首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The interaction between nitrate and ammonium uptake was examined as a function of preconditioning growth rate and nitrogen source by adding nitrate, ammonium, or both to nitrogen-sufficient,-deficient, and-starvedSkeletonema costatum (Grev.) Cleve and nitrogen-deficientChaetoceros debilis Cleve. By simultaneously measuring the internal accumulation of intermediates of nitrogen assimilation and the rates of nitrogen assimilation, the metabolic control of nitrogen uptake could be assessed. After the simultaneous addition of nitrate and ammonium to culture, both nitrate and ammonium uptake rates were decreased in comparison with the rates observed when each was added alone, although nitrate uptake was usually decreased more than ammonium uptake. Since both nitrate and ammonium uptake rates vary with time, preconditioning growth conditions, nitrogen sources present, and species, it was necessary to use several different indices to quantify inhibition. In general, ammonium inhibition of nitrate uptake inS. costatum was greatest in cultures preconditioned to ammonium and those at low growth rates, whereas ammonium uptake was inhibited most in cultures preconditioned to nitrate. In nitrogen-deficientC. debilis, nitrate uptake was more inhibited by ammonium, but uptake returned to normal rates more quickly than inS. costatum, whereas inhibition of ammonium uptake was similar. These results explain why the interaction between nitrate and ammonium uptake in the field can be so variable. Inhibition of uptake is not controlled by internal ammonium or total amino acids, nor is it related to the inability to reduce nitrate. Instead, inhibition must be determined in part by the external concentration of nitrogen compounds and in part by some intermediate(s) of nitrogen assimilation present inside the cell.Bigelow Laboratory Contribution No. 82022  相似文献   

2.
Small or negligible differences in growth rates, average cell size, yields in cell numbers and total cell volumes were found in cultures of Thalassiosira fluviatilis inriched with nitrate, ammonium, or urea. Intracellular pools of unassimilated nitrate, nitrate, and ammonium were found in nutrient-rich conditions, but urea was not accumlated internally. Nitrogen assimilation into organic combination rather than nitrogen nutrient uptake was a critical rate-limiting step in nitrogen utilization. The free amino acid pool, protein, lipid-associated nitrogen, pigments, and total cell nitrogen were all highest in young or mature phase cells and decreased with age in senescent cells, whereas chitan, lipid, carbohydrate, and total cellular carbon all continued to increase during senescence. Dissolved organic nitrogen compounds accumulated in the medium only during senescence. C:N and lipid:protein were sensitive indicators of nitrogen depletion and age in T. fluviatilis.  相似文献   

3.
Nitrate reductase (NR) activity appeared in ammoniumgrown cultures of 5 species of marine algae, representing 4 classes, after a short period of nitrogen starvation. In nitrogen-limited chemostat cultures of Nannochloropsis oculata and Chlorella stigmatophora there was an inhibition of photosynthetic carbon fixation during nitrate assimilation. In these organisms, nitrate assimilation was light-dependent and inhibited by 3-(3′,4′-dichloro-)-1-1-dimethyl urea (DCMU). In N. oculata, an obligate autotroph, nitrite assimilation was dependent on light absolutely. Physiological changes that occur in these organisms during nitrogen deficiency enable them to assimilate nitrogen rapidly when it becomes available.  相似文献   

4.
Growth of zooxanthellae in culture with two nitrogen sources   总被引:2,自引:0,他引:2  
Physiological characteristics of zooxanthellae were examined under nutrient-saturated conditions created by mixing ammonium (15NH4) with nitrate (15NO3) to give 0.88 mM total nitrogen. Growth rate varied with the form of nitrogen provided. Ammonium alone resulted in the lowest C:N and C:chl-a ratios. Although zooxanthellae took up nitrate in the absence of ammonium, ammonium assimilation was 1.3 times higher than nitrate assimilation. Ammonium strongly inhibited nitrate assimilation. While high-ammonium treatments resulted in the highest 14C incorporation into intermediate compounds, high nitrate levels resulted in the highest 14C incorporation into protein, suggesting that the intermediate compounds are produced prior to the subsequent production of protein when ammonium is the dominant N source. The enhanced production of intermediate compounds at the expense of carbon directed to protein synthesis in the presence of ammonium might be analogous to the “host factor” observed in zooxanthellae–host symbioses, since growth rate is depressed due to low production of protein. Received: 16 March 2000 / Accepted: 26 August 2000  相似文献   

5.
The effect of preconditioning nitrogen source and growth rate on the interaction between nitrate and ammonium uptake was determined inThalassiosira pseudonana (Clone 3H). A new method, using cells on a filter (Parslow et al. 1985), allowed continuous measurement of uptake from 0.5 to 9 min after the addition of nitrate, ammonium, or both, with no variation in concentration during the course of the experiment. For each preconditioning N source and growth rate, a series of uptake experiments was conducted, including controls with only nitrate or only ammonium, and others with different combinations of concentrations of nitrate and ammonium. For the first time, preference for ammonium was separated from inhibition of nitrate uptake by ammonium. Ammonium was the preferred N source, i.e. if nitrate and ammonium were presented separately, ammonium uptake rates exceeded nitrate uptake rates. Preference for ammonium varied with both preconditioning N source and growth rate. Inhibition of nitrate uptake by ammonium, determined by comparing nitrate uptake in the presence and absence of ammonium, was observed at ammonium concentrations > 1µM, but was rarely complete. Inhibition of nitrate uptake by ammonium was less in the ammonium-limited culture than in the cultures growing on nitrate, but invariant with growth rate in the nitrate-grown cultures. Below 1µM ammonium, nitrate uptake was often stimulated and rates exceeded those in the controls without ammonium. Ammonium uptake was not inhibited by the presence of nitrate.T. pseudonana fits the classical view of the interaction between nitrate and ammonium uptake in some respects, such as preference for ammonium, and inhibition of nitrate uptake by ammonium concentrations > 1µM. However, at ammonium concentrations typical of most marine environments, nitrate uptake occurs at rapid rates. In other respects, N uptake inT. pseudonana deviates from the classical view in the following ways: (1) stimulation of nitrate uptake by low concentrations of ammonium; (2) lack of inhibition of nitrate uptake by ammonium at low nitrate concentrations; and (3) variation in preference and inhibition with preconditioning, which is markedly different for other species. Because of the apparent enormous species variation in the interaction between nitrate and ammonium uptake and the lack of detailed information for a variety of species, it is difficult to generalize about the effect of ammonium on nitrate uptake, especially in the field, where prior N availability and species composition are not usually addressed.  相似文献   

6.
A nitrogen-deficient batch culture of the marine diatom Skeletonema costatum, when resupplied with a mixture of nitrate and ammonium, showed an initial enhanced nitrate uptake rate leading to a large internal concentration (pool) of nitrate. Following this initial nitrate uptake event, nitrate uptake ceased, and nitrate assimilation was inhibited until the ammonium present was used. At this point, nitrate uptake resumed and nitrate assimilation began. No internal ammonium pool was observed during nitrate utilization, but a large nitrate pool remained throughout the utilization of external nitrate. The internal nitrate pool decreased rapidly after exhaustion of nitrate from the culture medium, but growth of cellular particulate nitrogen continued for about 24 h. A mathematical simulation model was developed from these data. The model cell consisted of a nitrate pool, ammonium pool, dissolved organic nitrogen pool, and particulate nitrogen. It was found that simple Michaelis-Menten functions for uptake and assimilation gave inadequate fit to the data. Michaelis-Menten functions were modified by inclusion of inhibitory and stimulatory feedback from the internal pools to more accurately represent the observed nutrient utilization.  相似文献   

7.
The uptake of nitrate and ammonium was measured separately in uni-algal, nitrogen-deficient cultures of four species of marine phytoplankton. Nitrogen-deficient phytoplankton took up ammonium at initial rates which greatly exceeded those measured for nitrogen-sufficient phytoplankton. However, nitrate uptake by nitrogendeficient cultures was generally much slower than either nitrate or ammonium uptake by nitrogen-sufficient cultures or ammonium uptake by nitrogen-deficient cultures. Considerable species differences were observed in the degree to which nitrogen deficiency increased ammonium uptake or decreased nitrate uptake. Loss of ability to take up nitrate, but enhanced ability to take up ammonium, as a result of nitrogen deficiency may be an adaptation to the different mechanisms by which nitrate and ammonium are supplied to the euphotic zone. In areas with an intermittent supply of nitrogen, changes in the ability of some species to take up nitrogen as a result of nitrogen starvation will influence species composition and complicate interpretations of measurements of nitrogen uptake.Contribution no. 1249 from the Department of Oceanography, University of Washington, and contribution no. 82006 from the Bigelow Laboratory for Ocean Sciences  相似文献   

8.
The interaction between nitrogen cycling and carbon sequestration is critical in predicting the consequences of anthropogenic increases in atmospheric CO2 (hereafter, Ca). The progressive N limitation (PNL) theory predicts that carbon sequestration in plants and soils with rising Ca may be constrained by the availability of nitrogen in many ecosystems. Here we report on the interaction between C and N dynamics during a four-year field experiment in which an intact C3/C4 grassland was exposed to a gradient in Ca from 200 to 560 micromol/mol. There were strong species effects on decomposition dynamics, with C loss positively correlated and N mineralization negatively correlated with Ca for litter of the C3 forb Solanum dimidiatum, whereas decomposition of litter from the C4 grass Bothriochloa ischaemum was unresponsive to Ca. Both soil microbial biomass and soil respiration rates exhibited a nonlinear response to Ca, reaching a maximum at approximately 440 micromol/mol Ca. We found a general movement of N out of soil organic matter and into aboveground plant biomass with increased Ca. Within soils we found evidence of C loss from recalcitrant soil C fractions with narrow C:N ratios to more labile soil fractions with broader C:N ratios, potentially due to decreases in N availability. The observed reallocation of N from soil to plants over the last three years of the experiment supports the PNL theory that reductions in N availability with rising Ca could initially be overcome by a transfer of N from low C:N ratio fractions to those with higher C:N ratios. Although the transfer of N allowed plant production to increase with increasing Ca, there was no net soil C sequestration at elevated Ca, presumably because relatively stable C is being decomposed to meet microbial and plant N requirements. Ultimately, if the C gained by increased plant production is rapidly lost through decomposition, the shift in N from older soil organic matter to rapidly decomposing plant tissue may limit net C sequestration with increased plant production.  相似文献   

9.
开放式空气CO2浓度升高对水稻根系形态的影响   总被引:6,自引:0,他引:6  
在FACE(free-air carbon dioxide enrichment)技术平台上,采用水培的研究方法,观测了大气CO2浓度升高和两种氮水平下水稻根系形态的变化。结果表明,在水稻各生育期,CO2浓度升高都极显著增加了根干质量,且主要增加于根粗为2.0~2.5mm/n的部位。根系形态的各项指标均对高CO2浓度有积极的响应,在抽穗期尤为明显;N处理的差异很明显,低氮条件下根系表现为根长、根尖数和根表面积增加,常氮条件下根粗和发根数增加。各生育期的根冠比在高CO2浓度下极显著增加,尤其在LN处理下。水稻从分蘖期到抽穗期,因地上部分的增幅大,根冠比表现为逐渐降低的趋势。  相似文献   

10.
Luo Y  Hui D  Zhang D 《Ecology》2006,87(1):53-63
The capability of terrestrial ecosystems to sequester carbon (C) plays a critical role in regulating future climatic change yet depends on nitrogen (N) availability. To predict long-term ecosystem C storage, it is essential to examine whether soil N becomes progressively limiting as C and N are sequestered in long-lived plant biomass and soil organic matter. A critical parameter to indicate the long-term progressive N limitation (PNL) is net change in ecosystem N content in association with C accumulation in plant and soil pools under elevated CO2. We compiled data from 104 published papers that study C and N dynamics at ambient and elevated CO2. The compiled database contains C contents, N contents, and C:N ratio in various plant and soil pools, and root:shoot ratio. Averaged C and N pool sizes in plant and soil all significantly increase at elevated CO2 in comparison to those at ambient CO2, ranging from a 5% increase in shoot N content to a 32% increase in root C content. The C and N contents in litter pools are consistently higher in elevated than ambient CO2 among all the surveyed studies whereas C and N contents in the other pools increase in some studies and decrease in other studies. The high variability in CO2-induced changes in C and N pool sizes results from diverse responses of various C and N processes to elevated CO2. Averaged C:N ratios are higher by 3% in litter and soil pools and 11% in root and shoot pools at elevated relative to ambient CO2. Elevated CO2 slightly increases root:shoot ratio. The net N accumulation in plant and soil pools at least helps prevent complete down-regulation of, and likely supports, long-term CO2 stimulation of C sequestration. The concomitant C and N accumulations in response to rising atmospheric CO2 may reflect intrinsic nature of ecosystem development as revealed before by studies of succession over hundreds to millions of years.  相似文献   

11.
利用开顶箱薰气室(open—top chamber)试验装置,研究了不施氮(NN)、施常氮(MN,5g·m^2)和施高氮(HN,15g·m^2)3个氮素水平下大气CO2浓度升高对小叶章(Calamagrostis angustifolia)生物量和根冠比的影响。结果表明,大气CO2浓度升高对小叶章生物量的影响因生长期而异。大气CO2浓度升高对小叶章地上生物量的促进作用主要表现在生长前期,拔节期和抽穗期地上生物量较正常大气CO2浓度增加12.42%~22.60%,而腊熟期和成熟期仅增加3.11%~12.97%;大气CO2浓度升高对小叶章地下生物量的促进作用在生长后期表现明显,除拔节期外,小叶章地下生物量增加17.63%~42.20%。小叶章生物量和根冠比对大气CO2浓度的响应与供N水平有关。在HN水平下,大气CO2浓度升高使小叶章生物量和根冠比明显增加,在NN条件下促进作用则不显著。小叶章根冠比明显增加主要是地下生物量显著增长引起的。  相似文献   

12.
There is a relationship between host feeding, nitrogen status and mitotic activity of zooxanthellae symbiotic with the marine hydroid Myrionema amboinense. Decreases in the mitotic index of zooxanthellae in starved M. amboinense, and in internal pool sizes of glutamine and glutamate, amino acids involved in ammonium assimilation via the glutamine synthetase-glutamate synthase (GS/GOGAT) pathway, were partially restored by addition of ammonium chloride to seawater in which hydroids were incubated. Levels of glutamine were more sensitive to host starvation than levels of glutamate, resulting in a decrease in the glutamine: glutamate molar ratio to that found in zooxanthellae cultured on nitrate. Hydroids starved for 5 d and then incubated in different concentrations of ammonium chloride showed a positive correlation between ammonium concentration and mitotic index of their symbiotic zooxanthellae. Host starvation caused a decrease in perturbation of levels of glutamine and glutamate during ammonium assimilation, as well as decreases in rates of assimilation of [14C]-leucine into TCA-insoluble protein, and in photosynthetic incorporation of [14C]-bicarbonate. These observations suggest that host starvation reduces nitrogen supply to the zooxanthellae, causing nitrogen stress to the symbionts and reduction in metabolic processes associated with nitrogen assimilation and photosynthesis as well as with cell division.  相似文献   

13.
Porphyra perforata J. Ag. was collected from a rocky land-fill site near Kitsilano Beach, Vancouver, British Columbia, Canada and was grown for 4 d in media with one of the following forms of inorganic nitrogen: NO 3 - , NH 4 + and NO 3 - plus NH 4 + and for 10 d in nitrogen-free media. Internal nitrogen accumulation (nitrate, ammonium, amino acids and soluble protein), nitrate and ammonium uptake rates, and nitrate reductase activity were measured daily. Short initial periods (10 to 20 min) of rapid ammonium uptake were common in nitrogen-deficient plants. In the case of nitrate uptake, initial uptake rates were low, increasing after 10 to 20 min. Ammonium inhibited nitrate uptake for only the first 10 to 20 min and then nitrate uptake rates were independent of ammonium concentration. Nitrogen starvation for 8 d overcame this initial suppression of nitrate uptake by ammonium. Nitrogen starvation also resulted in a decrease in soluble internal nitrate content and a transient increase in nitrate reductase activity. Little or no decrease was observed in internal ammonium, total amino acids and soluble protein. The cultures grown on nitrate only, maintained high ammonium uptake rates also. The rate of nitrate reduction may have limited the supply of nitrogen available for further assimilation. Internal nitrate concentrations were inversely correlated with nitrate uptake rates. Except for ammonium-grown cultures, internal total amino acids and soluble protein showed no correlation with uptake rates. Both internal pool concentrations and enzyme activities are required to interpret changes in uptake rate during growth.  相似文献   

14.
E. Sahlsten 《Marine Biology》1987,96(3):433-439
The uptake rates of the three nitrogen compounds ammonium, nitrate, and urea were measured in the oligotrophic North Central Pacific Gyre in August–September 1985. The measurements were performed by using 15N-labelled substrates and incubating for short-time periods (3 to 4 h) under simulated in situ conditions. Ambient concentrations of the nitrogenous nutrients were generally below 0.10 mol l-1. The average total daily nitrogen uptake rate, integrated over the euphotic zone, was 12.5 mmol N m-2 d-1. Diel studies in the upper water mass resulted in a calculated phytoplankton growth rate of 1.3 d-1. Ammonium was the dominating nutrient, accounting for on the average 54% of the total nitrogen uptake, while urea uptake represented 32% and nitrate 14%. Ammonium uptake rates at a coastal station off the Hawaiian Islands were very close to the rates found at the oceanic station. Organisms <3 m dominated the nitrogen assimilation, being responsible for about 75% of the ammonium uptake. The nitrogen uptake rates in this study seem to be higher than those found by earlier investigations in the area, but correlated well with other productivity measurements performed during the same cruise.  相似文献   

15.
几种植物在生长过程中对人工湿地污水处理效果的影响   总被引:12,自引:0,他引:12  
不同的植物及植物的不同生长阶段对人工湿地系统污水处理效果都有影响。对几种华南地区常见的湿地植物在其不同生长阶段处理污水的效果进行了研究,采用了不种植物的沙滤系统作对照。结果表明:(1)植物生长过程中,植物高度能反映污水处理效果总体上的变化;(2)在植物的生长过程中,各人工湿地系统污水处理能力总体上持续增强,各水质指标pH、DO、TN、NH3-N、NO3-N、TP和CODCr等均呈下降趋势,其中TP和CODCr呈逐步下降,pH、DO、TN、NH3-N、NO3-N则呈现锯齿形波动,但总体上仍是下降过程;(3)植物系统氮处理能力好于无植物沙滤系统,而对磷TP和CODCr的去除则恰好相反;(4)不同植物对人工湿地污水的处理效果影响不明显。研究结果对探讨人工湿地污水处理规律和植物在人工湿地中的作用提供了新的科学依据,并为指导人工湿地工程的运行提供了参考。  相似文献   

16.
Species differences in accumulation of nitrogen pools in phytoplankton   总被引:12,自引:0,他引:12  
The changes in the intracellular concentrations of nitrate, ammonium, free amino acids, protein, DNA, RNA and total nitrogen were measured in batch cultures of seven species of marine phytoplankton as they progressed from being nitrogen sufficient to being nitrogen starved. After several days of nitrogen starvation, either nitrate or ammonium was added to the cultures, and the measurements were continued for 10 to 36 h. By this means it was possible to assess the long-term and short-term changes in cellular nitrogen compounds and how they relate to phytoplankton nitrogen uptake and growth. Considerable species differences were observed in the amounts and kinds of nitrogen compounds which were stored and the degree to which the utilization of these compounds could support growth if the external nitrogen supply is low or variable. Despite the species variation, the results suggest that the concentrations or ratios of a number of intracellular nitrogen compounds can be used to assess the nitrogen deficiency and/or growth rate of natural phytoplankton populations.Contribution No. 1373 from the School of Oceanography, University of Washington and Contribution No. 83006 from the Bigelow Laboratory for Ocean Sciences  相似文献   

17.
Hydraulically connected wetland microcosms (~50?L) in series were used to test the effectiveness of varying combinations of two common aquatic vascular plants, parrot feather (Myriophyllum aquaticum) and cattail (Typha latifolia), for mitigating contamination from a mixture of nitrogen (ammonium nitrate) and permethrin. The upstream series included Myriophyllum only (M) and Typha only (T) while the combination upstream effluent into downstream series included Myriophyllum into Myriophyllum (M?+?M) and Typha into Myriophyllum (T?+?M). During flow, M into M?+?M more efficiently mitigated nitrogen than T into T?+?M. Post-flow, nitrogen removal efficiency was greater for T versus M and M?+?M versus T?+?M. Mean aqueous dissipation half-lives (t1/2) of NH4-N and NO3-N were more rapid in T than M treatments. Ammonium and nitrate t1/2 was highly correlated with aquatic plant above-ground shoot biomass. Permethrin mitigation efficiencies and t1/2 were not significantly affected by plant species either singly or in combination. Trans-permethrin t1/2 was moderately correlated with plant biomass, but not cis-permethrin t1/2. Results of this study indicate differences in aquatic plant species and flow path influence nitrogen removal but not permethrin. However, plant species appears less important than overall plant biomass in ascertaining aquatic plant effectiveness in mitigating a nitrogen–permethrin mixture.  相似文献   

18.
While most marine macrophytes preferentially assimilate ammonium to meet growth demand for nitrogen, some also utilize nitrate and exhibit high nitrate reductase activity (NRA). Although nitrate concentrations are often low in coastal waters during the summer and sandy beaches are generally considered to be low nutrient-input habitats, we have observed elevated NRA in leaves of some eelgrass (Zostera marina L.) plants growing immediately adjacent to the shoreline. We postulated that nitrate may become available to eelgrass and macroalgae via groundwater inputs that enter the nearshore water column. To address this possibility, we investigated the availability of groundwater nitrate for the induction of NRA in the leaves of eelgrass and in the macroalgaeSargassum filipendula C. Agardh (Phaeophyceae) andEnteromorpha intestinalis L. Link (Chlorophyceae) collected adjacent to two sandy beaches in the vicinity of Woods Hole, Massachusetts, USA. Induction of NRA was determined in the laboratory for eelgrass collected from one of the beach sites and from an offshore site, Lackey's Bay, which is isolated from groundwater input. At the two beach locations, pore water nitrate concentrations were 100 to 400µM within a few meters inland from the waterline. Nitrate efflux into the nearshore water column was quite high and variable (2160±660µmol m–2 h–1) when associated with rapid percolation (37±11 1 m–2 h–1) of nitrate-enriched pore water. Turbulent wave mixing rapidly diluted the nitrate. Macroalgae and eelgrass growing adjacent to a beach with high nitrate efflux had NR activities three- to sevenfold higher than those of algae and eelgrass growing along a beach section with low nitrate efflux. NRA of eelgrass plants from Lackey's Bay and Great Harbor increased in response to low daily nitrate additions (10 to 25µM) in the laboratory, with higher nitrate additions (50 to 200µM) yielding less dramatic responses. The increase in NRA was roughly three times higher for Great Harbor than for Lackey's Bay eelgrass. It appears that groundwater input of nitrate is sufficient to induce NRA in marine macrophytes growing near some beaches, including those with turbulent wave mixing.  相似文献   

19.
Desiccation enhanced nitrogen uptake rates in intertidal seaweeds   总被引:4,自引:0,他引:4  
Desiccation increased nitrate and ammonium uptake rates upon resubmergence in late summer populations of the intertidal macroalgae Gigartina papillata (C.Ag.) J.Ag., Enteromorpha intestinalis (L.) Grev., Fucus distichus L., and Pelvetiopsis limitata (Setch) Gardn. The ratio of nitrogen uptake rates in desiccated plants to rates in hydrated plants (controls) was correlated with the position of the species in the intertidal zone. Gracilaria pacifica Abbott., the species occurring at the lowest shore level, showed no enhancement of nitrogen uptake following desiccation. The high intertidal species such as P. limitata and F. distichus showed a two-fold enhancement of nitrate and ammonium uptake following more extensive desiccation (>30%) and continued uptake even following severe desiccation (50 to 60%). After the plants had been desiccated, the increase in nitrate uptake rates upon submergence lasted much longer than a similar enhancement of ammonium uptake. The duration of the enhanced nitrate uptake was similar to the time required for total rehydration but the uptake rates were not related to the state of rehydration. The potential contribution that this enhanced nitrogen uptake following desiccation could make to total nitrogen procurement for growth is discussed. The experiments were carried out in 1979 or 1980 and repeated in 1981.This paper is dedicated to Dr. R. F. Scagel on the occasion of his retirement for his outstanding contribution to phycology  相似文献   

20.
Global environmental changes are altering interactions among plant species, sometimes favoring invasive species. Here, we examine how a suite of five environmental factors, singly and in combination, can affect the success of a highly invasive plant. We introduced Centaurea solstitialis L. (yellow starthistle), which is considered by many to be California's most troublesome wildland weed, to grassland plots in the San Francisco Bay Area. These plots experienced ambient or elevated levels of warming, atmospheric CO2, precipitation, and nitrate deposition, and an accidental fire in the previous year created an additional treatment. Centaurea grew more than six times larger in response to elevated CO2, and, outside of the burned area, grew more than three times larger in response to nitrate deposition. In contrast, resident plants in the community responded less strongly (or did not respond) to these treatments. Interactive effects among treatments were rarely significant. Results from a parallel mesocosm experiment, while less dramatic, supported the pattern of results observed in the field. Taken together, our results suggest that ongoing environmental changes may dramatically increase Centaurea's prevalence in western North America.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号