首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The Atlantic Rain Forest, an important biodiversity hot spot, has faced severe habitat loss since the last century which has resulted in a highly fragmented landscape with a large number of small forest patches (<100 ha). For conservation planning it is essential to understand how current and future forest regeneration depends on ecological processes, fragment size and the connection to the regional seed pool. We have investigated the following questions by applying the forest growth simulation model FORMIND to the situation of the Atlantic Forest in the state of São Paulo, SE Brazil: (1) which set of parameters describing the local regeneration and level of density regulation can reproduce the biomass distribution and stem density of an old growth forest in a reserve? (2) Which additional processes apart from those describing the dynamics of an old growth forest, drive forest succession of small isolated fragments? (3) Which role does external seed input play during succession? Therefore, more than 300 tree species have been classified into nine plant functional types (PFTs), which are characterized by maximum potential height and shade tolerance. We differentiate between two seed dispersal modes: (i) local dispersal, i.e. all seedlings originated from fertile trees within the simulated area and (ii) external seed rain. Local seed dispersal has been parameterized following the pattern oriented approach, using biomass estimates of old growth forest. We have found that moderate density regulation is essential to achieve coexistence for a broad range of regeneration parameters. Considering the expected uncertainty and variability in the regeneration processes it is important that the forest dynamics are robust to variations in the regeneration parameters. Furthermore, edge effects such as increased mortality at the border and external seed rain have been necessary to reproduce the patterns for small isolated fragments. Overall, simulated biomass is much lower in the fragments compared to the continuous forest, whereas shade tolerant species are affected most strongly by fragmentation. Our simulations can supplement empirical studies by extrapolating local knowledge on edge effects of fragments to larger temporal and spatial scales. In particular our results show the importance of external seed rain and therefore highlight the importance of structural connectivity between regenerating fragments and mature forest stands.  相似文献   

2.
A Bioeconomic Model of Marine Reserve Creation   总被引:1,自引:0,他引:1  
This paper employs a dynamic and spatial model of renewable resource exploitation to investigate the effects of marine reserve creation. The model combines a metapopulation model incorporating resource patch heterogeneity and dispersal with a behaviorally based spatially explicit harvesting model that assumes that fishermen choose location in a manner that eliminates spatial arbitrage opportunities. The combined spatial bioeconomic model is used to simulate the effects of reserve creation under various ecological structures. We identify parameter configurations and ecological dispersal processes that give rise to a double-payoff in which both aggregate biomass and harvest increase after an area of the fishery is set aside and protected from exploitation.  相似文献   

3.
Several models have been proposed to understand how so many species can coexist in ecosystems. Despite evidence showing that natural habitats are often patchy and fragmented, these models rarely take into account environmental spatial structure. In this study we investigated the influence of spatial structure in habitat and disturbance regime upon species’ traits and species’ coexistence in a metacommunity. We used a population-based model to simulate competing species in spatially explicit landscapes. The species traits we focused on were dispersal ability, competitiveness, reproductive investment and survival rate. Communities were characterized by their species richness and by the four life-history traits averaged over all the surviving species. Our results show that spatial structure and disturbance have a strong influence on the equilibrium life-history traits within a metacommunity. In the absence of disturbance, spatially structured landscapes favour species investing more in reproduction, but less in dispersal and survival. However, this influence is strongly dependent on the disturbance rate, pointing to an important interaction between spatial structure and disturbance. This interaction also plays a role in species coexistence. While spatial structure tends to reduce diversity in the absence of disturbance, the tendency is reversed when disturbance occurs. In conclusion, the spatial structure of communities is an important determinant of their diversity and characteristic traits. These traits are likely to influence important ecological properties such as resistance to invasion or response to climate change, which in turn will determine the fate of ecosystems facing the current global ecological crisis.  相似文献   

4.
Dispersal can strongly affect the spatiotemporal dynamics of a species (its spread, spatial distribution and persistence). We investigated how two dispersal behaviours, namely prey evasion (PE) and predator pursuit (PP), affect the dynamics of a predator-prey system. PE portrays the tendency of prey avoiding predators by dispersing into adjacent patches with fewer predators, while PP describes the tendency of predators to pursue the prey by moving into patches with more prey. Based on the Beddington predation model, a spatially explicit metapopulation model was built to incorporate PE and PP. Numerical simulations were run to investigate the effects of PE and PP on the rate of spread, spatial synchrony and the persistence of populations. Results show that both PE and PP can alter spatial synchrony although PP has a weaker desynchronising effect than PE. The predator-prey system without PE and PP expanded in circular waves. The effect of PE can push the prey to distribute in a circular ring front, whereas the effect of PP can change the circular waves to anisotropic expansion. Furthermore, weak PE and PP can accelerate the spread of prey while strong and disproportionate intensities slow down the range expansion. The effects of PE and PP further enhance the population size, break down the spatial synchrony and promote the persistence of populations.  相似文献   

5.
Solitary species show several patterns of space use and relatedness. Individuals may associate randomly or may live near female or male kin, often as a result of natal philopatry or dispersal patterns. Although usually described as solitary or asocial, woodchucks (Marmota monax) are behaviorally flexible marmots that exhibit greater sociality in some populations than others. I examined relationships between kinship, geographic distance, and home range overlap, as well as dispersal and philopatry, to determine the extent to which kin associated spatially. I used a combination of microsatellite DNA analysis, long-term behavioral observations, and radiotelemetry to test predictions that females, but not males, would associate with kin. Indeed, woodchucks lived closer and shared a greater proportion of their home range with more closely related animals. Overlap of females' and males' home ranges was positively correlated with kinship, and male–female dyads shared more area with closer kin. Most juveniles delayed dispersal beyond their first summer. Females often remained philopatric and settled near their natal range. Although males often dispersed as yearlings, some males also established territories within or immediately adjacent to their natal home ranges. A combination of factors can explain these spatial patterns, including high population density associated with the study site's location within a suburban environment, high dispersal costs, and abundant food. Thus, despite their asocial and solitary reputation, woodchucks displayed spatial patterns seen in other, more social species of ground-dwelling sciurids.  相似文献   

6.
《Ecological modelling》2007,200(1-2):20-32
Species composition in forests depends on the interaction of species traits and species availability. Yet many forest simulation models focus only on interactions of adult trees and saplings, ignoring how species become members of the community. We modify a published forest model for bottomland hardwood forests (program SWAMP [Phipps, R.L., 1979. Simulation of wetlands forest vegetation dynamics. Ecol. Modell. 7, 257–288]) to make it spatially explicit and incorporate explicit seed production and dispersal algorithms. The resulting individual-based, spatially explicit forest simulator (YAFSIM) combines mechanistic seed dispersal with growth and mortality of trees to track forest dynamics over time. We describe the structure of the model and test its validity for dynamics in small bottomland hardwood patches in the Mississippi Alluvial Valley. Dynamics of species composition and basal areas of trees predicted by Yazoo Forest Simulator (YAFSIM) were similar to those of natural second- and old-growth bottomland forests. However, diversity of simulated forest patches declined over time largely because of random dynamics acting on small, isolated populations.  相似文献   

7.
Russo SE  Portnoy S  Augspurger CK 《Ecology》2006,87(12):3160-3174
Seed dispersal fundamentally influences plant population and community dynamics but is difficult to quantify directly. Consequently, models are frequently used to describe the seed shadow (the seed deposition pattern of a plant population). For vertebrate-dispersed plants, animal behavior is known to influence seed shadows but is poorly integrated in seed dispersal models. Here, we illustrate a modeling approach that incorporates animal behavior and develop a stochastic, spatially explicit simulation model that predicts the seed shadow for a primate-dispersed tree species (Virola calophylla, Myristicaceae) at the forest stand scale. The model was parameterized from field-collected data on fruit production and seed dispersal, behaviors and movement patterns of the key disperser, the spider monkey (Ateles paniscus), densities of dispersed and non-dispersed seeds, and direct estimates of seed dispersal distances. Our model demonstrated that the spatial scale of dispersal for this V. calophylla population was large, as spider monkeys routinely dispersed seeds >100 m, a commonly used threshold for long-distance dispersal. The simulated seed shadow was heterogeneous, with high spatial variance in seed density resulting largely from behaviors and movement patterns of spider monkeys that aggregated seeds (dispersal at their sleeping sites) and that scattered seeds (dispersal during diurnal foraging and resting). The single-distribution dispersal kernels frequently used to model dispersal substantially underestimated this variance and poorly fit the simulated seed-dispersal curve, primarily because of its multimodality, and a mixture distribution always fit the simulated dispersal curve better. Both seed shadow heterogeneity and dispersal curve multimodality arose directly from these different dispersal processes generated by spider monkeys. Compared to models that did not account for disperser behavior, our modeling approach improved prediction of the seed shadow of this V. calophylla population. An important function of seed dispersal models is to use the seed shadows they predict to estimate components of plant demography, particularly seedling population dynamics and distributions. Our model demonstrated that improved seed shadow prediction for animal-dispersed plants can be accomplished by incorporating spatially explicit information on disperser behavior and movements, using scales large enough to capture routine long-distance dispersal, and using dispersal kernels, such as mixture distributions, that account for spatially aggregated dispersal.  相似文献   

8.
Roughly 40 years after its introduction, the metapopulation concept is central to population ecology. The notion that local populations and their dynamics may be coupled by dispersal is without any doubt of great importance for our understanding of population-level processes. A metapopulation describes a set of subpopulations linked by (rare) dispersal events in a dynamic equilibrium of extinctions and recolonizations. In the large body of literature that has accumulated, the term "metapopulation" is often used in a very broad sense; most of the time it simply implies spatial heterogeneity. A number of reviews have recently addressed this problem and have pointed out that, despite the large and still growing popularity of the metapopulation concept, there are only very few empirical examples that conform with the strict classical metapopulation (CM) definition. In order to understand this discrepancy between theory and observation, we use an individual-based modeling approach that allows us to pinpoint the environmental conditions and the life-history attributes required for the emergence of a CM structure. We find that CM dynamics are restricted to a specific parameter range at the border between spatially structured but completely occupied and globally extinct populations. Considering general life-history attributes, our simulations suggest that CMs are more likely to occur in arthropod species than in (large) vertebrates. Since the specific type of spatial population structure determines conservation concepts, our findings have important implications for conservation biology. Our model suggests that most spatially structured populations are panmictic, patchy, or of mainland-island type, which makes efforts spent on increasing connectivity (e.g., corridors) questionable. If one does observe a true CM structure, this means that the focal metapopulation is on the brink of extinction and that drastic conservation measures are needed.  相似文献   

9.
Overexploitation of wildlife populations occurs across the humid tropics and is a significant threat to the long-term survival of large-bodied primates. To investigate the impacts of hunting on primates and ways to mitigate them, we developed a spatially explicit, individual-based model for a landscape that included hunted and un-hunted areas. We used the large-bodied neotropical red howler monkey (Alouatta seniculus) as our case study species because its life history characteristics make it vulnerable to hunting. We modeled the influence of different rates of harvest and proportions of landscape dedicated to un-hunted reserves on population persistence, population size, social dynamics, and hunting yields of red howler monkeys. In most scenarios, the un-hunted populations maintained a constant density regardless of hunting pressure elsewhere, and allowed the overall population to persist. Therefore, the overall population was quite resilient to extinction; only in scenarios without any un-hunted areas did the population go extinct. However, the total and hunted populations did experience large declines over 100 years under moderate and high hunting pressure. In addition, when reserve area decreased, population losses and losses per unit area increased disproportionately. Furthermore, hunting disrupted the social structure of troops. The number of male turnovers and infanticides increased in hunted populations, while birth rates decreased and exacerbated population losses due to hunting. Finally, our results indicated that when more than 55% of the landscape was harvested at high (30%) rates, hunting yields, as measured by kilograms of biomass, were less than those obtained from moderate harvest rates. Additionally, hunting yields, expressed as the number of individuals hunted/year/km2, increased in proximity to un-hunted areas, and suggested that dispersal from un-hunted areas may have contributed to hunting sustainability. These results indicate that un-hunted areas serve to enhance hunting yields, population size, and population persistence in hunted landscapes. Therefore, spatial regulation of hunting via a reserve system may be an effective management strategy for sustainable hunting, and we recommend it because it may also be more feasible to implement than harvest quotas or restrictions on season length.  相似文献   

10.
Morales JM  Carlo TA 《Ecology》2006,87(6):1489-1496
For many plant species, seed dispersal is one of the most important spatial demographic processes. We used a diffusion approximation and a spatially explicit simulation model to explore the mechanisms generating seed dispersal kernels for plants dispersed by frugivores. The simulation model combined simple movement and foraging rules with seed gut passage time, plant distribution, and fruit production. A simulation experiment using plant spatial aggregation and frugivore density as factors showed that seed dispersal scale was largely determined by the degree of plant aggregation, whereas kernel shape was mostly dominated by frugivore density. Kernel shapes ranged from fat tailed to thin tailed, but most shapes were between an exponential and that of the solution of a diffusion equation. The proportion of dispersal kernels with fat tails was highest for landscapes with clumped plant distributions and increased with increasing number of dispersers. The diffusion model provides a basis for models including more behavioral details but can also be used to approximate dispersal kernels once a diffusion rate is estimated from animal movement data. Our results suggest that important characteristics of dispersal kernels will depend on the spatial pattern of plant distribution and on disperser density when frugivores mediate seed dispersal.  相似文献   

11.
Approaches to assess the impacts of landscape disturbance scenarios on species range from metrics based on patterns of occurrence or habitat to comprehensive models that explicitly include ecological processes. The choice of metrics and models affects how impacts are interpreted and conservation decisions. We explored the impacts of 3 realistic disturbance scenarios on 4 species with different ecological and taxonomic traits. We used progressively more complex models and metrics to evaluate relative impact and rank of scenarios on the species. Models ranged from species distribution models that relied on implicit assumptions about environmental factors and species presence to highly parameterized spatially explicit population models that explicitly included ecological processes and stochasticity. Metrics performed consistently in ranking different scenarios in order of severity primarily when variation in impact was driven by habitat amount. However, they differed in rank for cases where dispersal dynamics were critical in influencing metapopulation persistence. Impacts of scenarios on species with low dispersal ability were better characterized using models that explicitly captured these processes. Metapopulation capacity provided rank orders that most consistently correlated with those from highly parameterized and data-rich models and incorporated information about dispersal with little additional computational and data cost. Our results highlight the importance of explicitly considering species’ ecology, spatial configuration of habitat, and disturbance when choosing indicators of species persistence. We suggest using hybrid approaches that are a mixture of simple and complex models to improve multispecies assessments.  相似文献   

12.
Two important processes determining the dynamics of spatially structured populations are dispersal and the spatial covariance of demographic fluctuations. Spatially explicit approaches to conservation, such as reserve networks, must consider the tension between these two processes and reach a balance between distances near enough to maintain connectivity, but far enough to benefit from risk spreading. Here, we model this trade-off. We show how two measures of metapopulation persistence depend on the shape of the dispersal kernel and the shape of the distance decay in demographic covariance, and we consider the implications of this trade-off for reserve spacing. The relative rates of distance decay in dispersal and demographic covariance determine whether the long-run metapopulation growth rate, and quasi-extinction risk, peak for adjacent patches or intermediately spaced patches; two local maxima in metapopulation persistence are also possible. When dispersal itself fluctuates over time, the trade-off changes. Temporal variation in mean distance that propagules are dispersed (i.e., propagule advection) decreases metapopulation persistence and decreases the likelihood that persistence will peak for adjacent patches. Conversely, variation in diffusion (the extent of random spread around mean dispersal) increases metapopulation persistence overall and causes it to peak at shorter inter-patch distances. Thus, failure to consider temporal variation in dispersal processes increases the risk that reserve spacings will fail to meet the objective of ensuring metapopulation persistence. This study identifies two phenomena that receive relatively little attention in empirical work on reserve spacing, but that can qualitatively change the effectiveness of reserve spacing strategies: (1) the functional form of the distance decay in covariance among patch-specific demographic rates and (2) temporal variation in the shape of the dispersal kernel. The sensitivity of metapopulation recovery and persistence to how covariance of vital rates decreases with distance suggests that estimating the shape of this function is likely to be as important for effective reserve design as estimating connectivity. Similarly, because temporal variation in dispersal dynamics influences the effect of reserve spacing, approaches to reserve design that ignore such variation, and rely instead on long-term average dispersal patterns, are likely to lead to lower metapopulation viability than is actually achievable.  相似文献   

13.
14.
Yoo HJ 《Ecology》2006,87(3):634-647
In spatially heterogeneous systems, utilizing population models to integrate the effects of multiple population rates can yield powerful insights into the relative importance of the component rates. The relative importance of demographic rates and dispersal in shaping the distribution of the western tussock moth (Orgyia vetusta) among patches of its host plant was explored using stage-structured population models. Tussock moth dispersal occurs passively in first-instar larvae and is poor or absent in all other life stages. Spatial surveys suggested, however, that moth distribution is not well explained by passive dispersal; moth populations were greater on small patches and on isolated ones. Further analysis showed that several local demographic rates varied significantly with patch characteristics. Two mortality factors in particular may explain the observed patterns. First, crawler mortality both increased with patch size and was density-dependent. A single-patch difference equation model showed mortality related to patch size is strong enough to overcome the homogenizing effect of density dependence; greater equilibrium densities were predicted for smaller patches. Second, although three rates were found to vary with local patch density, only pupal parasitism by a chalcid wasp could potentially account for higher moth abundances on isolated patches. A spatially explicit simulation model of the multiple-patch system showed that spatial variation in pupal parasitism is indeed strong enough to generate such a pattern. These results demonstrate that habitat spatial structure can affect multiple population processes simultaneously, and even relatively low attack rates imposed on a reproductively valuable life stage of the host can have a dominant effect on population distribution among habitat patches.  相似文献   

15.
The performance of biodegradation of organic pollutants in soil often depends on abiotic conditions and the bioavailability of these pollutants to degrading bacteria. In this context, bacterial dispersal is an essential aspect. Recent studies on the potential promotion of bacterial dispersal by fungal hyphae raised the idea of specifically applying fungal networks to accelerate bacterial degradation processes in situ. Our objective is to investigate these processes and their performance via simulation modelling and address the following questions: (1) Under what abiotic conditions can dispersal networks significantly improve bacterial degradation? and (2) To what extent does the spatial configuration of the networks influence the degradation performance? To answer these questions, we developed a spatially explicit bacterial colony model, which is applied to controlled laboratory experiments with Pseudomonas putida G7 organisms as a case study. Using this model, we analyzed degradation performance in response to different environmental scenarios and showed that conditions of limited bacterial dispersal also limit degradation performance. Under such conditions, dispersal networks have the highest potential for improving the bioavailability of pollutants to bacteria. We also found that degradation performance significantly varies with the spatial configuration of the dispersal networks applied and the time horizon over which performance is assessed. Regarding future practical applications, our results suggest that (1) fungal networks may dramatically improve initially adverse conditions for biodegradation of pollutants in soil, and (2) the network's spatial structure and accessibility are decisive for the success of such tasks.  相似文献   

16.
P. O. Yund  A. Stires 《Marine Biology》2002,141(5):955-963
Recent interest in the dynamics of marine invertebrate populations has focused largely on taxa with an open population structure. However, in many colonial taxa with limited larval dispersal, settlers may be locally derived. Consequently, dynamics may vary among sites that are separated by relatively short distances. This study explored spatial variation in temporal dynamics of colonial ascidians (Botryllus schlosseri Pallas) inhabiting five sites distributed along a ≈ 17-km temperature and phytoplankton gradient in the Damariscotta River estuary, Maine, USA. Settlement and population densities and sexual reproductive status were assayed throughout the summer seasons of 1996 and 1997. Sexual reproduction and larval settlement commenced earlier in the summer in up-river populations, which subsequently underwent a seasonal population explosion that was much smalier in down-river populations. Two peaks in settlement density up-river (in early July and early September) suggest that colonies there may have completed two sexual generations, in contrast to a single generation at down-river sites. Similar spatial variation is expected among populations of other taxa with limited larval dispersal when they are distributed across environmental gradients. Published online: 18 September 2002  相似文献   

17.
Metapopulation Extinction Risk under Spatially Autocorrelated Disturbance   总被引:3,自引:0,他引:3  
Abstract:  Recent extinction models generally show that spatial aggregation of habitat reduces overall extinction risk because sites emptied by local extinction are more rapidly recolonized. We extended such an investigation to include spatial structure in the disturbance regime. A spatially explicit metapopulation model was developed with a wide range of dispersal distances. The degree of aggregation of both habitat and disturbance pattern could be varied from a random distribution, through the intermediate case of a fractal distribution, all the way to complete aggregation (single block). Increasing spatial aggregation of disturbance generally increased extinction risk. The relative risk faced by populations in different landscapes varied greatly, depending on the disturbance regime. With random disturbance, the spatial aggregation of habitat reduced extinction risk, as in earlier studies. Where disturbance was spatially autocorrelated, however, this advantage was eliminated or reversed because populations in aggregated habitats are at risk of mass extinction from coarse-scale disturbance events. The effects of spatial patterns on extinction risk tended to be reduced by long-distance dispersal. Given the high levels of spatial correlation in natural and anthropogenic disturbance processes, population vulnerability may be greatly underestimated both by classical (nonspatial) models and by those that consider spatial structure in habitat alone.  相似文献   

18.
Changes in coastal habitats due to sea-level rise provide an uncertain, yet significant threat to shoreline dependent birds. Rising sea levels can cause habitat fragmentation and loss which can result in considerable reduction in their foraging and nesting areas. Computational models and their algorithmic assumptions play an integral role in exploring potential mitigation responses to uncertain and potentially adverse ecological outcomes. The presence of uncertainty in metapopulation models is widely acknowledged but seldom considered in their development and evaluation, specifically the effects of uncertain model inputs on the model outputs. This paper was aimed to (1) quantify the contribution of each uncertain input factor to the uncertainty in the output of a metapopulation model which evaluated the effects of long-term sea-level rise on the population of Snowy Plovers (Charadrius alexandrinus) found in the Gulf Coast of Florida, and (2) determine the ranges of model inputs that produced a specific output for the purpose of formulating environmental management decisions. This was carried out by employing global sensitivity and uncertainty analysis (GSA) using two generic (model independent) methods, the qualitative screening Morris method and a quantitative variance-based Sobol’ method coupled with Monte Carlo filtering. The analyses were applied to three density dependence scenarios: assuming a ceiling-type density dependence, assuming a contest-type density dependence, and assuming that density dependence is uncertain as to being ceiling- or contest-dependent. The sources of uncertainty in the outputs depended strongly on the type of density dependence considered in the model. In general, uncertainty in the outputs highly depended on the uncertainty in stage matrix elements (fecundity, adult survival, and juvenile survival), dispersal rate from central areas with low current populations (the “Big Bend” area of Florida) to the northern, panhandle populations, the maximum growth rate, and density dependence type. Our results showed that increasing the maximum growth rate to a value of 1.2 or larger will increase the final average population of Snowy Plovers assuming a contest-type density dependence. Results suggest that studies that further quantify which density dependence relationship best describes Snowy Plover population dynamics should be conducted since this is the main driver of uncertainty in model outcomes. Furthermore, investigating the presence of Snowy Plovers in the Big Bend region may be important for providing connection between the panhandle and peninsula populations.  相似文献   

19.
Abstract:  Studies on riparian buffers have usually focused on the amount of land needed as habitat for the terrestrial life stages of semiaquatic species. Nevertheless, the landscape surrounding wetlands is also important for other key processes, such as dispersal and the dynamics of metapopulations. Multiple elements that influence these processes should therefore be considered in the delineation of buffers. We analyzed landscape elements (forest cover, density of roads, and hydrographic network) in concentric buffers to evaluate the scale at which they influence stream amphibians in 77 distinct landscapes. To evaluate whether our results could be generalized to other contexts, we determined whether they were consistent across the study areas. Amphibians required buffers of 100–400 m of suitable terrestrial habitat, but interspecific differences in the amount of habitat were large. The presence of amphibians was related to roads and the hydrographic network at larger spatial scales (300–1500 m), which suggests that wider buffers are needed with these elements. This pattern probably arose because these elements influence dispersal and metapopulation persistence, processes that occur at large spatial scales. Furthermore, in some cases, analyses performed on different sets of landscapes provided different results, which suggests caution should be used when conservation recommendations are applied to disparate areas. Establishment of riparian buffers should not be focused only on riparian habitat, but should take a landscape perspective because semiaquatic species use multiple elements for different functions. This approach can be complex because different landscape elements require different spatial extents. Nevertheless, a shift of attention toward the management of different elements at multiple spatial scales is necessary for the long-term persistence of populations.  相似文献   

20.
Although interwetland dispersal is thought to play an important role in regional persistence of pond‐breeding amphibians, few researchers have modeled amphibian metapopulation or source‐sink dynamics. Results of recent modeling studies suggest anthropogenic stressors, such as pollution, can negatively affect density and population viability of amphibians breeding in isolated wetlands. Presumably population declines also result in reduced dispersal to surrounding (often uncontaminated) habitats, potentially affecting dynamics of nearby populations. We used our data on the effects of mercury (Hg) on the American toad ( Bufo americanus) as a case study in modeling the effects of anthropogenic stressors on landscape‐scale amphibian dynamics. We created a structured metapopulation model to investigate regional dynamics of American toads and to evaluate the degree to which detrimental effects of Hg contamination on individual populations can disrupt interpopulation dynamics. Dispersal from typical American toad populations supported nearby populations that would otherwise have been extirpated over long time scales. Through support of such sink populations, dispersal between wetland‐associated subpopulations substantially increased overall productivity of wetland networks, but this effect declined with increasing interwetland distance and decreasing wetland size. Contamination with Hg substantially reduced productivity of wetland‐associated subpopulations and impaired the ability of populations to support nearby sinks within relevant spatial scales. Our results add to the understanding of regional dynamics of pond‐breeding amphibians, the wide‐reaching negative effects of environmental contaminants, and the potential for restoration or remediation of degraded habitats. Evaluación de los Efectos de Estresantes Antropogénicos sobre la Dinámica Fuente‐Vertedero en Anfibios que se Reproducen en Charcas  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号