首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, a “modified” mixed cellulose ester (MCE) filter culturing method (directly placing filter on agar plate for culturing without extraction) was investigated in enumerating airborne culturable bacterial and fungal aerosol concentration and diversity both in different environments. A Button Inhalable Sampler loaded with a MCE filter was operated at a flow rate of 5 L/min to collect indoor and outdoor air samples using different sampling times: 10, 20, and 30 min in three different time periods of the day. As a comparison, a BioStage impactor, regarded as the gold standard, was operated in parallel at a flow rate of 28.3 L/min for all tests. The air samples collected by the Button Inhalable Sampler were directly placed on agar plates for culturing, and those collected by the BioStage impactor were incubated directly at 26 °C. The colony forming units (CFUs) were manually counted and the culturable concentrations were calculated both for bacterial and fungal aerosols. The bacterial CFUs developed were further washed off and subjected to polymerase chain reaction–denaturing gradient gel electrophoresis (DGGE) for diversity analysis. For fungal CFUs, microscopy method was applied to studying the culturable fungal diversity obtained using different methods. Experimental results showed that the performance of two investigated methods varied with sampling environments and microbial types (culturable bacterial and fungal aerosols). For bacterial aerosol sampling, both methods were shown to perform equally well, and in contrast the “modified” MCE filter method was demonstrated to enumerate more culturable fungal aerosols than the BioStage impactor. In general, the microbial species richness (number of gel bands) was observed to increase with increasing collection time. For both methods, the DGGE gel patterns were observed to vary with sampling time and environment despite of similar number of gel bands. In addition, an increase in sampling time from 20 to 30 min was found not to substantially alter the species richness. Regardless of the sampling methods, more species richness was observed in the outdoor environment than the indoor environment. This study described a new personal bioaerosol exposure assessment protocol, and it was demonstrated applicable in monitoring the personal bioaerosol exposure in replace of an Andersen-type impactor.  相似文献   

2.
3.
4.
Real-time measurement of outdoor tobacco smoke particles   总被引:1,自引:0,他引:1  
The current lack of empirical data on outdoor tobacco smoke (OTS) levels impedes OTS exposure and risk assessments. We sought to measure peak and time-averaged OTS concentrations in common outdoor settings near smokers and to explore the determinants of time-varying OTS levels, including the effects of source proximity and wind. Using five types of real-time airborne particle monitoring devices, we obtained more than 8000 min worth of continuous monitoring data, during which there were measurable OTS levels. Measurement intervals ranged from 2 sec to 1 min for the different instruments. We monitored OTS levels during 15 on-site visits to 10 outdoor public places where active cigar and cigarette smokers were present, including parks, sidewalk cafés, and restaurant and pub patios. For three of the visits and during 4 additional days of monitoring outdoors and indoors at a private residence, we controlled smoking activity at precise distances from monitored positions. The overall average OTS respirable particle concentration for the surveys of public places during smoking was approximately 30 microg m(-3). OTS exhibited sharp spikes in particle mass concentration during smoking that sometimes exceeded 1000 microg m(-3) at distances within 0.5 m of the source. Some average concentrations over the duration of a cigarette and within 0.5 m exceeded 200 microg m(-3), with some average downwind levels exceeding 500 microg m(-3). OTS levels in a constant upwind direction from an active cigarette source were nearly zero. OTS levels also approached zero at distances greater than approximately 2 m from a single cigarette. During periods of active smoking, peak and average OTS levels near smokers rivaled indoor tobacco smoke concentrations. However, OTS levels dropped almost instantly after smoking activity ceased. Based on our results, it is possible for OTS to present a nuisance or hazard under certain conditions of wind and smoker proximity.  相似文献   

5.
Personal exposure to respirable particulates and sulfates is being measured as a part of a long term prospective epidemiological study of the respiratory health effects of air pollution, the Harvard Six City Study.1 The purpose of this monitoring program is to develop better estimators of actual personal exposure from comparison of the direct measurements of personal exposure with simultaneous measurements of the normally measured outdoor air, the air inside each participant’s home, and records of the daily activities of each participant. Results are reported in a paper by Dockery and Spengler.2  相似文献   

6.
7.
A size selective particle sampler has been developed for continuous sampling of the urban aerosol over periods ranging from hours to weeks, providing relatively large sample weights. The system, which is now operating in New York City, uses a parallel array of two-stage samplers. The cyclones used as the first stage collectors have 50% particle retention at 3.5,2.5,1.5 and 0.5 µm aerodynamic diameter, respectively. Undersize particles which pass through the cyclones are captured on glass fiber filters. Equal intake velocities are assured by using flow equalizers on the inlets to the cyclones. Accurate control of the flow through the cyclones is obtained by the use of an integrated circuit pressure transducer in conjunction with a specially designed feedback control circuit. The collection efficiencies of the cyclone were calibrated using monodisperse ferric oxide test aerosols tagged with Tc-99m. Mass balances of the par-ticulates collected on the cyclones and filters are obtained for the five sampling stages. Preliminary results show the distributions of the total suspended particulates in New York City to be bimodal. The distributions of lead, copper, and manganese with particle size are also discussed.  相似文献   

8.
ABSTRACT

A conventional impactor for a particle speciation sampler was developed and validated through laboratory and field tests. The speciation sampler consists of the following components: a PM2.5 conventional impactor that removes particles larger than 2.5 μm, an all-glass, coated honeycomb diffusion denuder, and a 47-mm filter pack. The speciation sampler can operate at two different sampling rates: 10 and 16.7 L/min. An experimental characterization of the impactor’s performance was conducted. The impactor’s collection efficiency was examined as a function of critical design parameters such as Reynolds number, the distance from the nozzle exit to the impac-tion plate, and the impaction substrate coating method. The bounce of particles larger than the cut point was successfully minimized by using a greased surface as the im-paction substrate. Additionally, a series of field intercomparison experiments were conducted at both 10 and 16.7 L/min airflow. PM2.5 mass and SO4 2- concentrations were measured and compared with the Federal Reference Method (FRM) and found to be in good agreement. Results of the laboratory chamber tests also indicated that the impactor’s performance was in good agreement with the FRM.  相似文献   

9.
ABSTRACT

Originally constructed to develop gaseous emission factors for heavy-duty diesel trucks, the U.S. Environmental Protection Agency's (EPA) On-Road Diesel Emissions Characterization Facility has been modified to incorporate particle measurement instrumentation. An electrical low-pressure impactor designed to continuously measure and record size distribution data was used to monitor the particle size distribution of heavy-duty diesel truck exhaust. For this study, which involved a high-mileage (900,000 mi) truck running at full load, samples were collected by two different methods. One sample was obtained directly from the exhaust stack using an adaptation of the University of Minnesota's air-ejector-based mini-dilution sampler. The second sample was pulled from the plume just above the enclosed trailer, at a point ~11 m from the exhaust discharge. Typical dilution ratios of about 300:1 were obtained for both the dilution and plume sampling systems. Hundreds of particle size distributions were obtained at each sampling location. These were compared both selectively and cumulatively to evaluate the performance of the dilution system in simulating real-world exhaust plumes. The data show that, in its current residence-time configuration, the dilution system imposes a statistically significant bias toward smaller particles, with substantially more nanoparticles being collected than from the plume sample.  相似文献   

10.
Abstract

NOX control employing several combustion modification techniques is studied in batch annealing furnaces and ammonia combustion ovens in steel plants. The fuels of the annealing furnace and ammonia oven are by-product fuel gases and ammonia vapor, respectively, which are generated in the same steelworks. Study of the emission characteristics of the annealing furnace show that delayed combustion can effectively reduce NOX emissions. Delayed combustion is accomplished by air-staging in burners, off-symmetric mixing of fuel and air, and air-biasing in the furnace, and these modification can operations achieve 60%, 40%, and 26% of NOX reductions, respectively. For the ammonia oven, NOX emission from combustion of ammonia vapor is remarkably reduced by staging the air injected into the oven, adjusting the total air rate, and adding by-product fuel gases to the combustion system.  相似文献   

11.
12.
Personal exposures, residential indoor, outdoor and workplace levels of nitrogen dioxide (NO2) were measured for 262 urban adult (25–55 years) participants in three EXPOLIS centres (Basel; Switzerland, Helsinki; Finland, and Prague; Czech Republic) using passive samplers for 48-h sampling periods during 1996–1997. The average residential outdoor and indoor NO2 levels were lowest in Helsinki (24±12 and 18±11 μg m−3, respectively), highest in Prague (61±20 and 43±23 μg m−3), with Basel in between (36±13 and 27±13 μg m−3). Average workplace NO2 levels, however, were highest in Basel (36±24 μg m−3), lowest in Helsinki (27±15 μg m−3), with Prague in between (30±18 μg m−3). A time-weighted microenvironmental exposure model explained 74% of the personal NO2 exposure variation in all centres and in average 88% of the exposures. Log-linear regression models, using residential outdoor measurements (fixed site monitoring) combined with residential and work characteristics (i.e. work location, using gas appliances and keeping windows open), explained 48% (37%) of the personal NO2 exposure variation. Regression models based on ambient fixed site concentrations alone explained only 11–19% of personal NO2 exposure variation. Thus, ambient fixed site monitoring alone was a poor predictor for personal NO2 exposure variation, but adding personal questionnaire information can significantly improve the predicting power.  相似文献   

13.
14.
Recent advances in the development of receptor-oriented source apportionment techniques (models) have provided a new approach to evaluating the performance of particulate dispersion models. Rather than limiting performance evaluations to comparisons of particulate mass, receptor model estimates of source impacts can be used to open new opportunities for in-depth analysis of dispersion model performance. Recent experiences in the joint application of receptor and dispersion models have proven valuable in developing increased confidence in source impact projections used for control strategy development. Airshed studies that have followed this approach have identified major errors in emission inventory data bases and provided technical support for modeling assumptions.

This paper focuses on the joint application of dispersion and receptor models to particulate source impact analysis and dispersion model performance and evaluation. The limitations and advantages of each form of modeling are reviewed and case studies are examined. The paper is offered to provide several new perspectives into the model evaluation process in the hope that they may prove useful to those that manage our nation’s air resources.  相似文献   

15.
A high flow rate four-stage impacfor was developed for the determination of aerosol concentration as a function of both particle size and time. The unit is very useful for long-term sampling intervals (24 hr) and for sampling very dusty atmospheres. Gas-borne particulate matter is collected out on four rotating drums, each with a collection surface area of about 10 sq in.; this allows a large quantity of materials to be collected without danger of particle build-up and blow-off. A particle size-collection efficiency calibration for the unit is presented together with experimental data on wall losses, surface coatings, and other important operational considerations.  相似文献   

16.
A system for the study of reactions between particle bound organic compounds and gaseous pollutants is described. The system is based on two 25 m3 outdoor smog chambers and associated equipment. Injection of sub-μm diameter carbon black particles is achieved using a liquid nitrogen based injection system. Suspended mass half life in the chamber is increased from 0.8 to 5.8 h by the use of a bipolar ion atmosphere. Particle concentrations and size distributions are shown to be similar to those obtained from wood combustion.  相似文献   

17.
ABSTRACT

This paper describes some characteristics of speciated nonmethane organic compound (NMOC) data collected in 1994 at five Photochemical Assessment Monitoring Stations (PAMS) and archived in the U.S. Environmental Protection Agency’s Aerometric Information Retrieval System (AIRS). Topics include data completeness, distribution of individual NMOCs in concentration categories relative to minimum detectable levels, percentage of total NMOC associated with the sum of the 55 PAMS target compounds, and use of scatterplots to diagnose chromatographic misidentification of compounds. This is an early examination of a database that is expanding rapidly, and the insights presented here may be useful to both the producers and future users of the data for establishing consistency and quality control.  相似文献   

18.
Abstract

Volatile organlcs compounds (VOCs) are ubiquitous in the air we breathe. The use of passive samplers to measure these concentrations can be an effective technique. When exposed for long durations, a passive sampler may be a good tool for investigating chronic exposures to chemicals in the environment. A passive sampler that was designed for occupational exposures can be used as such a tool. Laboratory validation under as many conditions as possible needs to be accomplished so as to characterize the sampler with known parameters. This paper describes the methods and results of an investigation into the validity of using a passive monitor to sample VOCs for a three-week period. Two concentration levels, two relative humidities, and five VOCs were studied. Results indicate that the samplers work best under conditions of high concentration with low relative humidity and low concentration with high relative humidity. For the passive sampler, excluding chloroform, percent deviations from the predicted values varied between ?41 and +22 percent; while the values between the passive and the active samplers varied between ?27 and +24 percent. Benzene, heptane, and perchloroethylene were sampled with equal precision and accuracy.  相似文献   

19.
A low-flow rate, sharp cut point inertial impaction sampler was developed in 1986 that has been widely used in PM exposure studies in the United States and several other countries. Although sold commercially as the MS&T Area Sampler, this sampler is widely referred to as the Harvard Impactor, since the initial use was at the Harvard School of Public Health. Impactor nozzles for this sampler have been designed and characterized for flows of 4, 10, 20, and 23 L/min and cut points of 1, 2, 5, and 10 microns. An improved method for determining the actual collecting efficiency curve was developed and used for the recent impactor calibrations reported here. It consists of placing a multiplet reduction impactor inline just downstream of the vibrating orifice aerosol generator to remove the multiplets, thus allowing only the singlet particle s to penetrate through to the impactor being calibrated This paper documents the techniques and results of recent nozzle calibrations for this sampler and compares it with other size-selective inertial impactors. In general, the impactors were found to have sharp cutoff characteristics. Particle interstage losses for all of the impactors were very low, with the exception of the 10-micron cut size 20 L/min impactor, which had greater losses due to the higher flow rate. All of the 2.5-micron cut nozzle laboratory calibrations compare favorably to the U.S. Environmental Protection Agency (EPA) WINS-96 fine particle mass (PM2.5) impactor calibration data.  相似文献   

20.
The extension of pollutant accumulation in plant leaves associated with its genotoxicity is a common approach to predict the quality of outdoor environments. However, this approach has not been used to evaluate the environmental quality of outdoor smoking areas. This study aims to evaluate the effects of environmental tobacco smoke (ETS) by assessing particulate matter 2.5 μm (PM2.5) levels, the pollen abortion assay, and trace elements accumulated in plant leaves in an outdoor smoking area of a hospital. For this, PM2.5 was measured by active monitoring with a real time aerosol monitor for 10 days. Eugenia uniflora trees were used for pollen abortion and accumulated element assays. Accumulated elements were also assessed in Tradescantia pallida leaves. The median concentration of PM2.5 in the smoking area in all days of monitoring was 66 versus 34 μg/m3 in the control area (P?<?0.001). In addition, the elements Al, Cd, Cu, Ni, Pb, Rb, Sb, Se, and V in Tradescantia pallida and Al, Ba, Cr, Cu, Fe, Mg, Pb, and Zn in Eugenia uniflora were in higher concentration in the smoking area when compared to control area. Smoking area also showed higher rate of aborted grains (26.1?±?10.7 %) compared with control (17.6?±?4.5 %) (P?=?0.003). Under the study conditions, vegetal biomonitoring proved to be an effective tool for assessing ETS exposure in outdoor areas. Therefore, vegetal biomonitoring of ETS could be a complement to conventional analyses and also proved to be a cheap and easy-handling tool to assess the risk of ETS exposure in outdoor areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号