首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Ecological network analysis (ENA), predicated on systems theory and Leontiev input–output analysis, is a method widely used in ecology to reveal ecosystem properties. An important ecosystem property computed in ENA is throughflows, the amount of matter/energy leaving each compartment of the ecosystem. Throughflows are analyzed via a matrix representing their relationships to the driving input at the boundary. Network particle tracking (NPT) builds on ENA to offer a Lagrangian particle method that describes the activity of the ecosystem at the microscopic level. This paper introduces a Lagrangian throughflow analysis methodology using NPT and shows that the NPT throughflow matrix, , agrees with the conventional ENA throughflow matrix, , for ecosystems at steady-state with donor-controlled flows. The matrix is computed solely from the pathways (particles’ histories) generated by NPT simulations and its average over multiple runs of the algorithm with longer simulation time agrees with the Eulerian matrix (Law of Large Numbers). While the traditional NEA throughflow analysis is mostly used with steady-state ecosystem models, the Lagrangian throughflow analysis that we propose can be used with non-steady-state models and paves the way for the development of dynamic throughflow analysis.  相似文献   

3.
The magnitude and frequency of discharge and fine sediment delivery to rivers can influence riverine food webs through the frequency of scour of algae from the streambed. Models that simulate changes in algal biomass are not very accurate for long periods with frequent low-magnitude flow events. During these periods, sand is mobilized over a stable gravel bed and periphyton losses are patchy at the reach scale. At the patch scale, we examine if an established threshold for rapid sand transport is also a periphyton perturbation threshold. We also develop and validate a statistical rock scale periphyton saltation abrasion model (PSAM) to simulate the abrasive effects of sand, transported by a hopping motion called saltation, on post-flow event biomass. Data were collected from 15 riffles of a Canadian Atlantic salmon river. The threshold clearly divided bed patches with high biomass and low transport rates, from those patches with low biomass and high transport rates. A dimensionally balanced PSAM regression model including explained 57% of the variance in post-flow event biomass. The validated model indicates that periphyton biomass decreases with increasing sand transport rates . Biomass was higher if the microscopic algae were protected from abrasion by growing either above the near-bed layer of saltating sand or within a mat containing more resistant macroalgae (e.g. Nostoc). The use of in our models facilitates testing of our findings in other hydro-sedimentary environments because W* is a dimensionless scaling parameter that is well established in sediment transport literature. New insight is provided regarding modelling local heterogeneity in post-flow event biomass. These developments are essential to enable more accurate assessments of how periphyton biomass will change with the increase in the recurrence frequency of small flow events (and sand supply) associated with urbanization and climate change.  相似文献   

4.
A multistate mark-recapture (MSMR) model of the adult salmonid migration through the lower Columbia River and into the Snake River was developed, designed for radiotelemetry detections at dams and tributary mouths. The model focuses on upstream-directed travel, with states determined from observed fish movement patterns indicating directed upstream travel, downstream travel (fallback), and use of non-natal tributaries. The model was used to analyze telemetry data from 846 migrating adult spring-summer Chinook salmon (Oncorhynchus tshawytscha) tagged in 1996 at Bonneville Dam on the Columbia River. We used the model to test competing hypotheses regarding delayed effects of fallback at dams and visits to tributaries, and to define and estimate migration summary measures. Tagged fish had an average probability of 0.755 () of ending migration at a tributary or upstream of Lower Granite Dam on the Snake River, and a probability of 0.245 () of unaccountable loss (i.e., mortality or mainstem spawning) between the release site downstream of Bonneville Dam and Lower Granite Dam. The highest probability of unaccountable loss (0.092; ) was in the reach between Bonneville Dam and The Dalles Dam. Study fish used the tributaries primarily as exits from the hydrosystem, and visits to non-natal tributaries had no significant effect on subsequent movement upriver (P = 0.4245). However, fallback behavior had a small effect on subsequent tributary entry and exit (P = 0.0530), with fish using tributaries as resting areas after reascending Bonneville Dam after fallback. The spatial MSMR model developed here can be adapted to address additional questions about the interaction of migrating organisms with their environment, or for the study of migrations in other river systems.  相似文献   

5.
Abstract: Climate‐change scenarios project significant temperature changes for most of South America. We studied the potential impacts of predicted climate‐driven change on the distribution and conservation of 26 broad‐range birds from South America Cerrado biome (a savanna that also encompass tracts of grasslands and forests). We used 12 temperature or precipitation‐related bioclimatic variables, nine niche modeling techniques, three general circulation models, and two climate scenarios (for 2030, 2065, 2099) for each species to model distribution ranges. To reach a consensus scenario, we used an ensemble‐forecasting approach to obtain an average distribution for each species at each time interval. We estimated the range extent and shift of each species. Changes in range size varied across species and according to habitat dependency; future predicted range extent was negatively correlated with current predicted range extent in all scenarios. Evolution of range size under full or null dispersal scenarios varied among species from a 5% increase to an 80% decrease. The mean expected range shifts under null and full‐dispersal scenarios were 175 and 200 km, respectively (range 15–399 km), and the shift was usually toward southeastern Brazil. We predicted larger range contractions and longer range shifts for forest‐ and grassland‐dependent species than for savanna‐dependent birds. A negative correlation between current range extent and predicted range loss revealed that geographically restricted species may face stronger threat and become even rarer. The predicted southeasterly direction of range changes is cause for concern because ranges are predicted to shift to the most developed and populated region of Brazil. Also, southeastern Brazil is the least likely region to contain significant dispersal corridors, to allow expansion of Cerrado vegetation types, or to accommodate creation of new reserves.  相似文献   

6.
Global warming is expected to profoundly change the characteristics of freshwater habitats. Increasing evaporation, lower oxygen concentration due to increased water temperatures and changes in precipitation pattern are likely to affect the survival and reproduction of pulmonate freshwater gastropods. Our statistical niche modelling analysis suggests that for a great proportion of the North-West European genera, the range sizes were predicted to decrease by 2,080, even if unlimited dispersal was assumed. The forecasted warming in the cooler northern ranges predicted the emergence of new suitable areas, as well as drastically reduced available habitat in the southern part of the studied region. Phylogenetic signal was inferred for one dimension of the climatic niche. Independent contrast analyses, taking into account the phylogenetic relationships between the taxa, showed a positive correlation between the genera’s climate niche width and the size of future suitable area. In summary, the results predict a profound faunal freshwater gastropod shift for Central Europe, either permitting the establishment of species currently living south of the studied region or permitting the proliferation of organisms relying on the same food resources, if dispersal abilities do not match the rate of climate change.  相似文献   

7.
To assess the impact of three different emission reduction scenarios on PM10 concentrations in Northern Italy, the TCAM multiphase model has been applied in the framework of the CityDelta III-CAFE EU project. The considered domain, that is characterized by high urban and industrial emissions and a dense road traffic, due to frequently stagnating meteorological conditions is often affected by severe PM10 levels, far from the European standard regulations. The impact evaluation has been performed in terms of both yearly mean values and 50 g/m3 exceedance days for the 2004 Base Case simulation. The results show that the three selected emission reduction scenarios up to 2020 improve air quality all over the domain, in particular, in the area with higher emission density.  相似文献   

8.
Scientifically informed population management requires quantitatively accurate demographic rate functions that apply at the spatial scale at which populations are actually managed, but practical constraints confine most field measurements of such functions to small study plots. This paper employs an individual-based population growth model to extrapolate the death rate function in a well-studied coral reef fish, the bridled goby Coryphopterus glaucofraenum, from the scale of coral reef “cells” at which it was measured to the larger scale of an entire coral reef. Density dependence in the whole-reef function actually proves stronger than in the local function because high goby density occasionally arises in local patches with few refuges from predators, producing very high mortality there. This IBM-based approach extends the reach of scale transition theory by examining considerably more realistic models than standard analytical methods can presently handle.  相似文献   

9.
Amphibians are severely affected by climate change, particularly in regions where droughts prevail and water availability is scarce. The extirpation of amphibians triggers cascading effects that disrupt the trophic structure of food webs and ecosystems. Dedicated assessments of the spatial adaptive potential of amphibian species under climate change are, therefore, essential to provide guidelines for their effective conservation. I used predictions about the location of suitable climates for 27 amphibian species in the Iberian Peninsula from a baseline period to 2080 to typify shifting species’ ranges. The time at which these range types are expected to be functionally important for the adaptation of a species was used to identify full or partial refugia; areas most likely to be the home of populations moving into new climatically suitable grounds; areas most likely to receive populations after climate adaptive dispersal; and climatically unsuitable areas near suitable areas. I implemented an area prioritization protocol for each species to obtain a cohesive set of areas that would provide maximum adaptability and where management interventions should be prioritized. A connectivity assessment pinpointed where facilitative strategies would be most effective. Each of the 27 species had distinct spatial requirements but, common to all species, a bottleneck effect was predicted by 2050 because source areas for subsequent dispersal were small in extent. Three species emerged as difficult to maintain up to 2080. The Iberian northwest was predicted to capture adaptive range for most species. My study offers analytical guidelines for managers and decision makers to undertake systematic assessments on where and when to intervene to maximize the persistence of amphibian species and the functionality of the ecosystems that depend on them.  相似文献   

10.
Species shift their distribution in response to climate and land-cover change, which may result in a spatial mismatch between currently protected areas (PAs) and priority conservation areas (PCAs). We examined the effects of climate and land-cover change on potential range of gibbons and sought to identify PCAs that would conserve them effectively. We collected global gibbon occurrence points and modeled (ecological niche model) their current and potential 2050s ranges under climate-change and different land-cover-change scenarios. We examined change in range and PA coverage between the current and future ranges of each gibbon species. We applied spatial conservation prioritization to identify the top 30% PCAs for each species. We then determined how much of the PCAs are conserved in each country within the global range of gibbons. On average, 31% (SD 22) of each species’ current range was covered in PAs. PA coverage of the current range of 9 species was <30%. Nine species lost on average 46% (SD 29) of their potential range due to climate change. Under climate-change with an optimistic land-cover-change scenario (B1), 12 species lost 39% (SD 28) of their range. In a pessimistic land-cover-change scenario (A2), 15 species lost 36% (SD 28) of their range. Five species lost significantly more range under the A2 scenario than the B1 scenario (p = 0.01, SD 0.01), suggesting that gibbons will benefit from effective management of land cover. PA coverage of future range was <30% for 11 species. On average, 32% (SD 25) of PCAs were covered by PAs. Indonesia contained more species and PCAs and thus has the greatest responsibility for gibbon conservation. Indonesia, India, and Myanmar need to expand their PAs to fulfill their responsibility to gibbon conservation. Our results provide a baseline for global gibbon conservation, particularly for countries lacking gibbon research capacity.  相似文献   

11.
Solitary species show several patterns of space use and relatedness. Individuals may associate randomly or may live near female or male kin, often as a result of natal philopatry or dispersal patterns. Although usually described as solitary or asocial, woodchucks (Marmota monax) are behaviorally flexible marmots that exhibit greater sociality in some populations than others. I examined relationships between kinship, geographic distance, and home range overlap, as well as dispersal and philopatry, to determine the extent to which kin associated spatially. I used a combination of microsatellite DNA analysis, long-term behavioral observations, and radiotelemetry to test predictions that females, but not males, would associate with kin. Indeed, woodchucks lived closer and shared a greater proportion of their home range with more closely related animals. Overlap of females' and males' home ranges was positively correlated with kinship, and male–female dyads shared more area with closer kin. Most juveniles delayed dispersal beyond their first summer. Females often remained philopatric and settled near their natal range. Although males often dispersed as yearlings, some males also established territories within or immediately adjacent to their natal home ranges. A combination of factors can explain these spatial patterns, including high population density associated with the study site's location within a suburban environment, high dispersal costs, and abundant food. Thus, despite their asocial and solitary reputation, woodchucks displayed spatial patterns seen in other, more social species of ground-dwelling sciurids.  相似文献   

12.
13.
14.
Kubisch A  Hovestadt T  Poethke HJ 《Ecology》2010,91(10):3094-3099
Dispersal is known to play a crucial role in the formation of species' ranges. Recent studies demonstrate that dispersiveness increases rapidly during the range expansion of species due to a fitness increase for dispersers at the expanding front. R. D. Holt concluded, however, that emigration should decline after the period of invasion and hence predicted some range contraction following the initial expansion phase. In this study, we evaluate this hypothesis using a spatially explicit individual-based model of populations distributed along environmental gradients. In our experiments we allow the species to spread along a gradient of declining conditions. Results show that range contraction did emerge in a gradient of dispersal mortality, caused by the rapid increase in emigration probability during invasion and selection disfavoring dispersal, once a stable range is formed. However, gradients in growth rate, local extinction rate, and patch capacity did not lead to a noticeable contraction of the range. We conclude, that the phenomenon of range contraction may emerge, but only under conditions that select for a reduction in dispersal at the range edge in comparison to the core region once the expansion period is over.  相似文献   

15.
《Ecological modelling》2005,183(1):107-124
Climate variability at decadal scales influences not only the growth of widely distributed species such as Pinus ponderosa, but also can have an effect on the timing and severity of fire and insect outbreaks that may alter species distributions. In this paper, we present a spatial modelling technique to assess the influence of climatic variability on the annual productivity of P. ponderosa in the Pacific Northwest (PNW) of North America over the past 100 years and infer how a sustained change in climate might alter the geographic distribution of this species across defined ecotones. Field observations were used to establish criteria for P. ponderosa dominance including: (1) maximum summer leaf area index (LAI), ranges between 1.5 and 2.5; (2) 80% of available soil water is depleted during summer months; and (3) soil water will return to full capacity at least once during the year. Where these three criteria were not met, eventual replacement of P. ponderosa would be predicted. We utilized a simple physiological model, Physiological Principles for Predicting Growth (3-PG) to predict annual variation in LAI from climatic data provided by the Oregon Climate Service over the period from 1900 to 2000 and from broad scale 0.5°-spatial resolution future climate projections produced by the Hadley Climate Center, UK. From these simulations we produced a series of maps that display predicted shifts of zones where ponderosa pine might be expected to contract or expand its range if modeled climatic conditions at annual and decadal intervals were sustained. From the historical simulations, the most favorable year for pine dominance was 1958 and the least favorable, 1924. The most favorable decade was in the 1900s and the least favorable in the 1930s. The future predictions indicate a reduction in the current range of the P. ponderosa type along the western Cascade Range however, an increase along the east side and inland PNW. The model predicts that pine dominance should increase between 5 and 10% over the next century, mainly in inland Oregon, Idaho, and Washington.  相似文献   

16.
Prior studies of the hydrothermal vent mussel Bathymodiolus thermophilus (Bivalvia: Mytilidae), provided conflicting predictions about the dispersal ability and population structure of this highly specialized species. Analyses of morphological features associated with its larval shells revealed a feeding larval stage that might facilitate dispersal between ephemeral vent habitats. In contrast, an allozyme study revealed substantial genetic differentiation between samples taken from populations 2370 km apart on Galápagos Rift (Latitude 0°N) and the East Pacific Rise (13°N). To resolve the discrepancy between these studies, we examined allozyme and mitochondrial (mt) DNA variation in new samples from the same localities plus more recently discovered sites (9° and 11°N) along the East Pacific Rise. Although analysis of 26 enzyme-determining loci revealed relatively low levels of genetic variation within the five populations, no evidence existed for significant barriers to dispersal among populations. We estimated an average effective rate of gege flow (Nm) of 8 migrants per population per generation. Two common mtDNA variants predominated at relatively even frequencies in each population, and similarly provided no evidence for barriers to gene flow or isolation-by-distance across this species' known range. Larvae of this species appear to be capable of dispersing hundreds of kilometers along a continuous ridge system and across gaps separating non-contiguous spreading centers.  相似文献   

17.
Hamann A  Wang T 《Ecology》2006,87(11):2773-2786
A new ecosystem-based climate envelope modeling approach was applied to assess potential climate change impacts on forest communities and tree species. Four orthogonal canonical discriminant functions were used to describe the realized climate space for British Columbia's ecosystems and to model portions of the realized niche space for tree species under current and predicted future climates. This conceptually simple model is capable of predicting species ranges at high spatial resolutions far beyond the study area, including outlying populations and southern range limits for many species. We analyzed how the realized climate space of current ecosystems changes in extent, elevation, and spatial distribution under climate change scenarios and evaluated the implications for potential tree species habitat. Tree species with their northern range limit in British Columbia gain potential habitat at a pace of at least 100 km per decade, common hardwoods appear to be generally unaffected by climate change, and some of the most important conifer species in British Columbia are expected to lose a large portion of their suitable habitat. The extent of spatial redistribution of realized climate space for ecosystems is considerable, with currently important sub-boreal and montane climate regions rapidly disappearing. Local predictions of changes to tree species frequencies were generated as a basis for systematic surveys of biological response to climate change.  相似文献   

18.
Differential access to food resources is thought to be the main determinant of differences in female reproductive success but is poorly studied in both pair-living and nocturnal primates. The modes of food competition within and between families were investigated following the principles proposed by the ecological model using 3 years of field data from seven fork-marked lemur (Phaner furcifer) families. The major food resources were identified from year-round feeding observations and the strength and mode of competition were inferred from differences in physical condition. The most important food resource of fork-marked lemurs were tree exudates which occurred in small, defendable food patches, characterized by fast depletion and rapid renewal. These characteristics led to strong within-group contest and scramble competition, which were found to yield a positive dominance effect and a negative group-size effect on female net energy gain. Differential physical condition, however, did not translate directly into differential reproductive success. Low female fertility was best predicted by large family size associated with delayed dispersal by previous offspring. Although there is no obvious benefit from full-grown offspring in their territory, adults tolerate delayed natal dispersal, probably because dispersal poses extraordinary costs for the offspring. These costs are likely to accrue from decreased foraging efficiency in unfamiliar habitats because exudate feeding requires very rigid feeding itineraries. In conclusion, the presented evidence for group-size effects on reproductive success in pair-living females opens a new area for research on the costs and benefits of delayed dispersal and female reproductive decisions.This revised version was published in September 2003 with corrections to the Authors Present address.An erratum to this article can be found at Communicated by E.H.M. Sterck  相似文献   

19.
A number of methods were applied to assess disturbance in macrozoobenthic communities in three Mediterranean lagoons with different levels of stress. Tsopeli, Ionian Sea, with no obvious source of stress, harbours a fauna typical of brackish-water lagoons. Vivari, Aegean Sea, also without apparent source of disturbance, is characterised by a few typical lagoonal species and some species characteristic of perturbation. Goro lagoon, in the northern Adriatic, is much larger and more open to the sea. At the centre of the lagoon, where anoxia is known to occur in the summer (Goro polluted), the fauna is dominated by species typical of disturbance and a few lagoonal species. A dredged area closer to the sea (Goro dredged) is totally dominated by species characteristic of disturbance. The species diversity in all lagoons ranges from low to very low. According to the distribution of individuals in geometric abundance classes, all the lagoons are characterised as stressed. The distribution of individuals in geometric size classes shows dominance of larger specimens in the least disturbed Tsopeli and exclusively small sizes in the greatly disturbed dredged area of Goro. The abundance/biomass comparison curves characterise Tsopeli as undisturbed, Vivari and Goro polluted stations as moderately disturbed and Goro dredged station as disturbed. The last two methods agree with the characterisation derived by examining the dominant species. It is concluded that methods based on size changes of the fauna are more sensitive than those based on relative abundance in assessing disturbance in coastal brackish-water lagoons.  相似文献   

20.
Wright JW  Davies KF  Lau JA  McCall AC  McKay JK 《Ecology》2006,87(10):2433-2439
The current range of ecological habitats occupied by a species reflects a combination of the ecological tolerance of the species, dispersal limitation, and competition. Whether the current distribution of a species accurately reflects its niche has important consequences for the role of ecological niche modeling in predicting changes in species ranges as the result of biological invasions and climate change. We employed a detailed data set of species occurrence and spatial variation in biotic and abiotic attributes to model the niche of a native California annual plant, Collinsia sparsiflora. We tested the robustness of our model for both the realized and fundamental niche by planting seeds collected from four populations, representing two ecotypes, into plots that fully represented the five-dimensional niche space described by our model. The model successfully predicted which habitats allowed for C. sparsiflora persistence, but only for one of the two source ecotypes. Our results show that substantial niche divergence has occurred in our sample of four study populations, illustrating the importance of adequately sampling and describing within-species variation in niche modeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号