首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jonard M  Andre F  Ponette Q 《Ecology》2006,87(9):2306-2318
In mixed-species stands, modeling leaf litter dispersal is important to predict the physical and chemical characteristics of the forest floor, which plays a major role in nutrient cycling and in plant population dynamics. In this study, a spatially explicit model of leaf litterfall was developed and compared with two other models. These three models were calibrated for a mixed forest of oak and beech using litterfall data from mapped forest plots. All models assumed that an allometric equation described individual leaf litter production, but they strongly differed in the modeling of the probability density of leaf shedding with distance from source trees. Two models used a negative exponential function to account for leaf dispersal with distance, and this function was allowed to vary according to wind direction in one of them. In contrast, our approach was based on a simple ballistic equation considering release height, wind speed, wind direction, and leaf fall velocity; the distributions of wind speeds and wind directions were modeled according to a Weibull and a Von Mises distribution, respectively. Using an independent validation data set, all three models provided predictions well correlated to measurements (r > 0.83); however, the two models with a direction-dependent component were slightly more accurate. In addition, parameter estimates of the ballistic model were in close agreement with a foliar litter production equation derived from the literature for beech and with wind characteristics measured during leaf litterfall for both species. Because of its mechanistic background, such a spatially explicit model might be incorporated as a litterfall module in larger models (nutrient cycling, plant population dynamics) or used to determine the manner in which patch size in mixed-species stands influences litter mixture.  相似文献   

2.
The Role of Roadsides in Plant Invasions: a Demographic Approach   总被引:7,自引:0,他引:7  
Abstract:  Non-native plant species are common along roadsides, but presence does not necessarily indicate spread along the road axis. Roadsides may serve merely as habitat for a species spreading independently of roads. The potential conduit function of roads depends on the habitat specificity of the spreading species, its dispersal range relative to the spacing of roads in the landscape, and the relative importance of long- and short-range dispersal. We describe a demographic model of the road × species interaction and suggest methods of assessing conduit function in the field based on the model results. A species limited to roadside habitat will be constrained to spread along the road axis unless its long-range dispersal is sufficient to carry it across the intervening unfavorable area to another road. It will propagate along a road corridor at a rate determined by the scale of short-range dispersal. Effective management of an invasion requires distinguishing between the habitat and conduit functions, a distinction difficult to make with only snapshot data. Invasions can be reconstructed by several methods, but none is totally satisfactory. We suggest comparing stem distributions on transects parallel and perpendicular to the road axis, and beside the road, and away from it, with an idealized Gaussian curve. Such comparisons would allow discrimination between pattern determined by habitat suitability and pattern reflecting random and facilitated dispersal.  相似文献   

3.
Shipley B  Paine CE  Baraloto C 《Ecology》2012,93(4):760-769
Although niche-based and stochastic processes, including dispersal limitation and demographic stochasticity, can each contribute to community assembly, it is difficult to quantify the relative importance of each process in natural vegetation. Here, we extend Shipley's maxent model (Community Assembly by Trait Selection, CATS) for the prediction of relative abundances to incorporate both trait-based filtering and dispersal limitation from the larger landscape and develop a statistical decomposition of the proportions of the total information content of relative abundances in local communities that are attributable to trait-based filtering, dispersal limitation, and demographic stochasticity. We apply the method to tree communities in a mature, species-rich, tropical forest in French Guiana at 1-, 0.25- and 0.04-ha scales. Trait data consisted of species' means of 17 functional traits measured over both the entire meta-community and separately in each of nine 1-ha plots. Trait means calculated separately for each site always gave better predictions. There was clear evidence of trait-based filtering at all spatial scales. Trait-based filtering was the most important process at the 1-ha scale (34%), whereas demographic stochasticity was the most important at smaller scales (37-53%). Dispersal limitation from the meta-community was less important and approximately constant across scales (-9%), and there was also an unresolved association between site-specific traits and meta-community relative abundances. Our method allows one to quantify the relative importance of local niche-based and meta-community processes and demographic stochasticity during community assembly across spatial and temporal scales.  相似文献   

4.
Developing tools to predict the location of new biological invasions is essential if exotic species are to be controlled before they become widespread. Currently, alpine areas in Australia are largely free of exotic plant species but face increasing pressure from invasive species due to global warming and intensified human use. To predict the potential spread of highly invasive orange hawkweed (Hieracium aurantiacum) from existing founder populations on the Bogong High Plains in southern Australia, we developed an expert-based, spatially explicit, dispersal-constrained, habitat suitability model. The model combines a habitat suitability index, developed from disturbance, site wetness, and vegetation community parameters, with a phenomenological dispersal kernel that uses wind direction and observed dispersal distances. After generating risk maps that defined the relative suitability of H. aurantiacum establishment across the study area, we intensively searched several locations to evaluate the model. The highest relative suitability for H. aurantiacum establishment was southeast from the initial infestations. Native tussock grasslands and disturbed areas had high suitability for H. aurantiacum establishment. Extensive field searches failed to detect new populations. Time-step evaluation using the location of populations known in 1998-2000, accurately assigned high relative suitability for locations where H. aurantiacum had established post-2003 (AUC [area under curve] = 0.855 +/- 0.035). This suggests our model has good predictive power and will improve the ability to detect populations and prioritize areas for ongoing monitoring.  相似文献   

5.
Loayza AP  Knight T 《Ecology》2010,91(9):2684-2695
We examined the effect of seed dispersal by Purplish Jays (Cyanocorax cyanomelas; pulp consumers) and the Chestnut-eared Ara?ari (Pteroglossus castanotis; "legitimate" seed dispersers) on population growth of the small tree Guettarda viburnoides (Rubiaceae) in northeastern Bolivian savannas. Because each bird species differs with respect to feeding and post-feeding behavior, we hypothesized that seed dispersal by each species will contribute differently to the rate of increase of G. viburnoides, but that seed dispersal by either species will increase population growth when compared to a scenario with no seed dispersal. To examine the effects of individual dispersers on the future population size of G. viburnoides, we projected population growth rate using demographic models for G. viburnoides that explicitly incorporate data on quantitative and qualitative aspects of seed dispersal by each frugivore species. Our model suggests that seed dispersal by C. cyanomelas leads to positive population growth of G. viburnoides, whereas seed dispersal by P. castanotis has a detrimental effect on the population growth of this species. To our knowledge, this is the first study to report negative effects of a "legitimate" seed disperser on the population dynamics of the plant it consumes. Our results stress the importance of incorporating frugivore effects into population projection matrices, to allow a comprehensive analysis of the effectiveness of different dispersers for plant population dynamics.  相似文献   

6.
A theory of gene dispersal by wind pollination can make an important contribution to understanding the viability and evolution of important plant groups in the Earth's changing landscape and it can be applied to evaluate concerns about the spread of engineered genes from genetically modified (GM) crops into conventional varieties via windborne pollen. Here, we present a model of cross-pollination between plant populations due to the wind. We perform a ‘mass budget’ of pollen by accounting for the number of pollen grains from release in the source population, dispersal from the source to the sink population by the wind, and deposition on receptive surfaces in the sink population. Our model can be parameterised for any wind-pollinated species, but we apply it to Brassica napus (oilseed rape or canola) to investigate the threat posed by wind pollination to GM confinement in agriculture. Specifically, we calculate the maximum feasible distance at which a particular level of windborne gene dispersal could be attained. This is equivalent to the separation distance between populations or fields required to achieve a given threshold of gene dispersal or adventitious GM presence. As required, model predictions of the upper bounds on levels of wind-mediated gene dispersal exceed observations from a wide range of published studies. For a level of gene dispersal below 0.9%, which is the EU threshold for GM adventitious presence, we predict that the maximum feasible distance for agricultural fields of B. napus is 1000 m, regardless of field shape and direction of prevailing winds. For fields closer than 1000 m, our model results do not necessarily imply that the 0.9% threshold is likely to be breached, because in this instance we have conservatively set the values of parameters where current knowledge is limited. We also predict that gene dispersal is reduced by 50% when the lag in peak flowering between the source and sink populations is 13 days, and reduced by 90% when the lag is 24 days. We identify further measurements necessary to improve the accuracy of the model predictions.  相似文献   

7.
Morales JM  Carlo TA 《Ecology》2006,87(6):1489-1496
For many plant species, seed dispersal is one of the most important spatial demographic processes. We used a diffusion approximation and a spatially explicit simulation model to explore the mechanisms generating seed dispersal kernels for plants dispersed by frugivores. The simulation model combined simple movement and foraging rules with seed gut passage time, plant distribution, and fruit production. A simulation experiment using plant spatial aggregation and frugivore density as factors showed that seed dispersal scale was largely determined by the degree of plant aggregation, whereas kernel shape was mostly dominated by frugivore density. Kernel shapes ranged from fat tailed to thin tailed, but most shapes were between an exponential and that of the solution of a diffusion equation. The proportion of dispersal kernels with fat tails was highest for landscapes with clumped plant distributions and increased with increasing number of dispersers. The diffusion model provides a basis for models including more behavioral details but can also be used to approximate dispersal kernels once a diffusion rate is estimated from animal movement data. Our results suggest that important characteristics of dispersal kernels will depend on the spatial pattern of plant distribution and on disperser density when frugivores mediate seed dispersal.  相似文献   

8.
Two important processes determining the dynamics of spatially structured populations are dispersal and the spatial covariance of demographic fluctuations. Spatially explicit approaches to conservation, such as reserve networks, must consider the tension between these two processes and reach a balance between distances near enough to maintain connectivity, but far enough to benefit from risk spreading. Here, we model this trade-off. We show how two measures of metapopulation persistence depend on the shape of the dispersal kernel and the shape of the distance decay in demographic covariance, and we consider the implications of this trade-off for reserve spacing. The relative rates of distance decay in dispersal and demographic covariance determine whether the long-run metapopulation growth rate, and quasi-extinction risk, peak for adjacent patches or intermediately spaced patches; two local maxima in metapopulation persistence are also possible. When dispersal itself fluctuates over time, the trade-off changes. Temporal variation in mean distance that propagules are dispersed (i.e., propagule advection) decreases metapopulation persistence and decreases the likelihood that persistence will peak for adjacent patches. Conversely, variation in diffusion (the extent of random spread around mean dispersal) increases metapopulation persistence overall and causes it to peak at shorter inter-patch distances. Thus, failure to consider temporal variation in dispersal processes increases the risk that reserve spacings will fail to meet the objective of ensuring metapopulation persistence. This study identifies two phenomena that receive relatively little attention in empirical work on reserve spacing, but that can qualitatively change the effectiveness of reserve spacing strategies: (1) the functional form of the distance decay in covariance among patch-specific demographic rates and (2) temporal variation in the shape of the dispersal kernel. The sensitivity of metapopulation recovery and persistence to how covariance of vital rates decreases with distance suggests that estimating the shape of this function is likely to be as important for effective reserve design as estimating connectivity. Similarly, because temporal variation in dispersal dynamics influences the effect of reserve spacing, approaches to reserve design that ignore such variation, and rely instead on long-term average dispersal patterns, are likely to lead to lower metapopulation viability than is actually achievable.  相似文献   

9.
Most metapopulation models neglect the local dynamics, and systems characterized by slow population turnover, time lags and non-equilibrium, are only rarely examined within a metapopulation context. In this study we used a realistic, spatially explicit, dynamic metapopulation model of a long-lived grassland plant, Succisa pratensis, to examine the relative importance of local population dynamics, and short and long-distance dispersal of seeds.  相似文献   

10.
Johansson V  Ranius T  Snäll T 《Ecology》2012,93(2):235-241
The colonization-extinction dynamics of many species are affected by the dynamics of their patches. For increasing our understanding of the metapopulation dynamics of sessile species confined to dynamic patches, we fitted a Bayesian incidence function model extended for dynamic landscapes to snapshot data on five epiphytic lichens among 2083 mapped oaks (dynamic patches). We estimate the age at which trees become suitable patches for different species, which defines their niche breadth (number of suitable trees). We show that the colonization rates were generally low, but increased with increasing connectivity in accordance with metapopulation theory. The rates were related to species traits, and we show, for the first time, that they are higher for species with wide niches and small dispersal propagules than for species with narrow niches or large propagules. We also show frequent long-distance dispersal in epiphytes by quantifying the relative importance of local dispersal and background deposition of dispersal propagules. Local stochastic extinctions from intact trees were negligible in all study species, and thus, the extinction rate is set by the rate of patch destruction (tree fall). These findings mean that epiphyte metapopulations may have slow colonization-extinction dynamics that are explained by connectivity, species traits, and patch dynamics.  相似文献   

11.
Yoo HJ 《Ecology》2006,87(3):634-647
In spatially heterogeneous systems, utilizing population models to integrate the effects of multiple population rates can yield powerful insights into the relative importance of the component rates. The relative importance of demographic rates and dispersal in shaping the distribution of the western tussock moth (Orgyia vetusta) among patches of its host plant was explored using stage-structured population models. Tussock moth dispersal occurs passively in first-instar larvae and is poor or absent in all other life stages. Spatial surveys suggested, however, that moth distribution is not well explained by passive dispersal; moth populations were greater on small patches and on isolated ones. Further analysis showed that several local demographic rates varied significantly with patch characteristics. Two mortality factors in particular may explain the observed patterns. First, crawler mortality both increased with patch size and was density-dependent. A single-patch difference equation model showed mortality related to patch size is strong enough to overcome the homogenizing effect of density dependence; greater equilibrium densities were predicted for smaller patches. Second, although three rates were found to vary with local patch density, only pupal parasitism by a chalcid wasp could potentially account for higher moth abundances on isolated patches. A spatially explicit simulation model of the multiple-patch system showed that spatial variation in pupal parasitism is indeed strong enough to generate such a pattern. These results demonstrate that habitat spatial structure can affect multiple population processes simultaneously, and even relatively low attack rates imposed on a reproductively valuable life stage of the host can have a dominant effect on population distribution among habitat patches.  相似文献   

12.
Tools for estimating pollen dispersal and the resulting gene flow are necessary to assess the risk of gene flow from genetically modified (GM) to conventional fields, and to quantify the effectiveness of measures that may prevent such gene flow. A mechanistic simulation model is presented and used to simulate pollen dispersal by wind in different agricultural scenarios over realistic pollination periods. The relative importance of landscape-related variables such as isolation distance, topography, spatial configuration of the fields, GM field size and barrier, and environmental variation are examined in order to find ways to minimize gene flow and to detect possible risk factors. The simulations demonstrated a large variation in pollen dispersal and in the predicted amount of contamination between different pollination periods. This was largely due to variation in vertical wind. As this variation in wind conditions is difficult to control through management measures, it should be carefully considered when estimating the risk of gene flow from GM crops. On average, the predicted level of gene flow decreased with increasing isolation distance and with increasing depth of the conventional field, and increased with increasing GM field size. Therefore, at a national scale and over the long term these landscape properties should be accounted for when setting regulations for controlling gene flow. However, at the level of an individual field the level of gene flow may be dominated by uncontrollable variation. Due to the sensitivity of pollen dispersal to the wind, we conclude that gene flow cannot be summarized only by the mean contamination; information about the frequency of extreme events should also be considered. The modeling approach described in this paper offers a way to predict and compare pollen dispersal and gene flow in varying environmental conditions, and to assess the effectiveness of different management measures.  相似文献   

13.
Analytical solution for katabatic flow induced by an isolated cold strip   总被引:1,自引:0,他引:1  
An analytical model for katabatic flow induced by cold strip of finite width in the cross-slope direction but of infinite extent in the downslope direction is presented. The fluid is assumed to have a constant (eddy) viscosity, and the Coriolis force is neglected. A numerical simulation has been used to verify the model, which is shown to revert to the classical Prandtl model if the strip width goes to infinity. The effects of the strip width and slope angle on the katabatic flow are studied. The buoyancy and downslope velocity reach maximum values at the centre of the strip, and spread outwards in the cross-slope direction. The downslope wind maximum weakens for narrow strips and shallow slopes. In contrast to the Prandtl solution, which shows a counter flow above the wind maximum, our model predicts the counter flow to occur outside the strip. The cross-slope variation in the surface forcing induces cross-slope and slope-normal velocities, which are manifested in vortices at the strip edges. Below the wind maximum, the fluid above the cooling surface descends and moves toward the strip edge where it is detrained from the strip region. Replenishment of fluid into the strip region takes place above the wind maximum.  相似文献   

14.
《Ecological modelling》2005,188(1):41-51
In plants that produce seeds with contrasting genetic background (selfed versus outcrossed), the question arises whether the ecological function of the two types of progeny differ. This paper addresses this issue for the ant-dispersed Calathea micans by introducing a novel application of the Neubert–Caswell model for analysis of wave speed for structured populations. Because dispersal as well as vital rates are structured, the model allows for distinct dispersal kernels for different types of progeny and thus permits comparisons of the sensitivity to changes in demographic and dispersal parameters of in situ population growth rate versus population spread across space. The study site was a lowland, evergreen tropical rain forest at La Selva Biological station, Costa Rica, where the species is commonly found throughout the forest. In C. micans, seeds produced by open flowers (potentially outcrossed) or by closed flowers (selfed) bear oily arils and are dispersed by ants. Five life-history stages were used to characterize the population: seedlings originating from seeds produced by open flowers, seedlings originating from seeds produced by closed flowers, juvenile vegetative plants, reproductive plants without new shoots and reproductive plants with new shoots. Demography varied seasonally. Transitions were estimated from marking and following the fate of plants (N = 400) in a natural population over a dry and a wet season. The population dynamics was described by a 10 × 10 matrix, with five life-history stages and two habitat states. The habitat states cycle repeatedly, dry–wet–dry–wet. To estimate dispersal kernels for each seed type, individual seeds (N = 225 and 306 seeds produced by open and closed flowers, respectively) were color-coded and placed in depots, allowing the ants to redistribute them. Five months later, seedlings with an attached seed coat bearing the intact color-coding, were surveyed around the depots. Radial distances and angles were recorded for each seedling (N = 67 and 81 seedlings arising from open and closed flowers, respectively). The results of the model give an asymptotic growth rate of 1.06 per season and an asymptotic rate of spread of 8.36 cm per season. There is a high correlation (r = 0.99) between elasticity of growth rate and elasticity of rate of spread of the population. Both rates are most sensitive to changes in stasis of juveniles during the dry season. However, most interesting is the analysis that revealed that population spread is more sensitive than in situ population growth to demographic rates of seedlings arising from open flowers. The analysis suggests a new way of thinking about ecological functions of multiple modes of reproduction.  相似文献   

15.
Plant survival, growth, and flowering are size dependent in many plant populations but also vary among individuals of the same size. This individual variation, along with variation in dispersal caused by differences in, e.g., seed release height, seed characteristics, and wind speed, is a key determinant of the spread rate of species through homogeneous landscapes. Here we develop spatial integral projection models (SIPMs) that include both demography and dispersal with continuous state variables. The advantage of this novel approach over discrete-stage spread models is that the effect of variation in plant size and size-dependent vital rates can be studied at much higher resolution. Comparing Neubert-Caswell matrix models to SIPMs allowed us to assess the importance of including individual variation in the models. As a test case we parameterized a SIPM with previously published data on the invasive monocarpic thistle Carduus nutans in New Zealand. Spread rate (c*) estimates were 34% lower than for standard spatial matrix models and stabilized with as few as seven evenly distributed size classes. The SIPM allowed us to calculate spread rate elasticities over the range of plant sizes, showing the size range of seedlings that contributed most to c* through their survival, growth and reproduction. The annual transitions of these seedlings were also the most important ones for local population growth (lambda). However, seedlings that reproduced within a year contributed relatively more to c* than to lambda. In contrast, plants that grow over several years to reach a large size and produce many more seeds, contributed relatively more to lambda than to c*. We show that matrix models pick up some of these details, while other details disappear within wide size classes. Our results show that SIPMs integrate various sources of variation much better than discrete-stage matrix models. Simpler, heuristic models, however, remain very valuable in studies where the main goal is to investigate the general impact of a life history stage on population dynamics. We conclude with a discussion of future extensions of SIPMs, including incorporation of continuous time and environmental drivers.  相似文献   

16.
Lowe WH 《Ecology》2010,91(10):3008-3015
Long-distance dispersal (LDD) may contribute disproportionately to range expansions, the creation of new evolutionary lineages, and species persistence in human-dominated landscapes. However, because data on the individual consequences of dispersal distance are extremely limited, we have little insight on how LDD is maintained in natural populations. I used six years of spatially explicit capture-mark-recapture (CMR) data to test the prediction that individual performance increases with dispersal distance in the stream salamander Gyrinophilus porphyriticus. Dispersal distance was total distance moved along the 1-km study stream, ranging from 0 to 565 m. To quantify individual performance, I used CMR estimates of survival and individual growth rates based on change in body length. Survival and growth rates increased significantly with dispersal distance. These relationships were not confounded by pre-dispersal body condition or by ecological gradients along the stream. Individual benefits of LDD were likely caused by an increase in the upper limit of settlement site quality with dispersal distance. My results do not support the view that the fitness consequences of LDD are unpredictable and instead suggest that consistent evolutionary mechanisms may explain the prevalence of LDD in nature. They also highlight the value of direct CMR data for understanding the individual consequences of variation in dispersal distance and how that variation is maintained in natural populations.  相似文献   

17.
Modeling seed dispersal distances: implications for transgenic Pinus taeda.   总被引:1,自引:0,他引:1  
Predicting forest-tree seed dispersal across a landscape is useful for estimating gene flow from genetically engineered (GE) or transgenic trees. The question of biocontainment has yet to be resolved, although field-trial permits for transgenic forest trees are on the rise. Most current field trials in the United States occur in the Southeast where Pinus taeda L., an indigenous species, is the major timber commodity. Seed dispersal distances were simulated using a model where the major determinants were: (1) forest canopy height at seed release, (2) terminal velocity of the seeds, (3) absolute seed release, and (4) turbulent-flow statistics, all of which were measured or determined within a P. taeda plantation established from seeds collected from wild forest-tree stands at the Duke Forest near Durham, North Carolina, USA. In plantations aged 16 and 25 years our model results showed that most of the seeds fell within local-neighborhood dispersal distances, with estimates ranging from 0.05 to 0.14 km from the source. A fraction of seeds was uplifted above the forest canopy and moved via the long-distance dispersal (LDD) process as far as 11.9-33.7 km. Out of 10(5) seeds produced per hectare per year, roughly 440 seeds were predicted to be uplifted by vertical eddies above the forest canopy and transported via LDD. Of these, 70 seeds/ha traveled distances in excess of 1 km from the source, a distance too great to serve as a biocontainment zone. The probability of LDD occurrence of transgenic conifer seeds at distances exceeding 1 km approached 100%.  相似文献   

18.
Capturing the spread of biological invasions in heterogeneous landscapes is a complex modelling task where information on both dispersal and population dynamics needs to be integrated. Spatial stochastic simulation and phenology models have rarely been combined to assist in the study of human-assisted long-distance dispersal events.Here we develop a process-based spatially explicit landscape-extent simulation model that considers the spread and detection of invasive insects. Natural and human-assisted dispersal mechanisms are modelled with an individual-based approach using negative exponential and negative power law dispersal kernels and gravity models. The model incorporates a phenology sub-model that uses daily temperature grids for the prediction and timing of the population dynamics in each habitat patch. The model was applied to the study of the invasion by the important maize pest western corn rootworm (WCR) Diabrotica virgifera ssp. virgifera in Europe. We parameterized and validated the model using maximum likelihood and simulation methods from the historical invasion of WCR in Austria.WCR was found to follow stratified dispersal where international transport networks in the Danube basin played a key role in the occurrence of long-distance dispersal events. Detection measures were found to be effective and altitude had a significant effect on limiting the spread of WCR. Spatial stochastic simulation combined with phenology models, maximum likelihood methods and predicted versus observed regression showed a high degree of flexibility that captured the salient features of WCR spread in Austria. This modelling approach is useful because it allows to fully exploit and the often limited and heterogeneous information available regarding the population dynamics and dispersal of alien invasive insects.  相似文献   

19.
Models can be used to direct the management of population spread for the control of invasives or to encourage species of conservation value. Analytical models are attractive because of their theoretical basis and limited data requirements, but there is concern that their simplicity may limit their practical utility. We address the applied use of simple models in a study of a declining annual herb, Rhinanthus minor. We parameterized a population-spread model using field data on demography and dispersal for four management systems: grazed only (GR), hay-cut once (H1), hay-cut twice (H2), and hay-cut with autumn grazing (HG). Within a replicated experiment we measured spread rates of introduced R. minor populations over eight years. The modeled and measured spread rates were very similar in terms of both patterns of management effects and absolute values, so that in both cases HG > H2, H1 > GR. The treatments affected both dispersal and demography (establishment and survival) and so we used decomposition approaches to analyze the major causes of differences in population spread. Increased dispersal under hay-cutting was more important than demographic changes and accounted for approximately 70% of the differences in spread rate between the hay-cut and grazed-only treatments. Furthermore, management effects on the tail of the dispersal curve were by far the most critical in governing spread. This study suggests that simple models can be used to inform practical conservation management, and we demonstrate straightforward uses of our model to predict the impacts of different management strategies. While simple models can give accurate projections, we emphasize that they must be parameterized with high-quality data gathered at the appropriate spatial scale.  相似文献   

20.
Seed dispersal is a crucial component of plant population dynamics. Human landscape modifications, such as habitat destruction and fragmentation, can alter the abundance of fruiting plants and animal dispersers, foraging rates, vector movement, and the composition of the disperser community, all of which can singly or in concert affect seed dispersal. Here, we quantify and tease apart the effects of landscape configuration, namely, fragmentation of primary forest and the composition of the surrounding forest matrix, on individual components of seed dispersal of Heliconia acuminata, an Amazonian understory herb. First we identified the effects of landscape configuration on the abundance of fruiting plants and six bird disperser species. Although highly variable in space and time, densities of fruiting plants were similar in continuous forest and fragments. However, the two largest-bodied avian dispersers were less common or absent in small fragments. Second, we determined whether fragmentation affected foraging rates. Fruit removal rates were similar and very high across the landscape, suggesting that Heliconia fruits are a key resource for small frugivores in this landscape. Third, we used radiotelemetry and statistical models to quantify how landscape configuration influences vector movement patterns. Bird dispersers flew farther and faster, and perched longer in primary relative to secondary forests. One species also altered its movement direction in response to habitat boundaries between primary and secondary forests. Finally, we parameterized a simulation model linking data on fruit density and disperser abundance and behavior with empirical estimates of seed retention times to generate seed dispersal patterns in two hypothetical landscapes. Despite clear changes in bird movement in response to landscape configuration, our simulations demonstrate that these differences had negligible effects on dispersal distances. However, small fragments had reduced densities of Turdus albicollis, the largest-bodied disperser and the only one to both regurgitate and defecate seeds. This change in Turdus abundance acted together with lower numbers of fruiting plants in small fragments to decrease the probability of long-distance dispersal events from small patches. These findings emphasize the importance of foraging style for seed dispersal and highlight the primacy of habitat size relative to spatial configuration in preserving biotic interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号