首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Commonly used functional response models (Holling’s type I and type II models) assume that the encounter rate of a predator increases linearly with prey density, provided that the predator is searching for prey. In other other words, aN (a is the baseline encounter rate and N is prey density) describes the encounter rate. This study examined whether the models are adequate when predators and prey interact locally by using a spatially explicit individual based model because local interactions affect the spatial distribution of predators and prey, which also affects the encounter rate. Predators were assumed to possess a spatial perception range that influenced their foraging behavior (e.g., if a prey is in the perception range, the predator moves towards the prey). The effect of antipredator behavior by prey was also examined. The results suggest that prey and predator densities as well as handling time affect the baseline rate (i.e., parameter a) as opposed to the common assumption that the parameter is constant. The nature of model deviations depended on both the antipredator behavior and the predators’ perception range. Understanding these deviations is important as they qualitatively affect community dynamics.  相似文献   

2.
McCauley SJ  Rowe L  Fortin MJ 《Ecology》2011,92(11):2043-2048
Nonconsumptive predator effects are widespread and include plasticity as well as general stress responses. Caged predators are often used to estimate nonconsumptive effects, and numerous studies have focused on the larval stages of animals with complex life cycles. However, few of these studies test whether nonconsumptive predator effects, including stress responses, are exclusively sublethal. Nor have they assessed whether these effects extend beyond the larval stage, affecting success during stressful life-history transitions such as metamorphosis. We conducted experiments with larvae of a dragonfly (Leucorrhinia intacta) that exhibits predator-induced plasticity to assess whether the mere presence of predators affects larval survivorship, metamorphosis, and adult body size. Larvae exposed to caged predators with no ability to attack them had higher levels of mortality. In the second experiment, larvae reared with caged predators had higher rates of metamorphic failure, but there was no effect on adult body size. Our results suggest that stress responses induced by exposure to predator cues increase the vulnerability of prey to other mortality factors, and that mere exposure to predators can result in significant increases in mortality.  相似文献   

3.
Matassa CM  Trussell GC 《Ecology》2011,92(12):2258-2266
Predators can initiate trophic cascades by consuming and/or scaring their prey. Although both forms of predator effect can increase the overall abundance of prey's resources, nonconsumptive effects may be more important to the spatial and temporal distribution of resources because predation risk often determines where and when prey choose to forage. Our experiment characterized temporal and spatial variation in the strength of consumptive and nonconsumptive predator effects in a rocky intertidal food chain consisting of the predatory green crab (Carcinus maenas), an intermediate consumer (the dogwhelk, Nucella lapillus), and barnacles (Semibalanus balanoides) as a resource. We tracked the survival of individual barnacles through time to map the strength of predator effects in experimental communities. These maps revealed striking spatiotemporal patterns in Nucella foraging behavior in response to each predator effect. However, only the nonconsumptive effect of green crabs produced strong spatial patterns in barnacle survivorship. Predation risk may play a pivotal role in determining the small-scale distribution patterns of this important rocky intertidal foundation species. We suggest that the effects of predation risk on individual foraging behavior may scale up to shape community structure and dynamics at a landscape level.  相似文献   

4.
Preisser EL  Orrock JL  Schmitz OJ 《Ecology》2007,88(11):2744-2751
Predators can affect prey populations through changes in traits that reduce predation risk. These trait changes (nonconsumptive effects, NCEs) can be energetically costly and cause reduced prey activity, growth, fecundity, and survival. The strength of nonconsumptive effects may vary with two functional characteristics of predators: hunting mode (actively hunting, sit-and-pursue, sit-and-wait) and habitat domain (the ability to pursue prey via relocation in space; can be narrow or broad). Specifically, cues from fairly stationary sit-and-wait and sit-and-pursue predators should be more indicative of imminent predation risk, and thereby evoke stronger NCEs, compared to cues from widely ranging actively hunting predators. Using a meta-analysis of 193 published papers, we found that cues from sit-and-pursue predators evoked stronger NCEs than cues from actively hunting predators. Predator habitat domain was less indicative of NCE strength, perhaps because habitat domain provides less reliable information regarding imminent risk to prey than does predator hunting mode. Given the importance of NCEs in determining the dynamics of prey communities, our findings suggest that predator characteristics may be used to predict how changing predator communities translate into changes in prey. Such knowledge may prove particularly useful given rates of local predator change due to habitat fragmentation and the introduction of novel predators.  相似文献   

5.
Prey often adopt antipredator strategies to reduce the likelihood of predation. In the presence of predators, prey may use antipredator strategies that are effective against a single predator (specific) or that are effective against several predators (nonspecific). Most studies have been confined to single predator environments although prey are often faced with multiple predators. When more than one predator is present, specific antipredator behaviours can conflict and avoidance of one predator may increase vulnerability to another. To test how prey cope with this dilemma, I recorded the behaviours of lizards responding to the nonlethal cues of a bird and snake presented singly and simultaneously. Lizards use specific and conflicting antipredator tactics when confronted with each predator, as evidenced by refuge use. However, when both predators were present, lizards refuge use was the same as in the predator-free environment, indicating that they abandoned refuge use as a primary mechanism for predator avoidance. In the presence of both predators, they reduced their overall movement and time spent thermoregulating. This shift in behaviour may represent a compromise to minimize overall risk, following a change in predator exposure. This provides evidence of plasticity in lizard antipredator behaviour and shows that prey responses to two predators cannot be accurately predicted from what is observed when only one predator is present.Communicated by W. Cooper  相似文献   

6.
Abrams PA 《Ecology》2008,89(6):1640-1649
This article analyzes the limitations of the most widely used method for quantifying the impact of dynamic antipredator traits on food chain dynamics and discusses alternative approaches. The standard method for a predator-prey-resource chain estimates the effects of the prey's defensive behavior by comparing population densities or fitness measures in a "predator cue" treatment to those in a no-predator treatment. This design has been interpreted as providing a measure of the "nonconsumptive effect" of the predator on the prey and the "trait-mediated indirect effect" of the predator on the resource. Other approaches involve measurements of the impact of the behavior in the presence of functional predators. The questions addressed here are: (1) How consistent are the results of different approaches? (2) How time-dependent are their results? (3) How well do they correspond to theoretical measures of effect size? (4) How useful are the measurements in understanding system dynamics? A model of a tritrophic system in which the prey species adjusts a defensive trait adaptively is used to evaluate the experimental designs. Measures of changes in prey fitness or population density in a cue treatment generally include offsetting effects of the cost of the behavior and the benefit of more resources. This means that the sign of the effect, as well as its magnitude, may change depending on when the experiment is terminated. Because predation is not present in the cue treatment, few conclusions can be drawn about the impact of the behavior on population densities or fitness of the prey in a natural setting with predators. Cue experiments often do not accurately separate trait-mediated from density-mediated effects on the resource. Most scalar measures of effects are sensitive to experimental duration and initial densities. Use of a wider range of experimental designs to measure trait-related effects is called for.  相似文献   

7.
Smee DL  Weissburg MJ 《Ecology》2006,87(6):1587-1598
The lethal and nonlethal impacts of predators in marine systems are often mediated via reciprocal detection of waterborne chemical signals between consumers and prey. Local flow environments can enhance or impair the chemoreception ability of consumers, but the effect of hydrodynamics on detection of predation risk by prey has not been investigated. Using clams as our model organism, we investigated two specific questions: (1) Can clams decrease their mortality by responding to predators? (2) Do fluid forces affect the ability of clams to detect approaching predators? Previous research has documented a decrease in clam feeding (pumping) in response to a neighboring predator. We determined the benefits of this behavior to survivorship by placing clams in the field with knobbed whelk or blue crab predators caged nearby and compared mortality between these clams and clams near a cage-only control. Significantly more clams survived in areas containing a caged predator, suggesting that predator-induced alterations in feeding reduce clam mortality in the field. We ascertained the effect of fluid forces on clam perception of predators in a laboratory flume by comparing the feeding (pumping) behavior of clams in response to crabs and whelks in flows of 3 and 11 cm/s. Clams pumped significantly less in the presence of predators, but their reaction to blue crabs diminished in the higher velocity flow, while their response to whelks remained constant in both flows. Thus, clam reactive distance to blue crabs was affected by fluid forces, but hydrodynamic effects on clam perceptive distance was predator specific. After predators were removed, clams exposed to whelks took significantly longer to resume feeding than those exposed to blue crabs. Our results suggest that prey perception of predators can be altered by physical forces. Prey detection of predators is the underlying mechanism for trait-mediated indirect interactions (TMIIs), and recent research has documented the importance of TMIIs to community structure. Since physical forces can influence prey perception, the prevalence of TMIIs in communities may, in part, be related to the sensory ability of prey, physical forces in the environment that impact sensory performance, and the type of predator detected.  相似文献   

8.
Understanding prey response to predators and their utilization of sensory cues to assess local predation risk is crucial in determining how predator avoidance strategies affect population demographics. This study examined the antipredator behaviors of two ecologically similar species of Caribbean coral reef fish, Coryphopterus glaucofraenum and Gnatholepis thompsoni, and characterized their responses to different reef predators. In laboratory assays, the two species of gobies were exposed to predator visual cues (native Nassau grouper predator vs. invasive lionfish predator), damage-released chemical cues from gobies, and combinations of these, along with appropriate controls. Behavioral responses indicate that the two prey species differ in their utilization of visual and chemical cues. Visual cues from predators were decisive for both species’ responses, demonstrating their relative importance in the sensory hierarchy, whereas damage-released cues were a source of information only for C. glaucofraenum. Both prey species could distinguish between native and invasive predators and subsequently altered their antipredator responses.  相似文献   

9.
Griswold MW  Lounibos LP 《Ecology》2006,87(4):987-995
Multiple predator species can interact as well as strongly affect lower trophic levels, resulting in complex, nonadditive effects on prey populations and community structure. Studies of aquatic systems have shown that interactive effects of predators on prey are not necessarily predictable from the direct effects of each species alone. To test for complex interactions, the individual and combined effects of a top and intermediate predator on larvae of native and invasive mosquito prey were examined in artificial analogues of water-filled treeholes. The combined effects of the two predators were accurately predicted from single predator treatments by a multiplicative risk model, indicating additivity. Overall survivorship of both prey species decreased greatly in the presence of the top predator Toxorhynchites rutilus. By itself, the intermediate predator Corethrella appendiculata increased survivorship of the native prey species Ochlerotatus triseriatus and decreased survivorship of the invasive prey species Aedes albopictus relative to treatments without predators. Intraguild predation did not occur until alternative prey numbers had been reduced by approximately one-half. Owing to changes in size structure accompanying its growth, T. rutilus consumed more prey as time progressed, whereas C. appendiculata consumed less. The intermediate predator, C. appendiculata, changed species composition by preferentially consuming A. albopictus, while the top predator, T. rutilus, reduced prey density, regardless of species. Although species interactions were in most cases predicted from pairwise interactions, risk reduction from predator interference occurred when C. appendiculata densities were increased and when the predators were similarly sized.  相似文献   

10.
The threat-sensitivity hypothesis predicts that prey individuals will increase antipredator behaviors as apparent predator risk increases. An implicit assumption of the threat-sensitivity hypothesis is that predator risk is additive. In other words, all characteristics of a predator that indicate risk should contribute in an additive way to determine the degree of risk-sensitive behavior. We tested this assumption in the laboratory by presenting live predators (green sunfish, Lepomis cyanellus) to groups of western mosquitofish (Gambusia affinis). We examined effects of predator diet, hunger level, and size on predator avoidance and inspection behavior of mosquitofish. Both predator diet and predator hunger level were significant and additive determinants of distance maintained from a predator, resulting in a graded response to combinations of these predator cues. In contrast, whereas predator diet was the most important determinant of general avoidance distances, predator hunger level was more important in determining mosquitofish vertical distribution and inspection behavior. Thus, the relationship between predator cue and the antipredator behavior that it elicits is dependent on which cues and behaviors are examined. Our data suggest that during risky behaviors, such as predator inspection, mosquitofish rely mainly on visual cues (behavior differences between hungry and satiated predators), whereas general avoidance behavior is determined by additive responses from visual and chemical cues.  相似文献   

11.
Creel S 《Ecology》2011,92(12):2190-2195
Risk effects, or the costs of antipredator behavior, can comprise a large proportion of the total effect of predators on their prey. While empirical studies are accumulating to demonstrate the importance of risk effects, there is no general theory that predicts the relative importance of risk effects and direct predation. Working toward this general theory, it has been shown that functional traits of predators (e.g., hunting modes) help to predict the importance of risk effects for ecosystem function. Here, I note that attributes of the predator, the prey, and the environment are all important in determining the strength of antipredator responses, and I develop hypotheses for the ways that prey functional traits might influence the magnitude of risk effects. In particular, I consider the following attributes of prey: group size and dilution of direct predation risk, the degree of foraging specialization, body mass, and the degree to which direct predation is additive vs. compensatory. Strong tests of these hypotheses will require continued development of methods to identify and quantify the fitness costs of antipredator responses in wild populations.  相似文献   

12.
A prerequisite for prey to show adaptive behavioural responses to predators is that the prey has the ability to recognise predators as threats. While predator recognition can be innate in many situations, learning is often essential. For many aquatic species, one common way to learn about predators is through the pairing of a novel predator odour with alarm cues released from injured conspecifics. One study with fish demonstrated that this mode of learning not only allows the prey to recognise the predatory cues as a threat, but also mediates the level of threat associated with the predator cues (i.e. threat-sensitive learning). When the prey is exposed to the novel predator with a high concentration of alarm cues, they subsequently show a high intensity of antipredator response to the predator cues alone. When exposed to the predator with a low concentration of alarm cues, they subsequently show a low-intensity response to the predator cues. Here, we investigated whether larval mosquitoes Culex restuans have the ability to learn to recognise salamanders as a threat through a single pairing of alarm cues and salamander odour and also whether they would learn to respond to salamander cues in a threat-sensitive manner. We conditioned individual mosquitoes with water or a low, medium or high concentration of crushed conspecific cues (alarm cues) paired with salamander odour. Mosquitoes exposed to salamander odour paired with alarm cues and subsequently exposed to salamander odour alone responded to the salamander as a threat. Moreover, the intensity of antipredator response displayed during the conditioning phase matched the response intensity during the testing phase. This is the first demonstration of threat-sensitive learning in an aquatic invertebrate.  相似文献   

13.
Hughes AR 《Ecology》2012,93(6):1411-1420
Examples of plant-animal and plant-plant associational defenses are common across a variety of systems, yet the potential for them to occur in concert has not been explored. In salt marshes in the Gulf of Mexico, the marsh periwinkle (Littoraria irrorata) is an abundant and conspicuous member of the community, climbing up the stems of marsh plants to remain out of the water at high tide. Though Littoraria are thought to primarily utilize stems of marsh cordgrass Spartina alterniflora as a source of food and refuge, Littoraria were more abundant in mixed assemblages of Spartina and Juncus roemerianus than in Spartina-only areas at the same tidal height. Mesocosm experiments confirmed that Juncus provided a refuge for Littoraria, with predation by Callinectes sapidus (but not Melongena corona) reduced when Juncus was present. However, Littoraria's utilization of Juncus as well as the effectiveness of Juncus as a refuge depended strongly on plant height: when Juncus was experimentally clipped to a shorter height than Spartina, snail abundance on Spartina and snail predation by crabs increased. Interestingly, this plant animal refuge led to a corresponding refuge for Spartina from Littoraria: Spartina plants lost less biomass to snail grazing when growing with Juncus in mesocosm and field experiments, and Spartina plants in natural assemblages were taller when growing with Juncus than when growing alone, even in the presence of abundant snails. This example highlights the potential importance of plant plant and plant-animal associational refuges in competitive plant assemblages.  相似文献   

14.
Although predators affect prey both via consumption and by changing prey migration behavior, the interplay between these two effects is rarely incorporated into spatial models of predator-prey dynamics and competition among prey. We develop a model where generalist predators have consumptive effects (i.e., altering the likelihood of local prey extinction) as well as nonconsumptive effects (altering the likelihood of colonization) on spatially separated prey populations (metapopulations). We then extend this model to explore the effects of predators on competition among prey. We find that generalist predators can promote persistence of prey metapopulations by promoting prey colonization, but predators can also hasten system-wide extinction by either increasing local extinction or reducing prey migration. By altering rates of prey migration, predators in one location can exert remote control over prey dynamics in another location via predator-mediated changes in prey flux. Thus, the effect of predators may extend well beyond the proportion of patches they visit. In the context of prey metacommunities, predator-mediated shifts in prey migration and mortality can shift the competition-colonization trade-off among competing prey, leading to changes in the prey community as well as changes in the susceptibility of prey species to habitat loss. Consequently, native prey communities may be susceptible to invasion not only by exotic prey species that experience reduced amounts of mortality from resident predators, but also by exotic prey species that exhibit strong dispersal in response to generalist native predators. Ultimately, our work suggests that the consumptive and nonconsumptive effects of generalist predators may have strong, yet potentially cryptic, effects on competing prey capable of mediating coexistence, fostering invasion, and interacting with anthropogenic habitat alteration.  相似文献   

15.
Antipredator behavior studies generally assess prey responses to single predator species although most real systems contain multiple species. In multi-predator environments prey ideally use antipredator responses that are effective against all predator species, although responses may only be effective against one predator and counterproductive for another. Multi-predator systems may also include introduced predators that the prey did not co-evolve with, so the prey may either fail to recognize their threat (level 1 naiveté), use ineffective responses (level 2 naiveté) or succumb to their superior hunting ability (level 3 naiveté). We analyzed microhabitat selection of an Australian marsupial (koomal, Trichosurus vulpecula hypoleucus) when faced with spatiotemporal differences in the activity/density levels of one native (chuditch, Dasyurus geoffroii) and two introduced predators (red fox, Vulpes vulpes; feral cat, Felis catus). From this, we inferred whether koomal recognized introduced predators as a threat, and whether they minimized predation risk by either staying close to trees and/or using open or dense microhabitats. Koomal remained close to escape trees regardless of the predator species present, or activity/density levels, suggesting koomal employ this behavior as a first line of defense. Koomal shifted to dense cover only under high risk scenarios (i.e., with multiple predator species present at high densities). When predation risk was low, koomal used open microhabitats, which likely provided benefits not associated with predator avoidance. Koomal did not exhibit level 1 naiveté, although further studies are required to determine if they exhibit higher levels of naiveté (2–3) against foxes and cats.  相似文献   

16.
Chemotactile cues unintentionally left by animals can play a major role in predator–prey interactions. Specialized predators can use them to find their prey, while prey individuals can assess predation risk. However, little is known to date about the importance of chemotactile cues for generalist predators such as ants. Here, we investigated the response of a generalized predatory ant, Formica polyctena, to cues of two taxonomically distinct prey: a spider (Pisaura mirabilis) and a cricket (Nemobius sylvestris). In analogy, we studied whether crickets and spiders showed antipredator behavior in response to ant cues. When confronted with cues of the two prey species, Formica polyctena workers showed increased residence time and reduced movement speed, which suggests success-motivated searching behavior and thus increased foraging effort. The ants’ response did not differ between cues of the two prey species, coinciding with similar aggression and consumption rates of dead prey. However, the cuticular hydrocarbons, which likely resemble part of the potential cues, differed strongly between the species, with only few methyl-branched alkanes in common. This suggests that ants respond to multiple compounds left by other organisms with prey-search behavior. The two prey species, in turn, showed no detectable antipredator behavior in response to ant cues. Our study shows that ants can detect and respond to chemotactile cues of taxonomically and ecologically distinct prey species, probably to raise their foraging success. Using such chemotactile cues for prey detection may drastically increase their foraging efficiency and thus contribute to the high ecological success of ants.  相似文献   

17.
Feeding patterns during four 24-h periods, sampled at 3-h intervals, were investigated for the mummichog Fundulus heteroclitus, in a Delaware, USA tidal marsh. Two factors potentially influencing feeding patterns, time of day and tide height, were examined. On 2 of the sampling periods a low tide occurred in the morning, while on the other 2 sampling periods a high tide occurred in the morning. Results are reported as g-dry wt. of food per g-dry wt. of fish. F. heteroclitus is primarily a daytime feeder that most actively feeds at high tide, regardless of whether or not the high tide inundates marsh surface areas. When tide height was sufficient to inundate the marsh surface, fish invaded these areas and consumed prey characteristic of the marsh surface. F. heteroclitus is an important link in energy transfers between the marsh surface and subtidal systems, enhancing its own energy supplies by consuming marsh surface prey whenever available.  相似文献   

18.
The ability to discriminate between more dangerous and less dangerous predators can have serious fitness advantages for fish juveniles. This is especially true for hatchery-reared fish young used for stocking, because their post-release mortality is often much higher than that of wild-born conspecifics. We tested whether two coexisting fish predators and their different diets induce innate behavioral responses in predator-naive Arctic charr (Salvelinus alpinus) young originating from an endangered hatchery-bred population used for re-introductions. We predicted the antipredator responses of charr to be stronger towards chemical cues of brown trout (Salmo trutta) and pikeperch (Stizostedion lucioperca) than towards odorless control water. More pronounced antipredator behavior was predicted in treatments with predators fed on charr than when their diet consisted of another sympatric salmonid, European grayling (Thymallus thymallus), or when they were food-deprived. The Arctic charr young showed strong antipredator responses in all brown trout treatments, whereas odors of the less likely predator pikeperch were avoided with conspecific diet only. Freezing was the most sensitive antipredator behavior, as it was completely absent in control treatments. We found considerable individual variation in the amount and strength of antipredator responses. Although almost half of the charr failed to show antipredator behavior towards the piscivores, those with the innate ability showed highly sensitive recognition of predator odors. Our results indicate that the innate antipredator behavior of the juvenile fish is already finely tuned to respond specifically to chemical cues from different fish predators and even their diets.Communicated by J. Krause  相似文献   

19.
Summary. Many aquatic prey are known to use chemical alarm cues to assess their risk of predation. In fishes, such alarm cues can be released either through damage of the epidermis during a predatory attack (capture-released) or through release from the predator feces (diet-released). In our study, we compared the importance of capture- versus diet-released alarm cues in risk assessment by fathead minnows (Pimephales promelas) that were na?ve to fish predators. We utilized two different fish predators: a specialized piscivore, the northern pike (Esox lucius) and a generalist predator, the brook trout (Salvelinus fontinalis). Handling time of pike consuming minnows was much shorter than for trout consuming minnows, likely resulting in less epidermal damage to the minnows during attacks by pike. In accordance with this, minnows showed a less intense antipredator response to capture-released cues from pike than capture-released cues from trout. This represents a paradox in risk assessment for the minnows as they respond to the specialized piscivore, the more dangerous predator, with a less intense antipredator response. In contrast, the minnows showed a stronger antipredator response to the specialized piscivore than to the generalist when given diet cues. This work highlights the need for researchers to carefully consider the nature of the information available to prey in risk assessment.  相似文献   

20.
Predator effects on prey dynamics are conventionally studied by measuring changes in prey abundance attributed to consumption by predators. We revisit four classic examples of predator-prey systems often cited in textbooks and incorporate subsequent studies of nonconsumptive effects of predators (NCE), defined as changes in prey traits (e.g., behavior, growth, development) measured on an ecological time scale. Our review revealed that NCE were integral to explaining lynx-hare population dynamics in boreal forests, cascading effects of top predators in Wisconsin lakes, and cascading effects of killer whales and sea otters on kelp forests in nearshore marine habitats. The relative roles of consumption and NCE of wolves on moose and consequent indirect effects on plant communities of Isle Royale depended on climate oscillations. Nonconsumptive effects have not been explicitly tested to explain the link between planktonic alewives and the size structure of the zooplankton, nor have they been invoked to attribute keystone predator status in intertidal communities or elsewhere. We argue that both consumption and intimidation contribute to the total effects of keystone predators, and that characteristics of keystone consumers may differ from those of predators having predominantly NCE. Nonconsumptive effects are often considered as an afterthought to explain observations inconsistent with consumption-based theory. Consequently, NCE with the same sign as consumptive effects may be overlooked, even though they can affect the magnitude, rate, or scale of a prey response to predation and can have important management or conservation implications. Nonconsumptive effects may underlie other classic paradigms in ecology, such as delayed density dependence and predator-mediated prey coexistence. Revisiting classic studies enriches our understanding of predator-prey dynamics and provides compelling rationale for ramping up efforts to consider how NCE affect traditional predator-prey models based on consumption, and to compare the relative magnitude of consumptive and NCE of predators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号