首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The southern Yucatán contains the largest expanse of seasonal tropical forests remaining in Mexico, forming an ecocline between the drier north of the peninsula and the humid Petén, Guatemala. The Calakmul Biosphere Reserve resides in the center of this region as part of the Mesoamerican Biological Corridor. The reserve's functions are examined in regard to land changes throughout the region, generated over the last 40 years by increasing settlement and the expansion and intensification of agriculture. These changes are documented from 1987/1988 to 2000, and their implications regarding the capacity of the reserve to protect the ecocline, forest habitats, and butterfly diversity are addressed. The results indicate that the current landscape matrix serves the biotic diversity of the reserve, with several looming caveats involving the loss of humid forests and the interruption of biota flow across the ecocline, and the amount and proximity of older forest patches beyond the reserve. The highly dynamic land cover changes underway in this economic frontier warrant an adaptive management approach that monitors the major changes underway in mature forest types, while the paucity of systematic ecological and environment-development studies is rectified in order to inform policy and practice.  相似文献   

2.
Climate variability is increasingly recognized as an important regulatory factor, capable of influencing the structural properties of aquatic ecosystems. Lakes appear to be particularly sensitive to the ecological impacts of climate variability, and several long time series have shown a close coupling between climate, lake thermal properties and individual organism physiology, population abundance, community structure, and food web dynamics. Thus, understanding the complex interplay among meteorological forcing, hydrological variability, and ecosystem functioning is essential for improving the credibility of model-based water resources/fisheries management. Our objective herein is to examine the relative importance of the ecological mechanisms underlying plankton seasonal variability in Lake Washington, Washington State (USA), over a 35-year period (1964–1998). Our analysis is founded upon an intermediate complexity plankton model that is used to reproduce the limiting nutrient (phosphate)–phytoplankton–zooplankton–detritus (particulate phosphorus) dynamics in the lake. Model parameterization is based on a Bayesian calibration scheme that offers insights into the degree of information the data contain about model inputs and allows obtaining predictions along with uncertainty bounds for modeled output variables. The model accurately reproduces the key seasonal planktonic patterns in Lake Washington and provides realistic estimates of predictive uncertainty for water quality variables of environmental management interest. A principal component analysis of the annual estimates of the underlying ecological processes highlighted the significant role of the phosphorus recycling stemming from the zooplankton excretion on the planktonic food web variability. We also identified a moderately significant signature of the local climatic conditions (air temperature) on phytoplankton growth (r = 0.41), herbivorous grazing (r = 0.38), and detritus mineralization (r = 0.39). Our study seeks linkages with the conceptual food web model proposed by Hampton et al. [Hampton, S.E., Scheuerell, M.D., Schindler, D.E., 2006b. Coalescence in the Lake Washington story: interaction strengths in a planktonic food web. Limnol. Oceanogr. 51, 2042–2051.] to emphasize the “bottom-up” control of the Lake Washington plankton phenology. The posterior predictive distributions of the plankton model are also used to assess the exceedance frequency and confidence of compliance with total phosphorus (15 μg L−1) and chlorophyll a (4 μg L−1) threshold levels during the summer-stratified period in Lake Washington. Finally, we conclude by underscoring the importance of explicitly acknowledging the uncertainty in ecological forecasts to the management of freshwater ecosystems under a changing global environment.  相似文献   

3.
Fisher JA  Frank KT  Leggett WC 《Ecology》2010,91(9):2499-2505
A strictly species-centric view of human impacts on ecological communities may conceal important trait changes key to ecosystem functioning and stability. Analyses of body size and community composition data for 326 Northwest Atlantic fish species sampled across > 900000 km2 over three decades revealed a rapid and widespread reduction of body sizes driven by declines within species and changes in relative abundances. The changes were unrelated to species richness but of sufficient magnitude to eliminate biogeographic scale gradients of increasing body size with latitude commonly characterized as Bergmann's rule. These changes have persisted despite reduced potential for intraspecific competition and favorable bottom water temperatures, both of which should lead to increased growth rates. The aggregate body sizes in these Northwest Atlantic fish communities may now represent a mismatch between the environmental variability characteristic of the Northwest Atlantic and the historical body size, life history traits, and productivity of species across this region. We discuss how these changes may jeopardize the potential for recovery of these important temperate/subarctic ecosystems.  相似文献   

4.
In the western United States, forest ecosystems are subject to a variety of forcing mechanisms that drive dynamics, including climate change, land-use/land-cover change, atmospheric pollution, and disturbance. To understand the impacts of these stressors, it is crucial to develop assessments of forest properties to establish baselines, determine the extent of changes, and provide information to ecosystem modeling activities. Here we report on spatial patterns of characteristics of forest ecosystems in the western United States, including area, stand age, forest type, and carbon stocks, and comparisons of these patterns with those from satellite imagery and simulation models. The USDA Forest Service collected ground-based measurements of tree and plot information in recent decades as part of nationwide forest inventories. Using these measurements together with a methodology for estimating carbon stocks for each tree measured, we mapped county-level patterns across the western United States. Because forest ecosystem properties are often significantly different between hardwood and softwood species, we describe patterns of each. The stand age distribution peaked at 60-100 years across the region, with hardwoods typically younger than softwoods. Forest carbon density was highest along the coast region of northern California, Oregon, and Washington and lowest in the arid regions of the Southwest and along the edge of the Great Plains. These results quantify the spatial variability of forest characteristics important for understanding large-scale ecosystem processes and their controlling mechanisms. To illustrate other uses of the inventory-derived forest characteristics, we compared them against examples of independently derived estimates. Forest cover compared well with satellite-derived values when only productive stands were included in the inventory estimates. Forest types derived from satellite observations were similar to our inventory results, though the inventory database suggested more heterogeneity. Carbon stocks from the Century model were in good agreement with inventory results except in the Pacific Northwest and part of the Sierra Nevada, where it appears that harvesting and fire in the 20th century (processes not included in the model runs) reduced measured stand ages and carbon stocks compared to simulations.  相似文献   

5.
The US Environmental Protection Agency's Office of Research and Development has initiated the Environmental Monitoring and Assessment Program (EMAP) to monitor status and trends in the condition of the nation's near coastal waters, forests, wetlands, agro-ecosystems, surface waters, deserts and rangelands. the programme is also intended to evaluate the effectiveness of Agency policies at protecting ecological resources occurring in these systems. Monitoring data collected for all ecosystems will be integrated for regional and national status and trends assessments. the near coastal component of EMAP consists of estuaries, coastal waters, and the Great Lakes. Near coastal ecosystems have been regionalized and classified, and an integrated sampling strategy has been developed. EPA and NOAA have agreed to coordinate and, to the extent possible, integrate the near coastal component of EMAP with the NOAA National Status and Trends Program. A demonstration project was conducted in estuaries of the mid-Atlantic region (Chesapeake Bay to Cape Cod) in the summer of 1990. in 1991, monitoring continued in mid-Atlantic estuaries and was initiated in estuaries of a portion of the Gulf of Mexico. Preliminary results indicate: there are no insurmountable logistical problems with sampling on a regional scale; several of the selected indicators are practical and sensitive on the regional scale; and an efficient effort in future years will provide valuable information on condition of estuarine resources at regional scales.  相似文献   

6.
Ireland AW  Booth RK 《Ecology》2011,92(1):11-18
The coming century is predicted to feature enhanced climatic variability, including increased frequency, intensity, and duration of extreme climatic events. Ecologists are faced with the critical challenge of anticipating potentially nonlinear ecosystem responses to these changes. High-resolution paleoecological data sets that capture past ecosystem responses to climate variability provide valuable long-term perspectives on the sensitivity of ecosystems to climate-forced state shifts. We used a suite of paleoecological analyses at Titus Bog in northwestern Pennsylvania, USA, to test the hypothesis that the development and expansion of floating peatlands in kettlehole basins represents a threshold response to hydroclimate variability. In contrast with expectations of gradual autogenic peat mat expansion, our results indicate that peat mat expansion at Titus Bog was highly episodic and occurred in three distinct pulses centered on 800, 650, and 400 cal yr BP. Each of these expansion events coincided with or immediately followed decadal-to-mutlidecadal droughts recorded in regional paleoclimate reconstructions. These patterns indicate that peatland development in kettlehole basins can follow nonlinear trajectories, with episodes of rapid advancement triggered by climatic forcing. Future climate changes may increase the likelihood of peatland expansion in kettlehole basins, potentially leading to abrupt changes in adjacent lake ecosystems.  相似文献   

7.
Abstract:  The most efficient way to reduce future damages from nonindigenous species is to prevent the introduction of harmful species. Although ecologists have long sought to predict the identity of such species, recent methodological advances promise success where previous attempts failed. We applied recently developed risk assessment approaches to nonindigenous freshwater molluscs at two geographic scales: the Laurentian Great Lakes basin and the 48 contiguous states of the United States. We used data on natural history and biogeography to discriminate between established freshwater molluscs that are benign and those that constitute nuisances (i.e., cause environmental and/or economic damage). Two statistical techniques, logistic regression and categorical tree analysis, showed that nuisance status was positively associated with fecundity. Other aspects of natural history and biogeography did not significantly affect likelihood of becoming a nuisance. We then used the derived statistical models to predict the chance that 15 mollusc species not yet in natural ecosystems would cause damage if they become established. We also tested whether time since establishment is related to the likelihood that nonindigenous mollusc species in the Great Lakes and United States would cause negative impacts. No significant relationship was evident at the U.S. scale, but recently established molluscs within the Great Lakes were more likely to cause negative impacts. This may reflect changing environmental conditions, changing patterns of trade, or may be an indication of "invasional meltdown." Our quantitative analyses could be extended to other taxa and ecosystems and offer a number of improvements over the qualitative risk assessments currently used by U.S. (and other) government agencies.  相似文献   

8.
Ecosystem change often affects the structure of aquatic communities thereby regulating how much and by what pathways energy and critical nutrients flow through food webs. The availability of energy and essential nutrients to top predators such as seabirds that rely on resources near the water's surface will be affected by changes in pelagic prey abundance. Here, we present results from analysis of a 25-year data set documenting dietary change in a predatory seabird from the Laurentian Great Lakes. We reveal significant declines in trophic position and alterations in energy and nutrient flow over time. Temporal changes in seabird diet tracked decreases in pelagic prey fish abundance. As pelagic prey abundance declined, birds consumed less aquatic prey and more terrestrial food. This pattern was consistent across all five large lake ecosystems. Declines in prey fish abundance may have primarily been the result of predation by stocked piscivorous fishes, but other lake-specific factors were likely also important. Natural resource management activities can have unintended consequences for nontarget ecosystem components. Reductions in pelagic prey abundance have reduced the capacity of the Great Lakes to support the energetic requirements of surface-feeding seabirds. In an environment characterized by increasingly limited pelagic fish resources, they are being offered a Hobsonian choice: switch to less nutritious terrestrial prey or go hungry.  相似文献   

9.
Abstract: In recent decades the rate and geographic extent of land‐use and land‐cover change has increased throughout the world's humid tropical forests. The pan‐tropical geography of forest change is a challenge to assess, and improved estimates of the human footprint in the tropics are critical to understanding potential changes in biodiversity. We combined recently published and new satellite observations, along with images from Google Earth and a literature review, to estimate the contemporary global extent of deforestation, selective logging, and secondary regrowth in humid tropical forests. Roughly 1.4% of the biome was deforested between 2000 and 2005. As of 2005, about half of the humid tropical forest biome contained 50% or less tree cover. Although not directly comparable to deforestation, geographic estimates of selective logging indicate that at least 20% of the humid tropical forest biome was undergoing some level of timber harvesting between 2000 and 2005. Forest recovery estimates are even less certain, but a compilation of available reports suggests that at least 1.2% of the humid tropical forest biome was in some stage of long‐term secondary regrowth in 2000. Nearly 70% of the regrowth reports indicate forest regeneration in hilly, upland, and mountainous environments considered marginal for large‐scale agriculture and ranching. Our estimates of the human footprint are conservative because they do not resolve very small‐scale deforestation, low‐intensity logging, and unreported secondary regrowth, nor do they incorporate other impacts on tropical forest ecosystems, such as fire and hunting. Our results highlight the enormous geographic extent of forest change throughout the humid tropics and the considerable limitations of the science and technology available for such a synthesis.  相似文献   

10.
After a 40-year absence caused by pollution and eutrophication, burrowing mayflies (Hexagenia spp.) recolonized western Lake Erie in the mid 1990s as water quality improved. Mayflies are an important food resource for the economically valuable yellow perch fishery and are considered to be major indicator species of the ecological condition of the lake. Since their reappearance, however, mayfly populations have suffered occasional unexplained recruitment failures. In 2002, a failure of fall recruitment followed an unusually warm summer in which western Lake Erie became temporarily stratified, resulting in low dissolved oxygen levels near the lake floor. In the present study, we examined a possible link between Hexagenia recruitment and periods of intermittent stratification for the years 1997 2002. A simple model was developed using surface temperature, wind speed, and water column data from 2003 to predict stratification. The model was then used to detect episodes of stratification in past years for which water column data are unavailable. Low or undetectable mayfly recruitment occurred in 1997 and 2002, years in which there was frequent or extended stratification between June and September. Highest mayfly reproduction in 2000 corresponded to the fewest stratified periods. These results suggest that even relatively brief periods of stratification can result in loss of larval mayfly recruitment, probably through the effects of hypoxia. A trend toward increasing frequency of hot summers in the Great Lakes region could result in recurrent loss of mayfly larvae in western Lake Erie and other shallow areas in the Great Lakes.  相似文献   

11.
Many different spatio-temporal individual-based models (IBM) for forests have been developed for studying the development of trees in space and time. Such models typically depend on various numerical parameters that represent the ecological processes of growth (G), inter-plant competition (C) and birth-and-death (B&D; also called regeneration and mortality). Until now little work has been done to systematically trace the influence of these processes and their model parameters on the spatial structure of forest ecosystems.This paper attempts to fill this gap by addressing an important aspect of forest structure, spatial variability, characterised by the mark variogram as a summary characteristic. The model used was inspired by components of various well-established IBMs including a shot-noise competition field. Time series data from monospecies forests in three different countries of the northern hemisphere provided ecological reference scenarios. Though a case study, the paper's methodology is rather general and can be applied to any model and forest ecosystem.Methods of sensitivity analysis revealed that only a small number of model parameters is crucial for forming spatial variability. Particularly important is the range of competition between trees; with increasing range the variability increases. Growth processes have considerable importance particularly with short observation periods and in young forests, whereas mortality processes become more influential in the long-term. Naturally, these statements depend upon the initial structure and on the length of the observation period.  相似文献   

12.
广东省农业生态环境问题与对策   总被引:1,自引:0,他引:1  
曾晓舵  郑习健 《生态环境》2004,13(3):455-458
随着社会经济和城市化的快速发展,以及人口的剧增,广东省的农业发展正面临一系列严重的生态环境问题。这些问题包括耕地资源日益缺乏,农业环境污染日益严重,土壤肥力退化和水土流失仍未遏止,地区性的洪旱灾害频繁,森林生态系统简单而脆弱,外来物种入侵猖獗,等等。文章对这些问题进行了讨论,并提出了若干治理对策。认为要使广东省农业可持续发展,必须合理开发利用农业自然资源,严格控制非农业用地与人口增长,加强农业环境污染的防治,加强土壤肥力退化和水土流失的综合治理,发展节水农业,改善林分结构和生态服务功能。此外,认为还应加强外来物种的安全防范工作和科学研究,防止外来物种对农业生态系统的组成、结构和功能的破坏。  相似文献   

13.
Floodplains are among the world's most threatened ecosystems due to the pervasiveness of dams, levee systems, and other modifications to rivers. Few unaltered floodplains remain where we may examine their dynamics over decadal time scales. Our study provides a detailed examination of landscape change over a 60-year period (1945-2004) on the Nyack floodplain of the Middle Fork of the Flathead River, a free-flowing, gravel-bed river in northwest Montana, USA. We used historical aerial photographs and airborne and satellite imagery to delineate habitats (i.e., mature forest, regenerative forest, water, cobble) within the floodplain. We related changes in the distribution and size of these habitats to hydrologic disturbance and regional climate. Results show a relationship between changes in floodplain habitats and annual flood magnitude, as well as between hydrology and the cooling and warming phases of the Pacific Decadal Oscillation (PDO). Large magnitude floods and greater frequency of moderate floods were associated with the cooling phases of the PDO, resulting in a floodplain environment dominated by extensive restructuring and regeneration of floodplain habitats. Conversely, warming phases of the PDO corresponded with decreases in magnitude, duration, and frequency of critical flows, creating a floodplain environment dominated by late successional vegetation and low levels of physical restructuring. Over the 60-year time series, habitat change was widespread throughout the floodplain, though the relative abundances of the habitats did not change greatly. We conclude that the long- and short-term interactions of climate, floods, and plant succession produce a shifting habitat mosaic that is a fundamental attribute of natural floodplain ecosystems.  相似文献   

14.
Forested watersheds, an important provider of ecosystems services related to water supply, can have their structure, function, and resulting streamflow substantially altered by land use and land cover. Using a retrospective analysis and synthesis of long-term climate and streamfiow data (75 years) from six watersheds differing in management histories we explored whether streamflow responded differently to variation in annual temperature and extreme precipitation than unmanaged watersheds. We show significant increases in temperature and the frequency of extreme wet and dry years since the 1980s. Response models explained almost all streamflow variability (adjusted R2 > 0.99). In all cases, changing land use altered streamflow. Observed watershed responses differed significantly in wet and dry extreme years in all but a stand managed as a coppice forest. Converting deciduous stands to pine altered the streamflow response to extreme annual precipitation the most; the apparent frequency of observed extreme wet years decreased on average by sevenfold. This increased soil water storage may reduce flood risk in wet years, but create conditions that could exacerbate drought. Forest management can potentially mitigate extreme annual precipitation associated with climate change; however, offsetting effects suggest the need for spatially explicit analyses of risk and vulnerability.  相似文献   

15.
The US Environmental Protection Agency's Office of Research and Development has initiated the Environmental Monitoring and Assessment Program (EMAP) to monitor status and trends in the condition of the nation's near coastal waters, forests, wetlands, agro-ecosystems, surface waters, deserts and rangelands. the programme is also intended to evaluate the effectiveness of Agency policies at protecting ecological resources occurring in these systems. Monitoring data collected for all ecosystems will be integrated for regional and national status and trends assessments. the near coastal component of EMAP consists of estuaries, coastal waters, and the Great Lakes. Near coastal ecosystems have been regionalized and classified, and an integrated sampling strategy has been developed. EPA and NOAA have agreed to coordinate and, to the extent possible, integrate the near coastal component of EMAP with the NOAA National Status and Trends Program. A demonstration project was conducted in estuaries of the mid-Atlantic region (Chesapeake Bay to Cape Cod) in the summer of 1990. in 1991, monitoring continued in mid-Atlantic estuaries and was initiated in estuaries of a portion of the Gulf of Mexico. Preliminary results indicate: there are no insurmountable logistical problems with sampling on a regional scale; several of the selected indicators are practical and sensitive on the regional scale; and an efficient effort in future years will provide valuable information on condition of estuarine resources at regional scales.  相似文献   

16.
Abstract: Adaptive genetic variability within species is an essential component of biodiversity but has been largely ignored in studies aimed at assessing and predicting biodiversity of the forest environment. We used factorial regression and structuring models to test easily measured surrogates, such as ecological attributes, as predictors of adaptive genetic variation between populations of a tree species ( Eucalyptus delegatensis ). Adaptive variability was defined in terms of variation in average growth performance of 68 populations and of population-by-environment interaction across seven different environments. The best surrogates of genetic variability were measures of solar radiation and temperature range, each predicting more than 50% of the genetic variability within the species. Rock and understory types, when used either alone or in combination with other covariates, also were very efficient in discriminating between populations in groups showing similar adaptation. Significant relationships between particular surrogates and growth patterns of variation were attributed to effects of natural selection that had occurred in the population source locations. We recommend the development of studies focusing on the population level of biodiversity to improve the conservation of forest ecosystems in Australia.  相似文献   

17.
祁连山自然保护区生态承载力分析与评价   总被引:7,自引:0,他引:7  
以层次分析法和模糊模式识别为基础,建立生态承载力综合评价模型,重点分析祁连山自然保护区森林、草地和农田3种受人类活动干扰最强烈的生态系统的生态承载力和生态荷载,在此基础上进一步分析整个保护区的总体生态承载力和生态荷载。结果显示,祁连山区域生态系统已经受到人类活动的强烈干扰,生态荷载总体处于严重超载状态。但区域生态系统内部各子系统之间以及生态荷载的空间分布存在差异。其中,森林子系统和草地子系统属于严重超载,农田子系统属于中度超载;在总体生态荷载的空间分布上,西北部地区比东南部地区超载更为严重;就各子系统的生态荷载状况而言,森林子系统和草地子系统的超载程度均表现为东南部地区略低于西北部地区,但农田子系统东南部地区超载程度高于西北部地区。  相似文献   

18.
Over 180 non‐native species have been introduced in the Laurentian Great Lakes region, many posing threats to native species and ecosystem functioning. One potential pathway for introductions is the commercial bait trade; unknowing or unconcerned anglers commonly release unused bait into aquatic systems. Previous surveillance efforts of this pathway relied on visual inspection of bait stocks in retail shops, which can be time and cost prohibitive and requires a trained individual that can rapidly and accurately identify cryptic species. Environmental DNA (eDNA) surveillance, a molecular tool that has been used for surveillance in aquatic environments, can be used to efficiently detect species at low abundances. We collected and analyzed 576 eDNA samples from 525 retail bait shops throughout the Laurentian Great Lake states. We used eDNA techniques to screen samples for multiple aquatic invasive species (AIS) that could be transported in the bait trade, including bighead (Hypophthalmichthys nobilis) and silver carp (H. molitrix), round goby (Neogobius melanostomus), tubenose goby (Proterorhinus marmoratus), Eurasian rudd (Scardinius erythrophthalmus), and goldfish (Carassius auratus). Twenty‐seven samples were positive for at least one target species (4.7% of samples), and all target species were found at least once, except bighead carp. Despite current regulations, the bait trade remains a potential pathway for invasive species introductions in the Great Lakes region. Alterations to existing management strategies regarding the collection, transportation, and use of live bait are warranted, including new and updated regulations, to prevent future introductions of invasive species in the Great Lakes via the bait trade. El Uso del ADN Ambiental en la Vigilancia de Especies Invasoras del Mercado de Carnada Comercial de los Grandes Lagos  相似文献   

19.
Climate change in Canadian boreal forests is usually associated with increased drought severity and fire activity. However, future fire activity could well be within the range of values experienced during the preindustrial period. In this study, we contrast 21st century forecasts of fire occurrence (FireOcc, number of large forest fires per year) in the southern part of the Boreal Shield, Canada, with the historical range of the past 240 years statistically reconstructed from tree-ring width data. First, a historical relationship between drought indices and FireOcc is developed over the calibration period 1959-1998. Next, together with seven tree-ring based drought reconstructions covering the last 240 years and simulations from the CGCM3 and ECHAM4 global climate models, the calibration model is used to estimate past (prior to 1959) and future (post 1999) FireOcc. Last, time-dependent changes in mean FireOcc and in the occurrence rate of extreme fire years are evaluated with the aid of advanced methods of statistical time series analysis. Results suggest that the increase in precipitation projected toward the end of the 21st century will be insufficient to compensate for increasing temperatures and will be insufficient to maintain potential evapotranspiration at current levels. Limited moisture availability would cause FireOcc to increase as well. But will future FireOcc exceed its historical range? The results obtained from our approach suggest high probabilities of seeing future FireOcc reach the upper limit of the historical range. Predictions, which are essentially weighed on northwestern Ontario and eastern boreal Manitoba, indicate that, by 2061-2100, typical FireOcc could increase by more than 34% when compared with the past two centuries. Increases in fire activity as projected by this study could negatively affect the implementation in the next century of forest management inspired by historical or natural disturbance dynamics. This approach is indeed feasible only if current and future fire activities are sufficiently low compared with the preindustrial fire activity, so a substitution of fire by forest management could occur without elevating the overall frequency of disturbance. Conceivable management options will likely have to be directed toward minimizing the adverse impacts of the increasing fire activity.  相似文献   

20.
Cattle Grazing Mediates Climate Change Impacts on Ephemeral Wetlands   总被引:1,自引:0,他引:1  
Abstract:  Climate change impacts depend in large part on land-management decisions; interactions between global changes and local resource management, however, rarely have been quantified. We used a combination of experimental manipulations and simulation modeling to investigate the effects of interactions between cattle grazing and regional climate change on vernal pool communities. Data from a grazing exclosure study indicated that 3 years after the removal of grazing, ungrazed vernal pools dried an average of 50 days per year earlier than grazed control pools. Modeling showed that regional climate change could also alter vernal pool hydrology. Increased temperatures and winter precipitation were predicted to increase periods of inundation. We evaluated the ecological implications of interactions between grazing and climate change for branchiopods and the California tiger salamander (  Ambystoma californiense ) at four sites spanning a latitudinal climate gradient. Grazing played an important role in maintaining the suitability of vernal pool hydrological conditions for fairy shrimp and salamander reproduction. The ecological importance of the interaction varied nonlinearly across the region. Our results show that grazing can confound hydrologic changes driven by climate change and play a critical role in maintaining the hydrologic suitability of vernal pools for endangered aquatic invertebrates and amphibians. These observations suggest an important limitation of impact assessments of climate change based on experiments in unmanaged ecosystems. The biophysical impacts of land management may be critical for understanding the vulnerability of ecological systems to climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号