no consensus explanation exists, many hypotheses have been proposed over the past century to explain these patterns. Historically, research on elevational diversity gradients has focused almost exclusively on plant and animal taxa. As a result, we do not know whether microbes exhibit elevational gradients in diversity that parallel those observed for macroscopic taxa. This represents a key knowledge gap in ecology, especially given the ubiquity, abundance, and functional importance of microbes. Here we show that, across a montane elevational gradient in eastern Peru, bacteria living in three distinct habitats (organic soil, mineral soil, and leaf surfaces) exhibit no significant elevational gradient in diversity (r2<0.17, P>0.1 in all cases), in direct contrast to the significant diversity changes observed for plant and animal taxa across the same montane gradient (r2>0.75, P<0.001 in all cases). This finding suggests that the biogeographical patterns exhibited by bacteria are fundamentally different from those of plants and animals, highlighting the need for the development of more inclusive concepts and theories in biogeography to explain these disparities.  相似文献   

10.
Understanding clonal strategies (i.e. the ability of plants to reproduce vegetatively) is particularly important to explain species persistence. A clonal individual may be considered as a network of interconnected ramets that colonizes space. Resources in this network can be shared and/or stored. We developed an individual-based model (IBM) to simulate the growth of an individual clonal plant. Typically a realistic IBM requires a large set of parameters to adequately represent the complexity of the clonal plant growth. Simulations in the literature are often limited to small subsets of the parameter space and are guided by the a priori knowledge and with heuristic aims of the researcher. The aim of this paper was to demonstrate the benefit of volunteer computing in computational ecology to systematically browse the parameter space and analyze the simulation results in order to draw rigorous conclusions. To be specific, we simulated clonal plant growth using nine growth rules related to the metabolic process, plant architecture, resource sharing and storage and nineteen input parameters. We chose 2-4 values per input parameter which corresponded to 20 millions of combinations tested through volunteer computing. We used three criteria to evaluate plant performance: plant total resource, ramet production and maximum length of one branch. The 1% top-performing plants were sorted according to these criteria. Plant total resource and ramet production were correlated while considering the top-performing plants. The maximum length of one branch was independent from the other two performance traits. We detected two processes promoting at least one of the plant performance traits: (i) a relatively high metabolic gain (high photosynthetic activity and low production cost for new growth units), a low resource storage and long integration distance for resource sharing; (ii) short spacer lengths and the predominance of elongation of existing branches over branching. Interactive effects between parameter values were demonstrated for more than half of the input parameters. Best performance was reached for plants with slightly different combinations of values for these parameters (i.e. different strategies) rather than a single one (i.e. unique strategy). This modeling approach with volunteer computing enabled us to proceed to large-scale virtual experiments which provided a new quality of insight into ecological processes linked with clonal plant growth.  相似文献   

11.
Kahmen A  Renker C  Unsicker SB  Buchmann N 《Ecology》2006,87(5):1244-1255
The relationship between plant diversity and productivity has largely been attributed to niche complementarity, assuming that plant species are complementary in their resource use. In this context, we conducted an 15N field study in three different grasslands, testing complementarity nitrogen (N) uptake patterns in terms of space, time, and chemical form as well as N strategies such as soil N use, symbiotic N fixation, or internal N recycling for different plant species. The relative contribution of different spatial, temporal, and chemical soil N pools to total soil N uptake of plants varied significantly among the investigated plant species, within and across functional groups. This suggests that plants occupy distinct niches with respect to their relative N uptake. However, when the absolute N uptake from the different soil N pools was analyzed, no spatial, temporal, or chemical variability was detected, but plants, and in particular functional groups, differed significantly with respect to their total soil N uptake irrespective of treatment. Consequently, our data suggest that absolute N exploitation on the ecosystem level is determined by species or functional group identity and thus by community composition rather than by complementary biodiversity effects. Across functional groups, total N uptake from the soil was negatively correlated with leaf N concentrations, suggesting that these functional groups follow different N use strategies to meet their N demands. While our findings give no evidence for a biodiversity effect on the quantitative exploitation of different soil N pools, there is evidence for different and complementary N strategies and thus a potentially beneficial effect of functional group diversity on ecosystem functioning.  相似文献   

12.
Predicting ecosystem effects is of crucial importance in a world at threat from natural and human-mediated change. Here we propose an ecologically defensible representation of an ecosystem that facilitates predictive modelling. The representation has its roots in the early trophic and energetic theory of ecosystem dynamics and more recent functional ecology and network theory. Using the arable ecosystem of the UK as an example, we show that the representation allows simplification from the many interacting plant and invertebrate species, typically present in arable fields, to a more tractable number of trophic-functional types. Our compound hypothesis is that “trophic-functional types of plants and invertebrates can be used to explain the structure, diversity and dynamics of arable ecosystems”. The trophic-functional types act as containers for individuals, within an individual-based model, sharing similar trophic behaviour and traits of biomass transformation. Biomass, or energy, flows between the types and this allows the key ecological properties of individual abundance and body mass, at each trophic height, to be followed through simulations. Our preliminary simulation results suggest that the model shows great promise. The simulation output for simple ecosystems, populated with realistic parameter values, is consistent with current laboratory observations and provides exciting indications that it could reproduce field scale phenomena. The model also produces output that links the individual, population and community scales, and may be analysed and tested using community, network (food web) and population dynamic theory. We show that we can include management effects, as perturbations to parameter values, for modelling the effects of change and indicating management responses to change. This model will require robust analysis, testing and validation, and we discuss how we will achieve this in the future.  相似文献   

13.
We study the effects of working memory capacity and network rewiring probability on the evolution of cooperation in the standard and modified versions of an agent-based model of tag-mediated altruism. In our evolutionary model, computational agents populate a large complex network, engage into multiplayer Prisoner’s Dilemma-like interactions, and reproduce sexually. Agents carry discernible phenotypic traits subject to mutation, memorize their own experiences, and employ different strategies when interacting with different types of co-players. Choices made are selected from a pool of two conditional and two unconditional strategies, depending on the available memory contents and phenotypic similarity among interactors. For the dominating strategy in our standard model version, we found a strong dependence of cooperation on network structure and a weak one on memory, whereas in the modified version, the structural effect was weaker than that of memory. Most importantly, we found that the previously reported decline of cooperation in memory-based models, typically observed at a high memory capacity, is now prevented with the help of tags. This suggests that the evolutionary advantages of memory capacity limits may be far more complex than previously assumed. For much smaller systems, we observed a quasi-symmetric alternation of the two winning groups of strategists. This result provides an example of ingroup biased interactions that are characterized by bursts of intra-tag cooperation interspersed with periods of unconditional transient altruism. Such switches of strategies may represent a boosting mechanism necessary for the emergence and stability of global altruism in its early evolutionary stages.  相似文献   

14.
Inter- and intraspecies variations in host plant traits are presumably involved in many host shifts by insect herbivores, and elucidating the mechanisms involved in such shifts has been a crucial goal in insect-plant research for several decades. Here we propose that herbivore-induced evolutionary increases in host plant resistance may cause oligophagous insect herbivores to shift to other sympatric plants as currently preferred host plants become increasingly unpalatable. We tested this hypothesis in a system based on the perennial herb Filipendula ulmaria (Rosaceae), whose herbivory defense has become gradually stronger due to prolonged selection by Galerucella tenella (Coleoptera: Chrysomelidae) herbivory in a boreal archipelago. We show that Galerucella gradually increases its use of the alternative host plant Rubus arcticus (Rosaceae) in parallel to gradually increased resistance in Filipendula. Our results imply that, by driving the evolutionary increase in Filipendula resistance, Galerucella is also gradually making the original host species more unpalatable and thereby driving its own host-breadth enlargement. We argue that such self-inflicted "rent rises" may be an important mechanism behind host plant shifts, which in turn are believed to have preceded the speciation of many phytophagous insects.  相似文献   

15.
Most woody plants contain a diverse array of plant secondary metabolites (PSMs) that deter vertebrate herbivores. However, mammalian folivores have evolved a complex of physiological and behavioural strategies to counter these compounds, leading to the development of an “evolutionary arms race”. Marsupial folivores are ideal models to investigate the role of PSMs in the interaction between the external foraging environment and the digestive physiology of mammalian herbivores, as we have a very strong understanding of the diversity and modes of action of PSMs in Eucalyptus, as well as the mechanisms by which animals overcome the effects of these compounds. Studies of marsupial folivores have benefited from the facts that: these herbivores subsist on relatively poor quality diets; they include feeding types from specialist species such as the koala, to generalists; and life history factors such as maternal investment in reproduction can be measured more easily than in eutherians. Here, we describe patterns of spatial variation in the types and distributions of plant secondary metabolites in Australian forests and discuss how this variation influences foraging behaviour, habitat selection and life history strategies in arboreal, folivorous marsupials. We also provide a summary of our understanding of the mechanisms by which marsupials detect and regulate their intake of toxic compounds. While our examples are drawn largely from studies of the interaction between marsupials and Eucalyptus, this knowledge is applicable to advancing our understanding of interactions in plant–mammal systems more broadly. We also identify and discuss key areas that should be the focus of future research.  相似文献   

16.
中国北方典型污染城市主要绿化树种的滞尘效应(英文)   总被引:1,自引:0,他引:1  
为研究城市人工植被的滞尘效应及其对城市生态环境的改善作用,以中国北方典型污染城市--临汾市为例.通过野外典型采样法和室内分析,测定了不同生活型主要绿化植物的滞尘能力,讨论了植物的滞尘量与滞尘时间的关系,并且研究了污染程度及距污染源距离对植物滞尘能力的影响.结果表明,在同一降尘条件下,不同生活型植物滞尘能力差异表现为草本植物的滞尘能力显著高于其它生活型植物(落叶乔木,灌木和藤本植物),而其它生活型植物间的滞尘能力无显著差异性;对针叶林来说,圆柏和雪松的滞尘能力间亦存在显著差异.在不同的污染情况下(污染程度及和污染源的距离不同),同种植物的滞尘能力亦有明显的差异,这与植物的高度和生长特性有关.而且,随时间推移,植物叶片的滞尘量呈现周期变化.而不是一个随时间无限增长的量,也有其饱和量.因此,在进行城市绿化设计时,需要综合考虑绿化树种的滞尘能力、滞尘周期及其生长环境情况等.  相似文献   

17.
Bite forces and evolutionary adaptations to feeding ecology in carnivores   总被引:2,自引:0,他引:2  
Christiansen P  Wroe S 《Ecology》2007,88(2):347-358
The Carnivora spans the largest ecological and body size diversity of any mammalian order, making it an ideal basis for studies of evolutionary ecology and functional morphology. For animals with different feeding ecologies, it may be expected that bite force represents an important evolutionary adaptation, but studies have been constrained by a lack of bite force data. In this study we present predictions of bite forces for 151 species of extant carnivores, comprising representatives from all eight families and the entire size and ecological spectrum within the order. We show that, when normalized for body size, bite forces differ significantly between the various feeding categories. At opposing extremes and independent of genealogy, consumers of tough fibrous plant material and carnivores preying on large prey both have high bite forces for their size, while bite force adjusted for body mass is low among specialized insectivores. Omnivores and carnivores preying on small prey have more moderate bite forces for their size. These findings indicate that differences in bite force represent important adaptations to and indicators of differing feeding ecologies throughout carnivoran evolution. Our results suggest that the incorporation of bite force data may assist in the construction of more robust evolutionary and palaeontological analyses of feeding ecology.  相似文献   

18.
Harrewijn  Paul  Minks  Albert K.  Mollema  Chris 《Chemoecology》1994,5(2):55-73
Summary The production of volatile secondary plant substances during the evolution of terrestrial plants is reviewed in regard to the defensive systems of plants to microorganisms and herbivores. Plant volatiles can be produced by both anabolic and catabolic processes. Although attraction of pollinators is a well-studied phenomenon, functions of volatiles range from excretion of waste products to the production of compounds attracting natural enemies of herbivores. During the evolution of the angiosperms a diversity of volatiles were selected to defend generative parts against microorganisms. Many of these allomones were related to or even identical with sex pheromones of insects. As a result flowers of angiosperms became utilized as a mating site. Consequently insects visiting flowers became involved in pollination, facilitating the steps from anemophily to entomophily. The efficiency of entomophily was increased because of nutritional rewards.An evolutionary scenario for the impact of plant volatiles on insects is presented and the role of volatile allomones in the establishment of plant-insect relationships is emphasized by (1) their strong antimicrobial properties, (2) strategies to protect symbiotic microorganisms, (3) their function as repellents and deterrents, (4) the use of volatile allomones as kairomones. These facts speak for an adaptation of insects to plant physiology and a limited importance of phytophagous insects in selection pressure upon plants. Herbivorous insects have realized specific adaptations to be able to discriminate between complex odour blends, but the utilization of chemical groups among insect taxa is different.The main theories on plant chemical defence do not discuss the impact of volatiles on host plant selection and may be apt to revision when pheromones, allomones, kairomones and synomones are not taken into account.  相似文献   

19.
稳定氢氧同位素在定量区分植物水分利用来源中的应用   总被引:5,自引:0,他引:5  
段德玉  欧阳华 《生态环境》2007,16(2):655-660
全球气候变化下陆地生态系统的适应性是当前科学研究关注的主题之一,了解生态系统如何响应及影响全球气候变化有利于人类对未来生存环境的预测和适应。生态系统中不同来源水分对植物生长相对贡献决的大小一定程度上决定了生态系统对气候变化的响应方式、程度和响应结果,因此跟踪和分析植物利用水分的来源是制定全球气候变化对策的一个重要研究内容。本文介绍了稳定氢氧同位素技术研究历史及其在定量区分植物利用水分的来源研究中的应用原理与具体方法。由于土壤水分在被植物根系吸收及随后沿导管向上传输的过程中,与外界环境不发生水分交换,因此不存在同位素的分馏过程,所以植物茎木质部水分同位素组成能反映出植物利用的来源水分同位素信息。通过比较植物茎木质部水分与植物利用的不同来源水分同位素值,利用二项或三项分隔线性混合模型(two-orthree-compartment linear mixing model),可以估算出植物对不同来源水分的相对使用量。而由于植物叶片水分同位素组成受到周围环境的温度、湿度、降雨和土壤水分的异质性等许多因素的影响,通过比较分析植物茎木质部水分和叶片水分同位素组成的差异可以得到植物周围环境的气候信息。植物利用水分的来源存在显著的季节性差异,并且,不同生活型植物在利用水分来源上存在明显不同。植物根系的分布及根深是决定植物利用水分来源的一个重要的因素,表层和深层根系的相对分布及其活性影响着植物吸收水分的范围。当然,利用线型分隔混合模型定量区分植物利用水分的不同来源,还有许多值得改进的地方,而且,尽管稳定同位素技术在植物科学中的应用正迅速发展起来,但利用稳定氢氧同位素来分析环境因素对植物影响的研究还只是刚刚展开,还有许多方面值得去进一步探索。  相似文献   

20.
Review of fly ash inertisation treatments and recycling   总被引:1,自引:0,他引:1  
Fly ash (FA) is a by-product of power, and incineration plants operated either on coal and biomass, or on municipal solid waste. FA can be divided into coal fly ash, obtained from power plant burning coal, flue gas desulphurisation FA, that is, the by-product generated by the air pollution control equipment in coal-fired power plants to reduce the release of SO2, biomass FA produced in the plants for thermal conversion of biomass and municipal solid waste incineration (MSWI) FA, that is, the finest residue obtained from the scrubber system in a MSWI plant. Because of the large amount produced in the world, fly ash is now considered the world’s fifth largest material resource. The composition of FA is very variable, depending on its origins; then, also pollutants can be very different. In this frame, it is fundamental to exploit the chemical or physical potentials of FA constituents, thus rendering them second-life functionality. This review paper is addressed to FA typology, composition, treatment, recycling, functional reuse and metal and organic pollutants abatement. Because of the general growing of environmental awareness and increasing energy and material demand, it is expected that increasing recycling rates will reduce the pressure on demand for primary raw materials, help to reuse valuable materials which would otherwise be wasted and reduce energy consumption and greenhouse gas emissions from extraction and processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号