首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, the European Union's Water Framework Directive 2000/60/EC (WFD) that is intended to foster protection of water resources is examined, focusing on the improvement of ecological and chemical quality of surface and groundwater. The WFD includes the concept of full cost recovery (FCR) in accordance with the Polluter-Pays Principle, as one of the tools of an adequate and sustainable water resource management system. The WFD defines three different costs associated with water: resource costs (RC), financial costs (FC), and environmental costs (ECs).The FCR of water is examined from a biophysical perspective using emergy evaluation to: (1) establish resource values of water from different sources, (2) establish the full economic costs associated with supplying water, and (3) the societal costs of water that is used incorrectly; from which the resource costs, financial costs, and environmental costs, respectively, can be computed. Financial costs are the costs associated with providing water including energy, materials, labor and infrastructure. The emergy based monetary values vary between 0.15 and 1.73 €/m3 depending on technology. The emergy based, global average resource value (from which resource costs can be computed) is derived from two aspects of water: its chemical potential and its geopotential. The chemical potential monetary value of different sources such as rain, groundwater, and surface water derived from global averages of emergy inputs varies from 0.03 to 0.18 €/m3, depending on source, and the geopotential values vary from 0.03 to 2.40 €/m3, depending on location in the watershed. The environmental costs of water were averaged for the county of Spain and were 1.42 €/m3.Time of year and spatial location within the watershed ultimately influence the resource costs (computed from emergy value of chemical potential and geopotential energy) of water. To demonstrate this spatial and temporal variability, a case study is presented using the Foix watershed in northeastern Spain. Throughout the year, the resource value of water varies from 0.21 to 3.17 €/m3, depending on location within the watershed. It is concluded that FCR would benefit from the evaluation of resource costs using spatially and temporally explicit emergy accounting.  相似文献   

2.
New legislation for the protection of inland surface waters, transitional waters, coastal waters and ground waters has recently been established in Italy. This law presents a new integrated approach, where all water bodies are considered as complex ecosystems to be studied in each of their components. The new concept of environmental quality of the water body, based on the ecological and chemical status, is also introduced. At the same time (i.e. the end of 2000), the European Community approved the European Water Framework Directive based on the same basic environmental concepts and criteria of the new Italian law. This paper analyses the important points and innovations required by the new Italian legislation for monitoring and classification of marine coastal waters. Details of definitions, parameters, analysis and monitoring programs are discussed. A comparison with the European Water Framework Directive is eventually given, underlining the specific characteristics of the Mediterranean sea, which have to be taken into consideration when applying the European Directive to this particular ecoregion.  相似文献   

3.
In this paper, emergy accounting (EA) and life cycle assessment (LCA) methods are employed to investigate a typical urban wetland park, the Green Lake Urban Wetland Park (GLUWP) of Beijing, in terms of its environmental and capital inputs, ecosystem services and organic matter yields, environmental support, and sustainability. The LCA method is also used to obtain a quantitative estimation of the environmental impact of discharges during the entire life cycle of the GLUWP. Various emergy-based indices, such as emergy yield ratio (EYR), environmental load ratio (ELR), emergy sustainability index (ESI), net economic benefit (Np), and environmental impacts of process-based LCA, including global warming potential (GWP), eutrophication (EU), nonrenewable resource depletion (RU), energy consumption (EN), acidification potential (AP), photochemical oxidant creation potential (POCP), particulate matter (PM) and wastes (W), are calculated. The results show that the GLUWP has higher proportions of renewable resource input, less pressure on the environment, more environmental support and better ecological and economic benefits, which can be considered as an environment-friendly and long-term sustainable ecological practice, compared with another constructed wetland in Beijing. Meanwhile, the dominant environmental impact is induced by POCP with the construction phase contributing the most on the entire life cycle. It is expected that increasing green area, extensively using environment-friendly materials, optimizing construction techniques and reducing power consumption can promote the sustainability of the GLUWP.  相似文献   

4.
Humanity's future depends on the preservation of natural ecosystems that supply resources and absorb pollutants. Rural and urban productions are currently based on chemical products made from petroleum, which are responsible for high negative impacts on the Biosphere. In order to prevent those impacts, efficient public policies seeking for sustainable development are necessary. Aiming to assess the load on the environment (considering the gratuitous contributions of natural systems—a donor's perspective) due to human-dominated process, a scientific tool called Emergy Evaluation has been applied in different production systems, including crops and farms. However, there is still a lack of emergy studies in the context of watersheds, probably due to the difficulty of collecting raw data. The present work aims to carry out an assessment of Mogi-Guaçu and Pardo watershed, through the combined use of Emergy Evaluation and Geographical Information System. The agricultural and natural land uses were considered, while urban areas were excluded. Emergy flows (expressed in seJ ha−1 yr−1) obtained for all agricultural and natural land uses were expanded for the whole watershed and the emergy indices were calculated. The results show that the watershed has: low renewability (%R = 32%); low capture of natural resources through high external economic investment (EYR = 1.86); low dependence on natural resources (EIR = 1.16); and moderate load on the environment (ELR = 2.08). Considering a scenario where sugar-cane crops, orchards and pasture areas are converted from conventional to organic management, watershed's emergy performance improved, reaching a new renewability of 38%, but it is still not enough to be considered sustainable.  相似文献   

5.
Most water management studies concentrate on the inter-temporal allocation problem or, more recently, spatial dynamics - but not both. While early spatial-temporal studies focused on the allocation of water quantity, this paper presents an approach to water quality analysis that incorporates both spatial and temporal dynamics in a watershed framework. The acid mine drainage (AMD) problem in the Cheat River watershed of West Virginia, USA, serves as a case study and provides an opportunity to test the modeling approach developed. The empirical models are written in General Algebraic Modeling System (GAMS) and solved using the CPLEX mixed integer programming package. The results suggest that available investments should be concentrated in heavily impaired stream segments. The model can be used to assess the economic implications of alternative watershed Total Maximum Daily Load (TMDL) implementation or other management strategies.  相似文献   

6.
Y. Li  B. Chen  Z.F. Yang   《Ecological modelling》2009,220(22):3163-3173
Ecological network analysis (ENA) is introduced in this paper as a promising approach to study water use systems. Information indices from ENA involving total system throughput (TST), ascendency and overhead are calculated here. Two related aspects including organization inherent in system structures and synthesized water use intensity related with sustainable development of water use systems are analyzed. The indices of ascendency and overhead are applied for analyzing and characterizing water use network organization. For comparison of sustainability of water use systems from integrated aspects of environment, society and economy and based on TST, a new indicator termed as total system throughput intensity (TSTI) is constructed incorporating parameters of land, precipitation, population, GDP and environmental flow, which can be used as a measure of sustainability in terms of synthesized water use intensity. The Yellow River Basin in China during 1998–2006 is chosen as the case study and divided into subsystems according to the six river sections as from source to Lanzhou (S1-L1), Lanzhou to Toudaoguai (L1-T), Toudaoguai to Longmen (T-L2), Longmen to Sanmenxia (L2-S2), Sanmenxia to Huayuankou (S2-H) and Huayuankou to the mouth of Bo Sea (H-B). The results show that (i) the organization levels of L1-T and H-B are better than those of S1-L1 and T-L2, with those of L2-S2 and S2-H the worst; (ii) the synthesized water use intensity has been improving, of which T-L2, L2-S2 and S2-H are at the highest levels while H-B the lowest. In addition, the comparison between TSTI and other metrics and the relationship between ascendency and TSTI are discussed, from which the importance of TSTI is reflected and the optimization criterions for sustainable development of six subsystems are derived. It can be concluded that the application of ENA in water use systems can provide new angles for water resource management to address the challenges of assessing and optimizing options to obtain more sustainable water use.  相似文献   

7.
This study explores the effect of environmental self-audits (“audits”), which represent an important type of environmental management system practice, on the extent of facilities’ compliance with wastewater discharge limits. Theoretically, audits may (1) improve compliance by enhancing the effectiveness of treatment technologies and pollution prevention methods, (2) undermine compliance by distracting facilities’ personnel with audit-related administrative burdens, or (3) not influence compliance because these effects neutralize each other. By examining the extent of compliance, our study’s results reflect both improvement toward and beyond compliance. By assessing compliance with multiple pollutants separately, our study examines whether audits influence the control of different pollutants uniformly. Lastly, we employ a dynamic panel estimator, which allows us to explore whether facilities adjust their discharges dynamically, while controlling for any inertia in facilities’ pollution control systems. Our study empirically examines the U.S. chemical manufacturing sector between 1999 and 2001 using survey and publicly available EPA data.  相似文献   

8.
Water samples from 20 locations on rivers in the Tongzhou District of Beijing were collected four times from July 2005 to March 2006. In addition, sediment samples were collected in July 2005. All samples were analyzed for 16 US Environmental Protection Agency (EPA) priority pollutants polycyclic aromatic hydrocarbons (PAHs). The concentration, distribution, seasonal variation, and sources of the 16 PAH compounds identified in the water samples, suspended particles, and surface sediments were then evaluated. The concentrations of PAHs in the water and suspended particle and surface sediment samples ranged from 87.3 to 1,890 ng l−1, 1,330 to 27,700 ng g−1, and 156 to 8,650 ng g−1, respectively. These results demonstrated that rivers in the Tongzhou District of Beijing had a high level of PAH pollution, especially in the suspended particles. The highest and lowest concentrations of PAHs in the water samples were observed in summer and spring. However, the seasonal variations in the concentration of PAHs in the suspended particles were more complicated. The dominant compounds in the water, suspended particle, and surface sediment samples were two-, three- and four-ring PAH compounds, respectively. Ratio analysis illustrated that fuel-burning was the primary source of PAHs in the study area. Gasoline, diesel, coal, and coke oven sources were identified and the contributions of the different fuel-burning sources were then calculated using factor analysis and multiple linear regression. These analyses revealed that coal combustion, gasoline combustion plus coke oven emission, and diesel combustion accounted for 38.8%, 38.5%, and 22.7% of the PAHs in suspended particles, respectively.  相似文献   

9.
水温与营养值对水库藻华态势的影响   总被引:17,自引:4,他引:17  
主要研究了水温和营养值在大沙河水库绿藻、硅藻藻华生物量的影响;提出了用营养值来定量描述水体的富营养状态;通过构筑一定形式的辅助变量,分别提出了在水温20℃和30℃条件下藻华生物量的预测模型;进一步阐述了水温对藻生长态势的影响原理。研究表明水温一方面影响藻生命活动的活性、速率,另一方面影响藻对水中营养物的利用率和自身代谢率。在水温20℃和30℃时,两方面的总体作用结果有所不同。对营养物的利用率和自身代谢率方面更大程度上影响藻华生物量的多少。  相似文献   

10.
Despite several decades of operations and the increasing importance of water quality monitoring networks, the authorities still rely on experiential insights and subjective judgments in siting water quality monitoring stations. This study proposes an integrated technique which uses a genetic algorithm (GA) and a geographic information system (GIS) for the design of an effective water quality monitoring network in a large river system. In order to develop a design scheme, planning objectives were identified for water quality monitoring networks and corresponding fitness functions were defined using linear combinations of five selection criteria that are critical for developing a monitoring system. The criteria include the representativeness of a river system, compliance with water quality standards, supervision of water use, surveillance of pollution sources and examination of water quality changes. The fitness levels were obtained through a series of calculations of the fitness functions using GIS data. A sensitivity analysis was performed for major parameters such as the numbers of generations, population sizes and probability of crossover and mutation, in order to determine a good fitness level and convergence for optimum solutions. The proposed methodology was applied to the design of water quality monitoring networks in the Nakdong River system, in Korea. The results showed that only 35 out of 110 stations currently in operation coincide with those in the new network design, therefore indicating that the effectiveness of the current monitoring network should be carefully re-examined. From this study, it was concluded that the proposed methodology could be a useful decision support tool for the optimized design of water quality monitoring networks.  相似文献   

11.
The paper describes the training, validation and application of artificial neural network (ANN) models for computing the dissolved oxygen (DO) and biochemical oxygen demand (BOD) levels in the Gomti river (India). Two ANN models were identified, validated and tested for the computation of DO and BOD concentrations in the Gomti river water. Both the models employed eleven input water quality variables measured in river water over a period of 10 years each month at eight different sites. The performance of the ANN models was assessed through the coefficient of determination (R2) (square of the correlation coefficient), root mean square error (RMSE) and bias computed from the measured and model computed values of the dependent variables. Goodness of the model fit to the data was also evaluated through the relationship between the residuals and model computed values of DO and BOD. The model computed values of DO and BOD by both the ANN models were in close agreement with their respective measured values in the river water. Relative importance and contribution of the input variables to the model output was evaluated through the partitioning approach. The identified ANN models can be used as tools for the computation of water quality parameters.  相似文献   

12.
Due to mounting human pressure, stakeholders in northern Thailand are facing crucial natural resources management (NRM) issues. Among others, the impact of upstream irrigation management on downstream agricultural viability is a growing source of conflict, which often has both biophysical and social origins. As multiple rural stakeholders are involved, appropriate solutions should only emerge from negotiation. CATCHSCAPE is a Multi-Agent System (MAS) that enables us to simulate the whole catchment features as well as farmer’s individual decisions. The biophysical modules simulate the hydrological system with its distributed water balance, irrigation scheme management and crop and vegetation dynamics. The social dynamics are described as a set of resource management processes (water, land, cash, labour force). Water management is described according to the actual different levels of control (individual, scheme and catchment). Moreover, the model’s architecture is presented in a way that emphasises the transparency of the rules and methods implemented. Finally, one simulated scenario is described along with its main results, according to different viewpoints (economy, landscape, water management).  相似文献   

13.
Environmental flows are critical to sustaining a variety of plant and animal communities in wetlands. However, evaluation of environmental flows is hampered by the problem of hydrological and ecological data shortage, especially in many developing countries such as China. Based on a hydrological model, a water balance model and remote sensing data, we assessed the environmental flows of China's Wolonghu wetland with limited data. The hydrological model provides input data for the water balance model of the wetland, and the remote sensing data can be used to assess land use changes. Integration of these two models with the remote sensing data revealed both the environmental flows of the Wolonghu wetland and the relationships between these environmental flows and land use changes. The results demonstrate that environmental flows have direct and indirect influences on the wetland ecosystem and should be linked to sustainable wetland management.  相似文献   

14.
Living organisms and ecosystems have been shown to be sensitive to very weak signals originating very far away. The dynamics governing these phenomena is discussed in the framework of Quantum Field Theory. This phenomenon gives an indication on the dynamics responsible for the exchange of information in ecosystems. The peculiar role of coherent water is stressed. It is shown that energy is able to travel in a coherent medium in form of solitons, without any losses.  相似文献   

15.
The Ebre (Ebro) Delta is one of the most important wetland areas in the western Mediterranean. Ca. 40 % of the delta plain is less than 0.5 m above mean sea level and part of the southern margin of the delta is at mean sea level in an area protected by dikes. Both mean rates of secular subsidence in the Ebre Delta and eustatic sea level rise are ca. 1 – 2 mm/yr. Thus, the present annual relative sea level rise (RSLR) rate in the Ebre Delta may be at least 3 mm/yr. Measured accretion rates in the delta range from 4 mm/yr in the wetlands surrounding the river mouth to <0.1 mm/yr in impounded salt marshes and rice fields. The annual sediment deficit in the delta plain to offset RSLR is close to 1 million m3/yr. Accretion rates in the rice fields prior to the construction of large dams in the Ebre watershed were higher than RSLR rates, from 3 – 15 mm/yr. At present, >99 % of the riverine sediments are retained in the reservoirs and rice fields are losing ca. 0.2 mm/yr. Future management plans should take RSLR into account and include control of freshwater and sediment flows from the river in order to offset negative effects from waterlogging and salt intrusion, and maintain land elevation. This will include the partial removal of sediments trapped behind the Ribarroja and Mequinença dams. Stocks and inputs of sediments in the corresponding reservoirs are large enough for land elevation of ca. 50 cm in the whole delta plain. Advantages of this solution include (1) new sediments to the delta to offset subsidence (via rice fields) and coastal retreat, (2) enhanced functioning of the delta (productivity and nutrient processing), (3) avoidance of accumulation of sediments in the reservoirs. Hence, it is important to manage river discharges at the dams from an integrated viewpoint, whereas currently only hydropower and agricultural requirements are considered. It is also crucial to maintain periods of high discharge, to have enough river energy to transport as much sediments as possible.  相似文献   

16.
The removal of corn stover or production of herbaceous crops such as switchgrass (Panicum virgatum) or big bluestem (Andropogon gerardii) as feedstocks for bioenergy purposes has been shown to have significant benefits from an energy and climate change perspective. There is potential, however, to adversely impact water and soil quality, especially in the United States Corn Belt where stover removal predominantly occurs and possibly in other areas with herbaceous energy crops depending upon a number of geo-climatic and economic factors. The overall goal of this research was to provide a thorough and mechanistic understanding of the relationship between stover and herbaceous crop production management practices and resulting range of impacts on soil and water quality, with a focus on eastern Iowa, USA. Comparisons of the production of herbaceous bioenergy crops to continuous corn (Zea mays L.) and corn-soybean (Glycine max L.) rotations on five different soils representative of the region were performed. Indices for total nutrient (nitrogen and phosphorus) loss to surface water and groundwater, total soil loss due to water and wind erosion, and cumulative soil carbon loss were derived to assess long-term sustainability. The Agricultural Policy/Environmental eXtender (APEX) agroecosystem model was used to quantify the sustainability indices and to generate sufficient data to provide a greater understanding of variables that affect water and soil quality than previously possible. The results clearly show the superiority of herbaceous crop production from a soil and water quality perspective. They also show, however, that compared to traditional cropping systems (e.g., corn-soybean rotations with conventional tillage), soil and water quality degradation can be reduced under certain conditions at the same time stover is removed.  相似文献   

17.
River basin management in China has focused on large rivers, such as the Yangtze and Yellow Rivers. However, there are also about 20,000 small river basins that deserve attention. The Biliu River basin in Liaoning Province, northeast China, which is 156 km in length, has many features common to small river basins, including divided jurisdiction among governments leading to vertical and horizontal fragmentation. In the Biliu basin, the key municipalities are Dalian with a population of almost 6 million people and Yingkou with about 2.28 million people. Each has different interests and needs, making coordination and collaboration difficult. The literature and practice suggest that effective integrated water resource management (IWRM) requires at least six features: (1) vision, policy and strategy; (2) a legislative or statutory basis to provide credibility and authority; (3) a river basin organization to coordinate development and management; (4) specification of functions and authority of the river basin organization; (5) public participation and community involvement; and (6) an IRWM strategy and plan. Water management in the Biliu River basin is assessed relative to these features of IWRM, with recommendations offered regarding changes to have water management in the Biliu River basin to reflect what is expected in an IWRM approach.  相似文献   

18.
In ecological network theory, network efficiency and resilience are two essential but complementary attributes of the network structure, and a balance between these factors is critical for an ecosystem's long-term sustainability. Our paper introduces this method and related concepts into water use systems to provide a new angle for sustainability quantification. In this paper, we investigate the meanings of network efficiency and resilience in the context of sustainable development of water use systems, and define sustainable systems based on the optimal balance between network efficiency and resilience. With the consideration of complex artificial characteristics of water use, we propose an optimal water use network and quantify its flows. By ascendency calculation, the balanced network structure can be determined. We then use the four sub-basins of China's Haihe River as a case study to illustrate how the optimal network can be constructed and how the optimal balance for each scenario can be calculated. The results show that the optimal balance for the sub-basins has ascendency values ranging from 0.5970 to 0.7161. By analyzing the contribution of each water use activity to network's balance structure, the location of the optimal balance in water use systems can be better understood. This research represents the first attempt to explore the balance between a network structure's efficiency and resilience as a way to quantify the sustainability of water use systems, and builds a foundation for future studies on the assessment, regulation, and management of water resources.  相似文献   

19.
The increase of water ages drove the deterioration of drinking water quality. The relative abundance of Rhizobiales uniquely increase during distributing process. Rhizobiales order was helpful for inhibiting corrosion under high chlorine level. New disinfecting strategies should be developed to ensure drinking water safety. Bacterial community in the drinking water distribution system (DWDS) was regulated by multiple environmental factors, many of which varied as a function of water age. In this study, four water samples with different water ages, including finished water (FW, 0 d) and tap water (TW) [TW1 (1 d), TW2(2 d) and TW3(3 d)], were collected along with the mains of a practical DWDS, and the bacterial community was investigated by high-throughput sequencing technique. Results indicated that the residual chlorine declined with the increase of water age, accompanied by the increase of dissolved organic matter, total bacteria counts and bacterial diversity (Shannon). For bacterial community composition, although Proteobacteria phylum (84.12%-97.6%) and Alphaproteobacteria class (67.42%-93.09%) kept dominate, an evident regular was observed at the order level. In detail, the relative abundance of most of other residual orders increased with different degrees from the start to the end of the DWDS, while a downward trend was uniquely observed in terms of Rhizobiales, who was inferred to be chlorine-resistant and be helpful for inhibiting pipes corrosion. Moreover, some OTUs were found to be closely related with species possessing pathogenicity and chlorine-resistant ability, so it was recommended that the use of agents other than chlorine or agents that can act synergically with chlorine should be developed for drinking water disinfection. This paper revealed bacterial community variations along the mains of the DWDS and the result was helpful for understanding bacterial ecology in the DWDS.  相似文献   

20.
论森林公园生态旅游的开发管理   总被引:2,自引:0,他引:2  
森林公园在政府投入不足和自身财力不够前提下,招商开发是最有效的发展途径.本文从招商引资开发森林公园的必要性、招商引资要把握的原则、招商引资具体管理等层面探讨森林公园招商开发管理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号