首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dispersal among ecological communities is usually assumed to be random in direction, or to vary in distance or frequency among species. However, a variety of natural systems and types of organisms may experience dispersal that is biased by directional currents or by gravity on hillslopes. We developed a general model for competing species in metacommunities to evaluate the role of directionally biased dispersal on species diversity, abundance, and traits. In parallel, we tested the role of directionally biased dispersal on communities in a microcosm experiment with protists and rotifers. Both the model and experiment independently demonstrated that diversity in local communities was reduced by directionally biased dispersal, especially dispersal that was biased away from disturbed patches. Abundance of species (and composition) in local communities was a product of disturbance intensity but not dispersal directionality. High disturbance selected for species with high intrinsic growth rates and low competitive abilities. Overall, our conclusions about the key role of dispersal directionality in (meta)communities seem robust and general, since they were supported both by the model, which was set in a general framework and not parameterized to fit to a specific system, and by a specific experimental test with microcosms.  相似文献   

2.
The land-cover cascade: relationships coupling land and water   总被引:4,自引:0,他引:4  
Burcher CL  Valett HM  Benfield EF 《Ecology》2007,88(1):228-242
We introduce the land-cover cascade (LCC) as a conceptual framework to quantify the transfer of land-cover-disturbance effects to stream biota. We hypothesize that disturbance is propagated through multivariate systems through key variables that transform a disturbance and pass a reorganized disturbance effect to the next hierarchical level where the process repeats until ultimately affecting biota. We measured 31 hydrologic, geomorphic, erosional, and substrate variables and 26 biotic responses that have been associated with land-use disturbance in third- and fourth-order streams in the Blue Ridge physiographic province in western North Carolina (USA). Regression analyses reduced this set of variables to include only those that responded to land cover and/or affected biota. From this reduced variable set, hypotheses were generated that predicted the disturbance pathways affecting each biotic response following the land-cover-cascade design. Cascade pathways began with land cover and ended with biotic responses, passing through at least one intermediate ecosystem abiotic component. Cascade models were tested for predictive ability and goodness-of-fit using path analysis. Biota were influenced by near-stream urban, agricultural, and forest land cover as propagated by hydrologic (e.g., discharge), geomorphic (e.g., stream bank height), erosional (e.g., suspended sediments), and depositional streambed (e.g., substrate size) features occurring along LCC pathways, reflecting abiotic mechanisms mediating land-cover disturbance. Our results suggest that communities are influenced by land-cover change indirectly through a hierarchy of associated abiotic components that propagate disturbance to biota. More generally, the land-cover cascade concept and experimental framework demonstrate an organized approach to the generic study of cascades and the complex relationships between landscapes and streams.  相似文献   

3.
Thresholds in Songbird Occurrence in Relation to Landscape Structure   总被引:5,自引:0,他引:5  
Abstract:  Theory predicts the occurrence of threshold levels of habitat in landscapes, below which ecological processes change abruptly. Simulation models indicate that below critical thresholds, fragmentation of habitat influences patch occupancy by decreasing colonization rates and increasing rates of local extinction. Uncovering such putative relationships is important for understanding the demography of species and in developing sound conservation strategies. Using segmented logistic regression, we tested for thresholds in occurrence of 15 bird species as a function of the amount of suitable habitat at multiple scales (150–2000-m radii). Suitable habitat was defined quantitatively based on previously derived, spatially explicit distribution models for each species. The occurrence of 10 out of 15 species was influenced by the amount of habitat at a landscape scale (≥500-m radius). Of these species all but one were best predicted by threshold models. Six out of nine species exhibited asymptotic thresholds; the effects of habitat loss intensified at low amounts of habitat in a landscape. Landscape thresholds ranged from 8.6% habitat to 28.7% (     = 18.5 ± 2.6%[95% CI]). For two species landscape thresholds coincided with sensitivity to fragmentation; both species were more likely to occur in large patches, but only when the amount of habitat in a landscape was low. This supports the fragmentation threshold hypothesis. Nevertheless, the occurrence of most species appeared to be unaffected by fragmentation, regardless of the amount of habitat present at landscape extents. The thresholds we identified may be useful to managers in establishing conservation targets. Our results indicate that findings of landscape-scale studies conducted in regions with relatively high proportions of habitat and low fragmentation may not be applicable in regions with low habitat proportions and high fragmentation.  相似文献   

4.
Fong P  Smith TB  Wartian MJ 《Ecology》2006,87(5):1162-1168
Macroalgal dominance of some tropical reef communities in the Eastern Pacific after coral mortality during the 1997-1998 El Ni?o Southern Oscillation (ENSO) was facilitated by protection from herbivory by epiphytic cyanobacteria. Our results do not support that reduction in number of herbivores was a necessary precursor to coral reef decline and shifts to algal reefs in this system. Rather, macroalgae dominated the community for several years after this pulse disturbance with no concurrent change in herbivore populations. While results of microcosm experiments identified the importance of nutrients, especially phosphorus, in stimulating macroalgal growth, nutrient supply alone could not sustain macroalgal dominance as nutrient-stimulated growth rates in our in situ experiments never exceeded consumption rates of unprotected thalli. In addition, thalli with nutrient-enriched tissue were preferentially consumed, possibly negating the positive effects of nutrients on growth. These tropical reefs may be ideal systems to conduct experimental tests distinguishing phase shifts from alternative stable states. Shifts were initiated by a large-scale disturbance with no evidence of a changing environment except, perhaps, dilution in herbivory pressure due to increased algal cover. Community establishment was most likely stochastic, and the community was likely maintained by strongly positive interaction between macroalgal hosts and cyanobacterial epiphytes that uncoupled consumer control of community structure.  相似文献   

5.
Socioecological models predict that contest competition for clumped foods can lead to higher energy intake and lower energy expenditure for higher-ranking individuals. Here, we examine the relationships between dominance rank and energy intake and expenditure of female mountain gorillas in Bwindi Impenetrable National Park, Uganda (Gorilla beringei beringei). Bwindi gorillas have weak dominance relationships, feed on nonreproductive plant parts throughout the year, and consume fruit when it is seasonally available. We used behavioral observations on one group of gorillas and nutritional analysis of their major food items to calculate energy intake rates and estimated energy expenditure. Using linear mixed models, we found a significant positive relationship between dominance rank and energy intake rates, due to higher-ranking females having faster ingestion rates, rather than consuming foods with higher energy concentrations. Lower-ranking females did not spend significantly more time feeding to compensate for their lower energy intake rates. Lower-ranking females spent significantly more time traveling than higher-ranking females, leading to a negative relationship between dominance rank and energy expenditure. The combined results revealed a significant positive relationship between dominance rank and energy balance. Higher-ranking females did not spend longer feeding on fruit than lower-ranking ones, and the relationship between dominance rank and energy intake rates was not stronger when fruit was available. According to socioecological models, these results suggest that contest competition may be occurring with both fruit and nonreproductive plant parts, which would be consistent with growing evidence that nonreproductive plant parts can be contestable.  相似文献   

6.
Lima M  Ernest SK  Brown JH  Belgrano A  Stenseth NC 《Ecology》2008,89(9):2594-2603
Using long-term data on two kangaroo rats in the Chihuahuan Desert of North America, we fitted logistic models including the exogenous effects of seasonal rainfall patterns. Our aim was to test the effects of intraspecific interactions and seasonal rainfall in explaining and predicting the numerical fluctuations of these two kangaroo rats. We found that logistic models fit both data sets quite well; Dipodomys merriami showed lower maximum per capita growth rates than Dipodomys ordii, and in both cases logistic models were nonlinear. Summer rainfall appears to be the most important exogenous effect for both rodent populations; models including this variable were able to predict independent data better than models including winter rainfall. D. merriami was also negatively affected by another kangaroo rat (Dipodomys spectabilis), consistent with previous experimental evidence. We hypothesized that summer rainfall influences the carrying capacity of the environment by affecting seed availability and the intensity of intraspecific competition.  相似文献   

7.
Changes in disturbance rates due to climate change may increase or decrease diversity, whereas permanent loss of habitat is generally believed to decrease diversity. It is, however, very likely that the effects of disturbances and habitat destruction interact. Understanding such combined effects is essential to predict the response of communities to global changes and in particular which functional types of species are most endangered. Using an individual-based spatially explicit community model, we investigate (1) whether diversity-disturbance curves alter when spatially uncorrelated or autocorrelated habitat destruction is added, and (2) which functional types of species are able to survive under these altered conditions. Model communities consisted of four functional types of species trading off between colonisation ability and competition strength. We found that habitat destruction may alter both height and shape of diversity-disturbance curves: maximum diversity at intermediate disturbance rates may shift to other disturbance rates or even split into two peaks giving rise to bimodal diversity-disturbance relationships with different sub-communities persisting at low and high disturbance rates. Diversity responded differentially depending on how the colonisation-competition trade-off was represented. Our results suggest that, for trade-offs in seed production rate, generally the best coloniser will better withstand the interacting effects of habitat destruction and changing disturbance rates; however, for trade-offs in mean dispersal distances, functional types characterized by intermediate abilities will perform best. We conclude that predictions of the impacts of changing disturbance rates on biodiversity depend on community structure and cannot be made without knowledge of concurrent permanent habitat destruction.  相似文献   

8.
Dahlgren JP  García MB  Ehrlén J 《Ecology》2011,92(5):1181-1187
To accurately estimate population dynamics and viability, structured population models account for among-individual differences in demographic parameters that are related to individual state. In the widely used matrix models, such differences are incorporated in terms of discrete state categories, whereas integral projection models (IPMs) use continuous state variables to avoid artificial classes. In IPMs, and sometimes also in matrix models, parameterization is based on regressions that do not always model nonlinear relationships between demographic parameters and state variables. We stress the importance of testing for nonlinearity and propose using restricted cubic splines in order to allow for a wide variety of relationships in regressions and demographic models. For the plant Borderea pyrenaica, we found that vital rate relationships with size and age were nonlinear and that the parameterization method had large effects on predicted population growth rates, X (linear IPM, 0.95; nonlinear IPMs, 1.00; matrix model, 0.96). Our results suggest that restricted cubic spline models are more reliable than linear or polynomial models. Because even weak nonlinearity in relationships between vital rates and state variables can have large effects on model predictions, we suggest that restricted cubic regression splines should be considered for parameterizing models of population dynamics whenever linearity cannot be assumed.  相似文献   

9.
In order to assess the effects of detergents on a microcosm system several types of detergents (anionic, cationic, nonionic, and amino acid detergents) were tested. Data showed growth perturbations in the microcosm, indicating that these detergents affected the microcosm. The potential use of growth perturbations of microcosm by addition of detergents as a biomarker of exposure is described.  相似文献   

10.
A qualitative analysis of a system of autonomous differential equations modelling an ecosystem microcosm is carried out from the point of view of persistence. Necessary and sufficient conditions are given that no trajectory with positive initial conditions has a component that tends to zero asymptotically or reaches zero in finite time. The results are stated in terms of threshold levels for the input nutrient parameter in the system.  相似文献   

11.
12.
Muths E  Scherer RD  Corn PS  Lambert BA 《Ecology》2006,87(4):1048-1056
Male boreal toads (Bufo boreas) are thought to return to the breeding site every year but, if absent in a particular year, will be more likely to return the following year. Using Pollock's robust design we estimated temporary emigration (the probability a male toad is absent from a breeding site in a given year) at three locations in Colorado, USA: two in Rocky Mountain National Park and one in Chaffee County. We present data that suggest that not all male toads return to the breeding site every year. Our analyses indicate that temporary emigration varies by site and time (for example, from 1992 to 1998, the probability of temporary emigration ranged from 10% to 29% and from 3% to 95% at Lost Lake and Kettle Tarn, respectively). Although the results provide weak evidence that males are more likely to return after a year's hiatus, a general pattern of state-dependent temporary emigration was not supported. We also hypothesized relationships between temporary emigration and a number of weather variables. While some competitive models included weather covariates, imprecise and variable estimates of the effects of these covariates precluded fully defining their impact on temporary emigration.  相似文献   

13.
Belote RT  Jones RH  Hood SM  Wender BW 《Ecology》2008,89(1):183-192
Research examining the relationship between community diversity and invasions by nonnative species has raised new questions about the theory and management of biological invasions. Ecological theory predicts, and small-scale experiments confirm, lower levels of nonnative species invasion into species-rich compared to species-poor communities, but observational studies across a wider range of scales often report positive relationships between native and nonnative species richness. This paradox has been attributed to the scale dependency of diversity-invasibility relationships and to differences between experimental and observational studies. Disturbance is widely recognized as an important factor determining invasibility of communities, but few studies have investigated the relative and interactive roles of diversity and disturbance on nonnative species invasion. Here, we report how the relationship between native and nonnative plant species richness responded to an experimentally applied disturbance gradient (from no disturbance up to clearcut) in oak-dominated forests. We consider whether results are consistent with various explanations of diversity-invasibility relationships including biotic resistance, resource availability, and the potential effects of scale (1 m2 to 2 ha). We found no correlation between native and nonnative species richness before disturbance except at the largest spatial scale, but a positive relationship after disturbance across scales and levels of disturbance. Post-disturbance richness of both native and nonnative species was positively correlated with disturbance intensity and with variability of residual basal area of trees. These results suggest that more nonnative plants may invade species-rich communities compared to species-poor communities following disturbance.  相似文献   

14.
Clough Y 《Ecology》2012,93(8):1809-1815
The need to model and test hypotheses about complex ecological systems has led to a steady increase in use of path analytical techniques, which allow the modeling of multiple multivariate dependencies reflecting hypothesized causation and mechanisms. The aim is to achieve the estimation of direct, indirect, and total effects of one variable on another and to assess the adequacy of whole models. Path analytical techniques based on maximum likelihood currently used in ecology are rarely adequate for ecological data, which are often sparse, multi-level, and may contain nonlinear relationships as well as nonnormal response data such as counts or proportion data. Here I introduce a more flexible approach in the form of the joint application of hierarchical Bayes, Markov chain Monte Carlo algorithms, Shipley's d-sep test, and the potential outcomes framework to fit path models as well as to decompose and estimate effects. An example based on the direct and indirect interactions between ants, two insect herbivores, and a plant species demonstrates the implementation of these techniques, using freely available software.  相似文献   

15.
New approaches to modelling fish-habitat relationships   总被引:1,自引:0,他引:1  
Ecologists often develop models that describe the relationship between faunal communities and their habitat. Coral reef fishes have been the focus of numerous such studies, which have used a wide range of statistical tools to answer an equally wide range of questions. Here, we apply a series of both conventional statistical techniques (linear and generalized additive regression models) and novel machine-learning techniques (the support vector machine and three ensemble techniques used with regression trees) to predict fish species richness, biomass, and diversity from a range of habitat variables. We compare the techniques in terms of their predictive performance, and we compare a subset of the models in terms of the influence each habitat variable has for the predictions. Prediction errors are estimated by cross-validation, and variable importance is assessed using permutations of individual variable values. For predictions of species richness and diversity the tree-based models generally and the random forest model specifically are superior (produce the lowest errors). These model types are all able to model both nonlinear and interaction effects. The linear model, unable to model either effect type, performs the worst (produces the highest errors). For predictions of biomass, the generalized additive model is superior, and the support vector machine performs the worst. Depth range, the difference between maximum and minimum water depth at a given site, is identified as the most important variable in the majority of models predicting the three fish community variables. However, variable importance is highly dependent upon model type, which leads to questions regarding the interpretation of variable importance and its proper use as an indicator of causality. The representation of ecological relationships by tree-based ensemble learners will improve predictive performance, and provide a new avenue for exploring ecological relationships, both statistical and causal.  相似文献   

16.
A microcosm experiment was carried out to evaluate the effects of continuous and spasmodic physical disturbance of differing frequency on the structure of nematode communities of intertidal sand and mud. There was a marked, characteristic change in abundance and diversity for both sediment types. In the sand microcosms, the majority of univariate measures of community structure, including species diversity, were lowest in the sediments subjected to a high frequency of disturbance. For the mud microcosms, most univariate measures reached their highest values in the treatments with an intermediate frequency of disturbance and were lower in treatments subjected to both higher and lower frequencies. Multivariate ordinations for both nematode assemblages showed a clear separation of undisturbed controls and disturbed treatments, but only for the muddy sediment was there a graded change in community composition with increasing frequency of disturbance. These results confirmed our a priori expectation that nematode assemblages from mobile sandy sediments would be more resilient to physical disturbance than those from sheltered muds, and these observations are considered in the context of Connell's intermediate disturbance hypothesis. Received: 7 May 1997 / Accepted: 10 October 1997  相似文献   

17.
Renne IJ  Tracy BF  Colonna IA 《Ecology》2006,87(9):2264-2277
There is an emerging recognition that invasibility is not an intrinsic community trait, but is a condition that fluctuates from interactions between environmental forces and residential characters. Elucidating the spatiotemporal complexities of invasion requires inclusion of multiple, ecologically variable factors within communities of differing structure. Water and nutrient amendments, disturbance, and local composition affect grassland invasibility but no study has simultaneously integrated these, despite evidence that they frequently interact. Using a split-plot factorial design, we tested the effects of these factors on the invasibility of C3 pasture communities by smooth pigweed Amaranthus hybridus L., a problematic C4 forb. We sowed seeds and transplanted 3-week old seedlings of A. hybridus into plots containing monocultures and mixtures of varying composition, subjected plots to water, soil disturbance, and synthetic bovine urine (SBU) treatments, and measured A. hybridus emergence, recruitment, and growth rate. Following SBU addition, transplanted seedling growth increased in all plots but differed among legume and nonlegume monocultures and mixtures of these plant types. However, SBU decreased the number and recruitment rate of emerged seedlings because high residential growth reduced light availability. Nutrient pulses can therefore have strong but opposing effects on invasibility, depending on when they coincide with particular life history stages of an invader. Indeed, in SBU-treated plots, small differences in height of transplanted seedlings early on produced large differences in their final biomass. All facilitative effects of small-scale disturbance on invasion success diminished when productivity-promoting factors were present, suggesting that disturbance patch size is important. Precipitation-induced invasion resistance of C3 pastures by a C4 invader was partly supported. In grazed grasslands, these biotic and environmental factors vary across scales and interact in complex ways to affect invasibility, thus a dynamic patch mosaic of differential invasion resistance likely occurs in single fields. We propose that disturbance patch size, grazing intensity, soil resource availability, and resident composition are inextricably linked to grassland invasions and comment on the utility of community attributes as reliable predictors of invasibility. Lastly, we suggest temporal as well as spatial coincidences of multiple invasion facilitators dictate the window of opportunity for invasion.  相似文献   

18.
We have conducted a series of simulations in order to compare the relative diversification effects of disturbance and intransitive (i.e., A > B, B > C but C > A) competition on a hypothetical set of clonal organisms. We found large significant differences between these two effects only when disturbance levels were low or absent. We suggest that natural assemblages should be examined for the frequency of intransitive interactions along disturbance gradients in order to assess the significance of these competitive relationships. We also argue that intransitive competition ought to be incorporated into nonequilibrium disturbance models; diversification effects of disturbance and intransitive competition need not be mutually exclusive.  相似文献   

19.
Phosphorus (P) is a vital nutrient for sustaining natural water productivity. Both particulate and dissolved forms of organic and inorganic P are potentially important sources of bioavailable P for primary and secondary producers. A microcosm system to imitate the bacterial community in Plym river sediment and pore water is described and bacterial uptake rates for inorganic and organic phosphorus are presented in this paper. The aim of this study was to investigate the uptake of two organic phosphorus compounds (phytic acid and D-glucose-6-phosphate) by freshwater bacteria. The bioreactors comprise glass columns packed with two types of small glass beads on which bacterial biofilm can develop. The glass beads with different porosity were introduced to simulate River SPM. The selected P compounds spiked into the inflow of the microcosm, and measured the step change of P concentration in the outflow to investigate the behavior of bacterial uptake of nutrients. The results showed that organic phosphorus was converted into inorganic phosphorus but the conversion rate depended on the type of phosphorus species. One experiment suggested that phytic acid (refractory) could displace phosphate from the biofilm surface; the other experiment showed that D-glucose-6-phosphate (labile) could be hydrolysed and utilized easily by the bacteria. The results also suggested that bacteria might break down the C-P bonds to utilize the carbon. Further experiments should investigate the effect of varying the C:N:P ratio in the microcosm system to determine which nutrient limits bacteria uptake.  相似文献   

20.
Climate change could alter the population growth of dominant species, leading to profound effects on community structure and ecosystem dynamics. Understanding the links between historical variation in climate and population vital rates (survival, growth, recruitment) is one way to predict the impact of future climate change. Using a unique, long-term data set from eastern Idaho, USA, we parameterized integral projection models (IPMs) for Pseudoroegneria spicata, Hesperostipa comata, and Artemisia tripartita to identify the demographic rates and climate variables most important for population growth. We described survival, growth, and recruitment as a function of genet size using mixed-effect regression models that incorporated climate variables. Elasticites for the survival + growth portion of the kernel were larger than the recruitment portion for all three species, with survival + growth accounting for 87-95% of the total elasticity. The genet sizes with the highest elasticity values in each species were very close to the genet size threshold where survival approached 100%. We found strong effects of climate on the population growth rate of two of our three species. In H. comata, a 1% decrease in previous year's precipitation would lead to a 0.6% decrease in population growth. In A. tripartita, a 1% increase in summer temperature would result in a 1.3% increase in population growth. In both H. comata and A. tripartita, climate influenced population growth by affecting genet growth more than survival or recruitment. Late-winter snow was the most important climate variable for P. spicata, but its effect on population growth was smaller than the climate effects we found in H. comata or A. tripartita. For all three species, demographic responses lagged climate by at least one year. Our analysis indicates that understanding climate effects on genet growth may be crucial for anticipating future changes in the structure and function of sagebrush steppe vegetation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号