首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Meeting environmental, economic, and societal targets in energy policy is complex and requires a multicriteria assessment framework capable of exploring trade-offs among alternative energy options. In this study, we integrated economic analysis and biophysical accounting methods to investigate the performance of electricity production in Finland at plant and national level. Economic and environmental costs of electricity generation technologies were assessed by evaluating economic features (direct monetary production cost), direct and indirect use of fossil fuels (GER cost), environmental impact (CO2 emissions), and global environmental support (emergy cost). Three scenarios for Finland's energy future in 2025 and 2050 were also drawn and compared with the reference year 2008. Accounting for an emission permit of 25 €/t CO2, the production costs calculated for CHP, gas, coal, and peat power plants resulted in 42, 67, 68, and 74 €/MWh, respectively. For wind and nuclear power a production cost of 63 and 35 €/MWh were calculated. The sensitivity analysis confirmed wind power's competitiveness when the price of emission permits overcomes 20 €/t CO2. Hydro, wind, and nuclear power were characterized by a minor dependence on fossil fuels, showing a GER cost of 0.04, 0.13, and 0.26 J/Je, and a value of direct and indirect CO2 emissions of 0.01, 0.04, and 0.07 t CO2/MWh. Instead, peat, coal, gas, and CHP plants showed a GER cost of 4.18, 4.00, 2.78, and 2.33 J/Je. At national level, a major economic and environmental load was given by CHP and nuclear power while hydro power showed a minor load in spite of its large production. The scenario analysis raised technological and environmental concerns due to the massive increase of nuclear power and wood biomass exploitation. In conclusion, we addressed the need to further develop an energy policy for Finland's energy future based on a diversified energy mix oriented to the sustainable exploitation of local, renewable, and environmentally friendly energy sources.  相似文献   

2.
This paper is a contribution to the emergy evaluation of systems involving recycling or reuse of waste. If waste exergy (its residual usefulness) is not negligible, wastes could serve as input to another process or be recycled. In cases of continuous waste recycle or reuse, what then is the role of emergy? Emergy is carried by matter and its value is shown to be the product of specific energy with mass flow rate and its transformity. This transformity (τ) given as the ratio of the total emergy input and the useful available energy in the product (exergy) is commonly calculated over a specific period of time (usually yearly) which makes transformity a time dependent factor. Assuming a process in which a part of the non-renewable input is an output (waste) from a previous system, for the waste to be reused, an emergy investment is needed. The transformity of the reused or recycled material should be calculated based on the pathway of the reused material at a certain time (T) which results in a specific transformity value (τ). In case of a second recycle of the same material that had undergone the previous recycle, the material pathway has a new time (T + T1) which results in a transformity value (τ1). Recycling flows as in the case of feedback is a dynamic process and as such the process introduces its own time period depending on its pathway which has to be considered in emergy evaluations. Through the inspiration of previous emergy studies, authors have tried to develop formulae which could be used in such cases of continuous recycling of material in this paper. The developed approach is then applied to a case study to give the reader a better understanding of the concept. As a result, a ‘factor’ is introduced which could be included on emergy evaluation tables to account for subsequent transformity changes in multiple recycling. This factor can be used to solve the difficulties in evaluating aggregated systems, serve as a correction factor to up-level such models keeping the correct evaluation and also solve problems of memory loss in emergy evaluation. The discussion deals with the questions; is it a pure mathematical paradox in the rules of emergy? Is it consistent with previous work? What were the previous solutions to avoid the cumulative problem in a reuse? What are the consequences?  相似文献   

3.
This work aims to identify the main factors influencing the energy-related carbon dioxide (CO2) emissions from the iron and steel industry in China during the period of 1995–2007. The logarithmic mean divisia index (LMDI) technique was applied with period-wise analysis and time-series analysis. Changes in energyrelated CO2 emissions were decomposed into four factors: emission factor effect, energy structure effect, energy consumption effect, and the steel production effect. The results show that steel production is the major factor responsible for the rise in CO2 emissions during the sampling period; on the other hand the energy consumption is the largest contributor to the decrease in CO2 emissions. To a lesser extent, the emission factor and energy structure effects have both negative and positive contributions to CO2 emissions, respectively. Policy implications are provided regarding the reduction of CO2 emissions from the iron and steel industry in China, such as controlling the overgrowth of steel production, improving energy-saving technologies, and introducing low-carbon energy sources into the iron and steel industry.  相似文献   

4.
In this paper, the European Union's Water Framework Directive 2000/60/EC (WFD) that is intended to foster protection of water resources is examined, focusing on the improvement of ecological and chemical quality of surface and groundwater. The WFD includes the concept of full cost recovery (FCR) in accordance with the Polluter-Pays Principle, as one of the tools of an adequate and sustainable water resource management system. The WFD defines three different costs associated with water: resource costs (RC), financial costs (FC), and environmental costs (ECs).The FCR of water is examined from a biophysical perspective using emergy evaluation to: (1) establish resource values of water from different sources, (2) establish the full economic costs associated with supplying water, and (3) the societal costs of water that is used incorrectly; from which the resource costs, financial costs, and environmental costs, respectively, can be computed. Financial costs are the costs associated with providing water including energy, materials, labor and infrastructure. The emergy based monetary values vary between 0.15 and 1.73 €/m3 depending on technology. The emergy based, global average resource value (from which resource costs can be computed) is derived from two aspects of water: its chemical potential and its geopotential. The chemical potential monetary value of different sources such as rain, groundwater, and surface water derived from global averages of emergy inputs varies from 0.03 to 0.18 €/m3, depending on source, and the geopotential values vary from 0.03 to 2.40 €/m3, depending on location in the watershed. The environmental costs of water were averaged for the county of Spain and were 1.42 €/m3.Time of year and spatial location within the watershed ultimately influence the resource costs (computed from emergy value of chemical potential and geopotential energy) of water. To demonstrate this spatial and temporal variability, a case study is presented using the Foix watershed in northeastern Spain. Throughout the year, the resource value of water varies from 0.21 to 3.17 €/m3, depending on location within the watershed. It is concluded that FCR would benefit from the evaluation of resource costs using spatially and temporally explicit emergy accounting.  相似文献   

5.

In the context of global warming and the energy crisis, emissions to the atmosphere of greenhouse gases such as carbon dioxide (CO2) and methane (CH4) should be reduced, and biomethane from landfill biogas should be recycled. For this, there is a need for affordable technologies to capture carbon dioxide, such as adsorption of biogas on activated carbon produced from industrial wastes. Here we converted glycerol, a largely available by-product from biodiesel production, into activated carbon with the first use of potassium acetate as an activating agent. We studied adsorption of CO2 and CH4 on activated carbon. The results show that activated carbon adsorb CO2 up to 20% activated carbon weight at 250 kPa, and 9% at atmospheric pressure. This is explained by high specific surface areas up to 1115 m2g−1. Moreover, selectivity values up to 10.6 are observed for the separation of CO2/CH4. We also found that the equivalent CO2 emissions from activated carbon synthesis are easily neutralized by their use, even in a small biogas production unit.

  相似文献   

6.
Regarding various energy and materials flowing in the urban ecosystem and the merit of emergy as an embodied energetic equivalent for integrated ecological economic evaluation, an evaluation framework of emergy-based urban ecosystem health indicators (UEHIem) was established in view of five aspects including vigor, structure, resilience, ecosystem service function maintenance and environmental impact to depict the urban ecosystem health states. Further, set pair analysis (SPA) was employed to assess the urban ecosystem health level based on the UEHIem, by which the approximate degree of real index set to the optimal one was defined and evaluated to describe the relative health state of the concerned urban ecosystems. Choosing twenty typical Chinese cities in 2005 as cases, we evaluated and compared their urban ecosystem health levels based on UEHIem and SPA. The results showed that health levels of Xiamen, Qingdao, Shenzhen and Shanghai are pretty well, while those of Wuhan, Harbin, Yinchuan, Beijing and Urumchi are relatively weak. Moreover, the relative health levels were analyzed by SPA to discern the influences of the mentioned five aspects on the UEHIem. It is concluded that emergy synthesis combined with SPA can serve as an effective relative-measure to compare different ecosystem health levels of urban ecosystems.  相似文献   

7.
Emergy analysis of the urban metabolism of Beijing   总被引:3,自引:0,他引:3  
Cities can be modeled as if they were superorganisms with a range of metabolic processes. Research on this urban metabolism can contribute to solving urban environmental problems by revealing details of the metabolic throughput of the system. A key issue is how to find a common basis for measuring the environmental and economic values. By providing a single unified unit, emergy theory integrates the natural and socioeconomic systems and thoroughly evaluates a system's metabolism. We analyzed Beijing's urban metabolic system using emergy synthesis to evaluate its environmental resources, economy, and environmental and economic relations with the regions outside the city during 14 years of development. We compared Beijing's emergy indices with those of five other Chinese cities and of China as a whole to assess Beijing's relative development status. These indices are the emergy self-support ratio (metabolic dependence), the environmental load ratio (metabolic loading), empower density (metabolic pressure), emergy used per person (metabolic intensity per capita), and the monetary equivalent of emergy (emdollars; metabolic intensity). Based on our emergy analysis, Beijing's socioeconomic system is not self-sufficient, and depends greatly on external environmental resources. Its GDP is supported by a high percentage of emergy purchased from outside the city. During the study period, Beijing's urban system showed an increasing dependence on external resources for its economic development. Beijing's loading and pressure on the ecological environment is continuously increasing, accompanied by continuously increasing human emergy consumption. In the future, it will become increasingly necessary to improve Beijing's metabolic efficiency.  相似文献   

8.
Humanity's future depends on the preservation of natural ecosystems that supply resources and absorb pollutants. Rural and urban productions are currently based on chemical products made from petroleum, which are responsible for high negative impacts on the Biosphere. In order to prevent those impacts, efficient public policies seeking for sustainable development are necessary. Aiming to assess the load on the environment (considering the gratuitous contributions of natural systems—a donor's perspective) due to human-dominated process, a scientific tool called Emergy Evaluation has been applied in different production systems, including crops and farms. However, there is still a lack of emergy studies in the context of watersheds, probably due to the difficulty of collecting raw data. The present work aims to carry out an assessment of Mogi-Guaçu and Pardo watershed, through the combined use of Emergy Evaluation and Geographical Information System. The agricultural and natural land uses were considered, while urban areas were excluded. Emergy flows (expressed in seJ ha−1 yr−1) obtained for all agricultural and natural land uses were expanded for the whole watershed and the emergy indices were calculated. The results show that the watershed has: low renewability (%R = 32%); low capture of natural resources through high external economic investment (EYR = 1.86); low dependence on natural resources (EIR = 1.16); and moderate load on the environment (ELR = 2.08). Considering a scenario where sugar-cane crops, orchards and pasture areas are converted from conventional to organic management, watershed's emergy performance improved, reaching a new renewability of 38%, but it is still not enough to be considered sustainable.  相似文献   

9.
Background The use of natural gas has increased in the last years. In the future, its import supply and transport structure will diversify (longer distances, higher share of LNG (liquefied natural gas), new pipelines). Thus the process chain and GHG emissions of the production, processing, transport and distribution might change. Simultaneously, the injection of bio methane into the natural gas grid is becoming more important. Although its combustion is regarded as climate neutral, during the production processes of bio methane GHG emissions are caused. The GHG emissions occurring during the process chain of energy fuels are relevant for the discussion on climate policy and decision making processes. They are becoming even more important, considering the new Fuel Quality Directive of the EU (Dec. 2008), which aims at controlling emissions of the fuel process chains. Aim In the context of the aspects outlined above the aim is to determine the future development of gas supply for Germany and the resulting changes in GHG emissions of the whole process chain of natural gas and bio methane. With the help of two gas consumption scenarios and an LCA of bio methane, the amount of future emissions and emission paths until 2030 can be assessed and used to guide decision processes in energy policy. Results and discussion The process chain of bio methane and its future technical development are outlined and the related emissions calculated. The analysis is based on an accompanying research study on the injection of bio methane to the German gas grid. Two types of biogas plants have been considered whereof the “optimised technology” is assumed to dominate the future market. This is the one which widely exploits the potential of process optimisation of the current “state of the art” plant. The specific GHG emissions of the process chain can thus be nearly halved from currently 27.8?t CO2-eq./TJ to 14.8?t CO2-eq./TJ in 2030. GHG emissions of the natural gas process chain have been analysed in detail in a previous article. Significant modifications and a decrease of specific emissions is possible, depending on the level of investment in the modernisation of the gas infrastructure and the process improvements. These mitigation options might neutralise the emission increase resulting from longer distances and energy intensive processes. In the last section two scenarios (low and high consumption) illustrate the possible development of the German gas supply until 2030, given an overall share of 8–12?% of bio methane. Considering the dynamic emission factors calculated in the former sections, the overall gas emissions and average specific emissions of German gas supply can be given. The current emissions of 215.4 million t CO2-eq. are reduced by 25?% in the low-consumption scenario (162 million t CO2-eq.), where consumption is reduced by 17?%. Assuming a consumption which is increased by 17?% in 2030, emissions are around 7?% higher (230.9 million t CO2-eq.) than today. Conclusions Gaseous fuels will still play a significant role for the German energy supply in the next two decades. The GHG emissions mainly depend on the amount of gas used. Thus, energy efficiency will be a key issue in the climate and energy related policy discussion. A higher share of bio methane and high investments in mitigation and best available technologies can significantly reduce the emissions of the process chain. The combustion of bio methane is climate neutral compared to 56?t CO2/TJ caused by the direct combustion of natural gas (or 111?t CO2/TJ emitted by lignite). The advantage of gaseous energy carriers with the lowest levels of GHG emissions compared to other fossil fuels still remains. This holds true for fossil natural gas alone as well as for the expected future blend with bio-methane.  相似文献   

10.
Crucial to the method of emergy synthesis are the main driving emergy flows of the geobiosphere to which all other flows are referenced. They form the baseline for the construction of tables of Unit Emergy Values (UEVs) to be used in emergy evaluations. We provide here an updated calculation of the geobiosphere emergy baseline and UEVs for tidal and geothermal flows. First, we recalculate the flows using more recent values that have resulted from satellite measurements and generally better measurement techniques. Second, we have recalculated these global flows according to their available energy content (exergy) in order to be consistent with Odum's (1996) definition of emergy. Finally, we have reinterpreted the interaction of geothermal energy with biosphere processes thus changing the relationship between geothermal energy and the emergy baseline. In this analysis we also acknowledge the significant uncertainties related to most estimates of global data. In all, these modifications to the methodology have resulted in changes in the transformities for tidal momentum and geothermal energy and a minor change in the emergy baseline from 15.8E24 seJ/J to 15.2E24 seJ/J. As in all fields of science basic constants and standards are not really constant but change according to new knowledge. This is especially true of earth and ecological sciences where a large uncertainty is also to be found. As a consequence, while these are the most updated values today, they may change as better understanding is gained and uncertainties are reduced.  相似文献   

11.
Emergy is a thermodynamics-based entity that enables the implementation of a holistic environmental accounting system. It contributes to identify and measure all the inputs (energy and matter) supporting a given system, expressed in a common unit, namely solar emergy joule (sej). The emergy per unit product (called unit emergy value, UEV), is a measure of the environmental cost of a given resource. It is specific of the system/process and gives information on the dynamics, components and functioning of it. This paper presents the emergy evaluation of water resources within the watershed of the river Sieve, located in the Province of Florence (Italy). Along the river, an artificial basin has been created by means of a dam to preserve water quantity and quality, and to protect the Florentine area from dangerous floods and inundations. Different UEVs of water can be identified along the course of the river, especially upstream and downstream of the dam. These values quantify both the environmental and human efforts made to ensure and regulate the presence of water at different points of the river. The UEV of water flowing in the river increases from 1.35 × 105 sej/g upstream, to 5.80 × 105 sej/g downstream of the dam, depending mainly on man-made infrastructure. Along the watershed, three different systems of extraction, purification and distribution of water have been chosen on the basis of their dimension, type and location. UEVs of water distributed and the emergy investment necessary to implement different water management strategies are presented. The value of water purified and distributed decreases from 2.00 × 106 sej/g for the smallest plant in the mountainous area, to 1.72 × 106 sej/g for the largest plant, in the city of Florence, depending on production efficiency.  相似文献   

12.
Marine organisms inhabiting environments where pCO2/pH varies naturally are suggested to be relatively resilient to future ocean acidification. To test this hypothesis, the effect of elevated pCO2 was investigated in the articulated coralline red alga Corallina elongata from an intertidal rock pool on the north coast of Brittany (France), where pCO2 naturally varied daily between 70 and 1000 μatm. Metabolism was measured on algae in the laboratory after they had been grown for 3 weeks at pCO2 concentrations of 380, 550, 750 and 1000 μatm. Net and gross primary production, respiration and calcification rates were assessed by measurements of oxygen and total alkalinity fluxes using incubation chambers in the light and dark. Calcite mol % Mg/Ca (mMg/Ca) was analysed in the tips, branches and basal parts of the fronds, as well as in new skeletal structures produced by the algae in the different pCO2 treatments. Respiration, gross primary production and calcification in light and dark were not significantly affected by increased pCO2. Algae grown under elevated pCO2 (550, 750 and 1000 μatm) formed fewer new structures and produced calcite with a lower mMg/Ca ratio relative to those grown under 380 μatm. This study supports the assumption that C. elongata from a tidal pool, where pCO2 fluctuates over diel and seasonal cycles, is relatively robust to elevated pCO2 compared to other recently investigated coralline algae.  相似文献   

13.
Thomas Abel 《Ecological modelling》2010,221(17):2112-2117
In emergy research, transformities are of fundamental importance. They are factors that are used to convert the inputs to a process into emergy. Once placed in emergy units, the inputs to any process can then be added together or compared. Furthermore, as a product of an emergy analysis, new transformities for outputs can be used in other analyses. By this process the collection of known transformities grows, and subsequent emergy analyses become more accurate. Human labor is often a critical input to an emergy analysis. Transformities for humans have only been roughly estimated based on education level, and should be judged as first approximations. This paper refines the existing values for human services, using similar techniques, but with some different assumptions. The result is a larger range of human transformities, expanded at both lower and upper ends that range from 7.53E4 to 7.53E13. There are many applications of this knowledge, from improving empirical studies to expositions of hierarchy that more reliably “locate” humans, economic production, and information within energy transformation hierarchies.  相似文献   

14.
Petroleum fuels are the primary energy basis for transportation and industry. They are almost always an important input to the economic and social activities of humanity. Emergy analyses require accurate estimates with specified uncertainty for the transformities of major energy and material inputs to economic and environmental systems. In this study, the oil refining processes in Italy and the United States were examined to estimate the transformity and specific emergy of petroleum derivatives. Based on our assumptions that petroleum derivatives are splits of a complex hydrocarbon mixture and that the emergy is split based on the fraction of energy in a product, we estimated that the transformity of petroleum derivatives is 65,826 sej/J ± 1.4% relative to the 9.26E+24 sej/year planetary baseline. Estimates of the specific emergies of the various liquid fuels from Italian and U.S. refineries are within 2% of one another and the relationship of particular values varies with the refinery design. Our average transformity is only 1.7% larger than the current estimate for petroleum fuels determined by back calculation, confirming the accuracy of this transformity in existing emergy analyses. The model uncertainty between using energy or mass to determine how emergy is split was less that 2% in the estimate of both the transformity and specific emergy of liquid fuels, but larger for solid and gaseous products. This study is a contribution to strengthen the emergy methodology, providing data that can be useful in the analysis of many human activities.  相似文献   

15.
A systematic effort was made to assess the emission of methane from paddy fields using closed chamber technique. Methane emission measurements were performed over a year during the Kharif (wet season), Rabi (dry season), and fallow periods. Various soil parameters like redox potential, organic carbon and ferrous ion were determined to evaluate their control on methane emissions. Diurnal measurement of the flux showed a minimum (0.44?mg?m?2?h?1) in the morning (8?a.m.), which increased gradually to a value of 1.16?mg?m?2?h?1 till the evening due to the rise in soil temperature. The seasonally integrated flux (E SIF) for CH4 was calculated. The E SIF for methane during Kharif and Rabi crops were found to be 5.97?g?m?2 and 2.59?g?m?2, respectively. It was observed that the methane flux was maximum during flowering and fertilizer application stages for both paddy cropping seasons. The redox potential was low and the ferrous ion was higher during flowering and tiller stages. The methane emission was higher at E AIF) was calculated for methane to make a budget estimate of methane emission from rice cultivated under rain fed drought prone water regime.  相似文献   

16.
In Life Cycle Assessment (LCA), carbon dioxide (CO2) emissions from biomass combustion are traditionally assumed climate neutral if the bioenergy system is CO2 flux neutral, i.e. the quantity of CO2 released approximately equals the amount of CO2 sequestered in biomass. This convention is a plausible assumption for fast growing biomass species, but is inappropriate for slower growing biomass, like forests. In this case, the climate impact from biomass combustion can be potentially underestimated if CO2 emissions are ignored, or overestimated, if biogenic CO2 is considered equal to anthropogenic CO2. The estimation of the effective climate impact should take into account how the CO2 fluxes are distributed over time: the emission of CO2 from bioenergy approximately occurs at a single point in time, while the absorption by the new trees is spread over several decades. Our research target is to include this dynamic time dimension in unit-based impact analysis, using a boreal forest stand as case study. The boreal forest growth is modelled with an appropriate function, and is investigated under different forestry regimes (affecting the growth rate and the year of harvest). Specific atmospheric decay functions for biomass-derived CO2 are then elaborated for selected combinations of forest management options. The contribution to global warming is finally quantified using the GWPbio index as climate metric. Results estimates the effects of these practices on the characterization factor used for the global warming potential of CO2 from bioenergy, and point out the key role played by the selected time horizon.  相似文献   

17.
For the world economy as a biophysical network associated with financial links, an ecological endowment inventory and corresponding ecological input-output modeling are presented to investigate the greenhouse gas emissions and natural resources use in 2000. A forty-sector global economic input-output table is constructed through an integration and extension of existing statistics which covers thirty-four countries accounting for about 80% of the world economy. Global inventories for ecological endowments of six categories, i.e., greenhouse gas emissions, energy sources, water resources, exergy resources, solar emergy resources, and cosmic emergy resources, are accounted in detail. As a result of the modeling, embodied intensities of different ecological endowments are obtained for all forty sectors, based on which the sectoral embodiments for consumptive and productive uses are presented separately. Results of this study provide a sound scientific database for policy making on global climate change mitigation as well as on global resources management.  相似文献   

18.
We compare two different techniques for the extraction of biodiesel from macroalgae: the thermochemical liquefaction and the extraction using supercritical carbon dioxide (sc-CO2). The first allows to use wet material, while sc-CO2 requires dry material and uses moderate temperature and pressure so that it can be useful for the extraction of thermolabile compounds which may decompose at the temperature at which thermal methos are carried out. In both cases the extracted oil was characterized quantitatively and qualitatively. The novelty of the work is that in the literature the use of macroalgae for the production of biodiesel has not so far been described, while they are used mainly as food or other purposes.  相似文献   

19.
This study examines the dynamic causality relationship between international tourism and carbon dioxide (CO2) emissions from transport, real gross domestic product and energy use. The vector error correction model and Granger causality test approach have been used to investigate these relationships for the top ten international tourism destinations spanning the period 1995–2013. Results reveal a unidirectional causality running from CO2 emissions to economic growth without feedback; a bidirectional causality between economic growth and energy use; a bidirectional causality between international tourism and economic growth; and a bidirectional causality between international tourism and energy use. They also suggest that energy use and international tourism both contribute to the decrease of emissions level coming from transport sector, while economic growth leads to the increase of CO2 emissions. This study can be used in policy recommendations by encouraging countries to use clean energy and to stimulate tourism sector for combating global warming.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号