首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Forest productivity is strongly affected by seasonal weather patterns and by natural or anthropogenic disturbances. However weather effects on forest productivity are not currently represented in inventory-based models such as CBM-CFS3 used in national forest C accounting programs. To evaluate different approaches to modelling these effects, a model intercomparison was conducted among CBM-CFS3 and four process models (ecosys, CN-CLASS, Can-IBIS and 3PG) over a 2500 ha landscape in the Oyster River (OR) area of British Columbia, Canada. The process models used local weather data to simulate net primary productivity (NPP), net ecosystem productivity (NEP) and net biome productivity (NBP) from 1920 to 2005. Other inputs used by the process and inventory models were generated from soil, land cover and disturbance records. During a period of intense disturbance from 1928 to 1943, simulated NBP diverged considerably among the models. This divergence was attributed to differences among models in the sizes of detrital and humus C stocks in different soil layers to which a uniform set of soil C transformation coefficients was applied during disturbances. After the disturbance period, divergence in modelled NBP among models was much smaller, and attributed mainly to differences in simulated NPP caused by different approaches to modelling weather effects on productivity. In spite of these differences, age-detrended variation in annual NPP and NEP of closed canopy forest stands was negatively correlated with mean daily maximum air temperature during July-September (Tamax) in all process models (R2 = 0.4-0.6), indicating that these correlations were robust. The negative correlation between Tamax and NEP was attributed to different processes in different models, which were tested by comparing CO2 fluxes from these models with those measured by eddy covariance (EC) under contrasting air temperatures (Ta). The general agreement in sensitivity of annual NPP to Tamax among the process models led to the development of a generalized algorithm for weather effects on NPP of coastal temperate coniferous forests for use in inventory-based models such as CBM-CFS3: NPP′ = NPP − 57.1 (Tamax − 18.6), where NPP and NPP′ are the current and temperature-adjusted annual NPP estimates from the inventory-based model, 18.6 is the long-term mean daily maximum air temperature during July-September, and Tamax is the mean value for the current year. Our analysis indicated that the sensitivity of NPP to Tamax was nonlinear, so that this algorithm should not be extrapolated beyond the conditions of this study. However the process-based methodology to estimate weather effects on NPP and NEP developed in this study is widely applicable to other forest types and may be adopted for other inventory based forest carbon cycle models.  相似文献   

2.
The considerable complexity often included in biophysical models leads to the need of specifying a large number of parameters and inputs, which are available with various levels of uncertainty. Also, models may behave counter-intuitively, particularly when there are nonlinearities in multiple input-output relationships. Quantitative knowledge of the sensitivity of models to changes in their parameters is hence a prerequisite for operational use of models. This can be achieved using sensitivity analysis (SA) via methods which differ for specific characteristics, including computational resources required to perform the analysis. Running SA on biophysical models across several contexts requires flexible and computationally efficient SA approaches, which must be able to account also for possible interactions among parameters. A number of SA experiments were performed on a crop model for the simulation of rice growth (Water Accounting Rice Model, WARM) in Northern Italy. SAs were carried out using the Morris method, three regression-based methods (Latin hypercube sampling, random and Quasi-Random, LpTau), and two methods based on variance decomposition: Extended Fourier Amplitude Sensitivity Test (E-FAST) and Sobol’, with the latter adopted as benchmark. Aboveground biomass at physiological maturity was selected as reference output to facilitate the comparison of alternative SA methods. Rankings of crop parameters (from the most to the least relevant) were generated according to sensitivity experiments using different SA methods and alternate parameterizations for each method, and calculating the top-down coefficient of concordance (TDCC) as measure of agreement between rankings. With few exceptions, significant TDCC values were obtained both for different parameterizations within each method and for the comparison of each method to the Sobol’ one. The substantial stability observed in the rankings seem to indicate that, for a crop model of average complexity such as WARM, resource intensive SA methods could not be needed to identify most relevant parameters. In fact, the simplest among the SA methods used (i.e., Morris method) produced results comparable to those obtained by methods more computationally expensive.  相似文献   

3.
The fate of soil carbon and nitrogen compounds in soils in response to climate change is currently the object of significant research. In particular, there is much interest in the development of a new generation of micro-scale models of soil ecosystems processes. Crucial to the elaboration of such models is the ability to describe the growth and metabolism of small numbers of individual microorganisms, distributed in a highly heterogeneous environment. In this context, the key objective of the research described in this article was to further develop an individual-based soil organic matter model, INDISIM-SOM, first proposed a few years ago, and to assess its performance with a broader experimental data set than previously considered. INDISIM-SOM models the dynamics and evolution of carbon and nitrogen associated with organic matter in soils. The model involves a number of state variables and parameters related to soil organic matter and microbial activity, including growth and decay of microbial biomass, temporal evolutions of easily hydrolysable N, mineral N in ammonium and nitrate, CO2 and O2. The present article concentrates on the biotic components of the model. Simulation results demonstrate that the model can be calibrated to provide good fit to experimental data from laboratory incubation experiments performed on three different types of Mediterranean soils. In addition, analysis of the sensitivity toward its biotic parameters shows that the model is far more sensitive to some parameters, i.e., the microbial maintenance energy and the probability of random microbial death, than to others. These results suggest that, in the future, research should focus on securing better measurements of these parameters, on environmental determinants of the switch from active to dormant states, and on the causes of random cell death in soil ecosystems.  相似文献   

4.
Multi-metric evaluation of the models WARM,CropSyst, and WOFOST for rice   总被引:1,自引:0,他引:1  
WARM (Water Accounting Rice Model) simulates paddy rice (Oryza sativa L.), based on temperature-driven development and radiation-driven crop growth. It also simulates: biomass partitioning, floodwater effect on temperature, spikelet sterility, floodwater and chemicals management, and soil hydrology. Biomass estimates from WARM were evaluated and compared with the ones from two generic crop models (CropSyst, WOFOST). The test-area was the Po Valley (Italy). Data collected at six sites from 1989 to 2004 from rice crops grown under flooded and non-limiting conditions were split into a calibration (to estimate some model parameters) and a validation set. For model evaluation, a fuzzy-logic based multiple-metrics indicator (MQI) was used: 0 (best) ≤ MQI ≤ 1 (worst). WARM estimates compared well with the actual data (mean MQI = 0.037 against 0.167 and 0.173 with CropSyst and WOFOST, respectively). On an average, the three models performed similarly for individual validation metrics such as modelling efficiency (EF > 0.90) and correlation coefficient (R > 0.98). WARM performed best in a weighed measure of the Akaike Information Criterion: (worst) 0<wk<10<wk<1 (best), considering estimation accuracy and number of parameters required to achieve it (mean wk=0.983wk=0.983 against 0.007 and ∼0.000 with CropSyst and WOFOST, respectively). WARM results were sensitive to 30% of the model parameters (ratio being lower with both CropSyst, <10%, and WOFOST, <20%), but appeared the easiest model to use because of the lowest number of crop parameters required (10 against 15 and 34 with CropSyst and WOFOST, respectively). This study provides a concrete example of the possibilities offered using a range of assessment metrics to evaluate model estimates, predictive capabilities, and complexity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号