首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Textile dye effluents are believed to be toxic as they might exert various harmful effects on living organisms including genotoxicity. These effluents are the main source of direct and continuous input of pollutants into the aquatic ecosystems. In this study, dye effluents from a local silk dyeing industry were analysed for their genotoxic potential by the Allium cepa genotoxicity test. The A. cepa test is characterised as a genotoxicity test where the roots of A. cepa are grown in different concentrations of the test material. The macroscopic results clearly showed that the toxicity of the dye effluents prompted A. cepa root growth inhibition, and this effect increased with higher concentrations of the effluents. At the cellular level, no dividing cells were found at higher concentrations such as 60%, 80% and 100% of the effluents. However, at a lower concentration of 20%, dividing cells were identified, although the mitotic index was much lower than that of the control. Microscopic analysis showed that the dye effluents induced chromosomal aberrations at significant levels. Taken together, these results revealed that the textile dyeing industry effluents are toxic to eukaryotic cells and these dyes have genotoxic properties that can potentially lead to cancer development and adverse health conditions.  相似文献   

2.
Water pollution is a major environmental problem worldwide. In particular, shipyards are contaminating waters with iron, lead and copper filings, paints, petrochemical products and solvents. There are only a few reports on the genotoxicity of shipyard contaminants. Here, we study genotoxic effects of surface water from five sites of Hooghly River in West Bengal, India, along the banks of which many shipbuilding and scrap industries are located. Genotoxicity was measured by the detection of micronuclei in Allium cepa and other chromosomal aberrations, as well as damage to genomic DNA of calf thymus. Results show that A. cepa roots treated with contaminated water induced morphological distortions, formation of micronuclei and various types of chromosomal aberrations. The mitotic index was lower than 50 % in the treated samples. The breakage of calf thymus DNA was time-dependent with acute damage of 100 % for overnight incubation as evidenced by agarose gel electrophoresis. We conclude that the workers of local shipbuilding and scrap industries, the residents of nearby areas and the aquatic biodiversity are vulnerable to contaminated waters.  相似文献   

3.
The aim of this study was to investigate the potential utility of Allium cepa L. as a bioindicator organism for measuring copper bioaccumulation and toxicity in laboratory conditions. Onions were exposed to increasing concentrations of the metal (0, 0.1, 0.5, 1, 5 and 10 μg mL?1) for 7 days. Root and leaf development were chosen as biological endpoints, while bioaccumulation was evaluated in roots, bulbs and leaves. Copper caused inhibition of root elongation with increasing effects at the higher doses, growth being reduced by almost 60% at 0.1 μg mL?1 and up to 95% at 10 μg mL?1. The elongation of leaves was significantly lower only in specimens exposed at 0.5 μg mL?1, but a total absence of newly formed tissues was observed at 10 μg mL?1. A marked bioaccumulation of copper was measured in roots, with values increasing up to almost four orders of magnitude compared to controls; only slight or even no significant differences were observed for copper levels in leaves and bulbs of treated A. cepa. Multiple linear correlations revealed a significant inverse relationship between copper concentrations and tissue length in both the roots and leaves, evidencing a sensitive responsiveness of this biological model. The overall results suggest the suitability of A. cepa as a robust species for easy and simple ecotoxicological bioassays to test the toxic effects and bioavailability of environmental pollutants, especially trace metals.  相似文献   

4.
The common onion Allium cepa can be easily used in ecotoxicological bioassays to evaluate the bioavailability and adverse effects of pollutants and complex mixtures like waste, industrial effluent or coal-mining drainage that contain elevated levels of trace metals and polycyclic aromatic hydrocarbons (PAHs). In this study, onions were exposed for 7 days to individual metals (1?µg?mL?1), i.e., aluminium, copper, iron and manganese, or PAHs (1.5?ng?mL?1), i.e., benzo[a]antracene and benzo[a]pirene. Biological effects, measured as growth inhibition of roots and leaves, were integrated with analysis of bioaccumulation in roots, bulbs and leaves. Copper, iron and benzo[a]pirene caused a significant inhibition in root development of newly formed tissues, whereas only slight variations were caused by other chemicals; the number of new root filaments and the length of the leaves did not show significant variations, thus not representing sensitive parameters to evaluate adverse effects of pollutants in A. cepa. Chemicals bioaccumulation was always significant in roots, whereas levels in bulbs and leaves exhibited increased levels only for manganese, and a decrease for aluminium. The overall results confirmed the sensitivity of the bioassays with A. cepa, suggesting their utility for future applications to evaluate the adverse effects of complex mixtures containing metals or PAHs.  相似文献   

5.
A pot experiment was carried out in a greenhouse to investigate the sequestration of As in iron plaques on root surface of three rice (Oryza sativa L.) cultivars. Phosphate (P) fertilization increased both plant biomass and tissue P concentrations significantly, indicating that the soils used in this study was highly P-deficient. Results from this study confirmed that low P supply improved the formation of iron plaque on rice roots. As a consequence, arsenic (As) concentrations in DCB-extracts with no P addition were significantly higher than those with P fertilization. Arsenic was highly sequestrated in iron plaque; arsenic concentration in iron was up to nearly 120 mg kg−1, while arsenic concentrations in roots were just several mg kg−1. Both arsenic and phosphate concentrations in iron plaque were highly positively correlated with the amounts of iron plaque (DCB-extractable Fe). Contrary to normal understanding that increasing P supply could reduced As accumulation in plants, results from the present study showed that P fertilization did not inhibit the As uptake by plants (As accumulation in aboveground), which was probably due to the fact that iron plaque formation was improved under low P conditions, thus leading to more As sequestration in the iron plaque. Thus results obtained in this study indicated that the iron plaque may inhibit the transfer of As from roots to shoots, and thus alter the P–As interaction in plant As uptake processes.  相似文献   

6.
蚕豆根尖微核技术的方法学新论   总被引:1,自引:0,他引:1  
虽然蚕豆根尖微核技术已是一个成熟规范的检测污染物遗传毒性的方法,但其中仍涉及一些重要的方法学问题值得深入探讨和研究。本文在图示正确观测蚕豆根尖细胞内微核和染色体畸变,如染色体断裂、丢失及染色体桥等的基础上,提出应该对蚕豆根尖分裂相细胞及其染色体畸变进行观测,以便更加准确、细致地反映污染物作用的剂量-效应关系和分子机制。同时还就该方法的其他重要问题提出了自己的观点,供同行们深入探讨和研究,使之不断完善,更好地服务于环境监测和风险评价等领域。  相似文献   

7.
Metalworking fluids (MWFs), which have a long history of use in industry and are in constant and ever-increasing use in parallel with advancements in mechanisation, are emulsions prepared with water. MWFs prepared as a 1/20 (MWF: water) mixture in practice, contain a large amount of water within their structure, and may become an aquatic toxic mixture in an ecosystem. In this study, half maximal effective concentration (EC50) values for MWFs were determined using the Allium cepa test, an accepted ecotoxicological biomonitor, and test solutions were prepared (1/250, 1/500 and 1/1000). Depending on the MWF ratio at each concentration, a decrease in the mitotic index (MI), irregularities in the phase distribution and aberrations in the chromosomes were observed. When the amount of MWF in the water increased, chromosomal abnormalities such as stickiness were observed to occur; whereas abnormalities such as c-mitosis, fragments, bridges, vagrants and micronucleus increased as the amount of the MWF decreased. Over a second 24-h period, it was observed that values, in particular MI, showed a tendency to return to normal.  相似文献   

8.
Summary. Feeding by belowground herbivores may induce systemic changes in shoot defence levels that affect the performance of above ground herbivores and higher trophic levels. In this paper two wild Brassica species, B. nigra and B. oleracea were experimentally infested with 10 larvae of the cabbage root fly, Delia radicum. Plant dry masses and glucosinolate levels in shoots, main roots, and fine roots were determined at 3, 7, 12 and 14 days after infestation and compared to those of control plants. The systemic response in the leaves differed between plant species. In B. nigra shoot glucosinolate levels in D. radicum infested plants steadily increased with time until they were almost twice those of controls 14 days after infestation. B. oleracea plants infested with D. radicum did not show significant changes in shoot glucosinolate levels within 14 days, which may be due to the unexpected poorer performance of D. radicum on this species. Both plant species showed a local increase in indole glucosinolates in the main roots, which are the preferred feeding site of D. radicum larvae. B. oleracea plants however showed a stronger (1.9 – 4.7 times) increase in indole glucosinolate levels than B. nigra (1.5 – 2.6 times). The increase in indole glucosinolates in B. nigra main roots, was counterbalanced by a significant decrease in aromatic glucosinolate levels. These differences in local responses to D. radicum feeding between the two species may have contributed to the slower growth rates of the larvae on B. oleracea. D. radicum feeding did not result in altered glucosinolate levels in the fine roots in either plant species. The differences in glucosinolate induction patterns between the summer annual B. nigra and the perennial B. oleracea are discussed in the light of their different life histories.  相似文献   

9.
得克隆(Dechlorane Plus,DP)是一种在全世界范围内广泛使用的氯代阻燃剂,具有潜在的毒性效应。但目前已有的生态毒理学数据还十分有限。本文选择分布广泛的大型绿藻孔石莼(Ulva pertusa)作为研究对象,探讨不同浓度DP对孔石莼繁殖细胞转化及早期发育的影响。结果表明,低浓度(10-6~10-8mol·L-1)DP暴露不同程度地影响孔石莼繁殖细胞的形成、释放及附着,在试验浓度范围内呈现一定的剂量效应关系。与空白对照组相比,DP处理(10-6mol·L-1)分别使繁殖细胞的形成率、释放率和附着率显著降低了76.76%、46.26%和85.64%。在丝状幼体阶段,DP处理组(10-8和10-7mol·L-1)幼体体长分别比对照组显著减少了32.74%和38.98%。结果表明,DP暴露抑制了孔石莼的繁殖及早期发育。基于绿藻繁殖特性及早期发育的生物学指标对DP暴露较为敏感,能够为海洋环境的DP生物学效应研究提供数据。  相似文献   

10.
Successful bioremediation of a phenol-contaminated environment requires application of those microbial strains that have acquired phenol tolerance and phenol-degrading abilities. A newly isolated strain B9 of Acinetobacter sp. was adapted to a high phenol concentration by growing sequentially from low- to high-strength phenol. The acclimatised strain was able to grow and completely degrade up to 14?mM of phenol in 136?h. The degradation rates were found to increase with an increase in the phenol concentration from 2.0 to 7.5?mM. The strain preferred neutral to alkaline pH range for growth and phenol degradation, with the optimum being pH 8.0. The optimum temperature for phenol degradation was found to be in the range of 30–35°C. Transmission electron micrographs showed a disorganised and convoluted cell membrane in the case of phenol-stressed cells, showing a major effect of phenol on the membrane. Enzymatic and gas chromatography-mass spectrometry studies show the presence of an ortho-cleavage pathway for phenol degradation. Efficient phenol degradation was observed even in the presence of pyridine and heavy metals as co-toxicants showing the potential of strain in bioremediation of industrial wastes. Application of strain B9 to real tannery wastewater showed 100% removal of initial 0.5?mM phenol within 48?h of treatment.  相似文献   

11.
Effects of Cadmium on Nutrient Uptake and Translocation by Indian Mustard   总被引:1,自引:0,他引:1  
Plants that hyperaccumulate metals are ideal subjects for studying the mechanisms of metal and mineral nutrient uptake in the plant kingdom. Indian Mustard (Brassica juncea) has been shown to accumulate moderate levels of Cd, Pb, Cr, Ni, Zn, and Cu. In this experiment, 10 levels of Cd concentration treatments were imposed by adding 10–190 mg Cd kg–1 to the soils as cadmium nitrate [Cd(NO3)2]. The effect of Cd on phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and the micronutrients iron (Fe), manganese (Mn), copper (Cu), and zinc (Zn) in B. juncea was studied. Plant growth was affected negatively by Cd, root biomass decreased significantly at 170 mg Cd kg–1 dry weight soils treatment. Cadmium accumulation both in shoots and roots increased with increasing soil Cd treatments. The highest concentration of Cd was up to 300 mg kg–1 d.w. in the roots and 160 mg kg–1 d.w. in the shoots. The nutrients mainly affected by Cd were P, K, Ca, Fe, and Zn in the roots, and P, K, Ca, and Cu in the shoots. K and P concentrations in roots increased significantly when Cd was added at 170 mg kg–1, and this was almost the same level at which root growth was inhibited. Zn concentrations in roots decreased significantly when added Cd concentration was increased from 50 to 110 mg kg–1, then remained constant with Cd treatments from 110 to 190 mg kg–1. However, Zn concentrations in the shoots seemed less affected by Cd. It is possible that Zn uptake was affected by the Cd but not the translocation of Zn within the plant. Ca and Mg accumulation in roots and shoots showed similar trends. This result indicates that Ca and Mg uptake is a non-specific process.  相似文献   

12.
ABSTRACT

Rusty roots markedly influence on ginseng cultivation, and this phenomenon often attributed to iron (Fe) induced toxicity. To examine the physiological mechanisms underlying Fe-initiated toxicity as evidenced by rusty roots in Panax ginseng, morphological and physiological changes in roots were investigated in hydroponics using Fe2+ concentrations of 50 (control), 100, 200, 400 or 600 µM. Compared with control, reddish-brown deposition at the root surface increasingly appeared as Fe2+ concentration increased (≥200 µM). The pH also rose as Fe levels were elevated. Higher external Fe2+ concentrations produced changes in root organelles and cell structures. Structural alterations in mitochondria due to excess Fe storage, protoplast shrinkage and cell vacuolation as well as formation of central vacuole with deposits in roots were observed. In addition, apparent cell wall thickening, cell wall folding and shrinkage, damage of cell membranes and a large amount of cell debris occurred at higher external Fe2+ concentrations (≥400 µM). The Fe2+ mediated damage resulting in morphological and physiological changes in ginseng roots was concentration and pH dependent.  相似文献   

13.
The bacterium Serratia marsescens strain JAS16 was isolated from agricultural soil which had prior exposure to monocrotophos for three years. The strain JAS16 tolerated up to 1200 mg L–1 monocrotophos and degraded the insecticide (1000 mg L–1) at a degradation rate constant of 136 d?1 (DT50 = 3.7 d). In soil, the degradation rate constant was 105 d?1 (DT50 = 4.8 d). A schematic pathway is being proposed from the degraded products derived from gas chromatography--mass spectrometry (GC-MS). The phytotoxicity of degradation products to Vigna radiata, Vigna unguiculata, and Macrotyloma uniflorum and the genotoxicity to Allium cepa roots were found to be low. A cost-effective powder-based formulation was achieved with the isolate. The isolate remained viable during the storage and also multiplied with a higher colony forming units (CFU) load g–1 for over a period of seven weeks of storage.  相似文献   

14.
The effects of heavy metals, hydrocarbons, and various toxicants present in Mathura Refinery Waste Water (MRWW) on Allium cepa were examined as a model plant system. The study was based on exposure of A. cepa to different concentrations of MRWW and compared to untreated control (exposure of onion bulbs with aquaguard purified water) to determine the total protein content and activities of certain antioxidant enzymes. These enzymes were evaluated for their efficacy to serve as biomarkers of refinery waste water pollution. DNA damaging potential of MRWW was also investigated. Data demonstrated maximal enhancement in ascorbate peroxidase activity subsequent to MRWW insult, although a significant increase in activities was also noted for other enzymes in the following order: superoxide dismutase?>?glutathione-S-transferase?> catalase. This is suggestive of their potency as a biomarker of MRWW toxicity. Increase in activities of monodehydroascorbate reductase (MDHAR; 152%) and deoxyribonuclease (345%) were also found in the A. cepa system as a result of MRWW exposure. In conclusion, A. cepa system might thus serve as an appropriate tool for monitoring water pollution, especially produced by petroleum waste and heavy metals in term of induction of glutathione peroxidase, MDHAR, and deoxyribonuclease activity.  相似文献   

15.
通过溶液培养实验,研究了镉胁迫下2个箭舌豌豆(Vicia sativa)品种(镉耐性品种L3,镉敏感品种ZM)中镉的积累、镉的亚细胞分布和化学形态以及非蛋白巯基化合物(NPTs)的响应。结果表明2个箭舌豌豆品种根较地上部积累更多的镉。镉在箭舌豌豆根、茎和叶中主要分布于可溶性组分,敏感品种ZM根中可溶性组分的镉含量和占总镉的比例显著高于耐性品种L3。细胞壁结合镉占总镉的比例在2个品种中均为叶>茎>根。镉在箭舌豌豆根和茎内主要以去离子水(d-H2O)提取态和1 mol·L-1氯化钠(Na Cl)提取态存在,ZM根中d-H2O提取态镉的含量和比例显著大于L3。箭舌豌豆叶中镉主要以2%醋酸(HAc)提取态存在。ZM叶中80%乙醇提取态镉的比例大于L3,0.6 mol·L-1盐酸(HCl)提取态镉和残渣态镉的比例小于L3。2个品种根和茎中NPTs的含量在镉胁迫下显著升高,ZM根中NPTs的含量显著大于L3。研究结果表明,箭舌豌豆镉解毒的主要机制包括限制镉由根部向地上部转运和液泡隔离。此外,根和茎中镉与有机酸结合和NPTs螯合,叶中镉以移动性低、毒性低的形态存在也是箭舌豌豆镉解毒的重要机制。ZM较L3根中更多镉以移动性高的形态存在,L3较ZM叶中更多镉以难移动的形态存在,是L3较ZM具有更高镉耐性的重要原因。  相似文献   

16.
In this study, liquid products obtained from the pyrolysis of hazelnut shell (HS), with and without ultra-high molecular weight polyethylene (UHMWPE), were subjected to the Allium cepa test system. Pyrolysis in conjunction with the A. cepa test is a promising technology not only from the perspective of energy savings and a source of precious material, but in terms of the removal of hazardous material from the environment in safe manner. Dosages of pyrolytic liquids dissolved in water were determined according to lethal dose (LD50), with three different solution concentrations. The preparates were dyed with acetocarmine. The mitotic index decreased and chromosomal aberration, especially stickiness and c-mitosis, increased with dosage and time. The addition of UHMWPE to HS in the pyrolysis process resulted in less harmful chemical agents, as observed by the relatively higher mitotic index and lower levels of chromosomal aberration.  相似文献   

17.

The present investigation is the first in situ comparative study for the identification of Ni and Cu accumulation strategies involved in Odontarrhena obovata (syn. Alyssum obovatum (C.A. Mey.) Turcz.) growing in Cu-rich smelter-influenced (CSI) and non-Cu-influenced (NCI) sites. The total and Na2EDTA (disodium ethylenediaminetetraacetic acid)-extractable metal concentration in soils and plant tissues (roots, stem, leaves and flowers) were determined for CSI and NCI sites. High concentrations of total Ni, Cr, Co and Mg in the soil suggest serpentine nature of both the sites. In spite of high total and extractable Cu concentrations in CSI soil, majority of its accumulation was restricted to O. obovata roots showing its excluder response. Since the translocation and bioconcentration factors of Ni?>?1 and the foliar Ni concentration?>?1000 μg g?1, it can be assumed that O. obovata has Ni hyperaccumulation potential for both the sites. No significant differences in chlorophyll content in O. obovata leaves were observed between studied sites, suggesting higher tolerance of this species under prolonged heavy metal stress. Furthermore, this species from CSI site demonstrated rather high viability under extreme technogenic conditions due to active formation of antioxidants such as ascorbate, free proline and protein thiols. The presence of Cu in higher concentration in serpentine soil does not exert detrimental effect on O. obovata and its Ni hyperaccumulation ability. Thus, O. obovata could act as a putative plant species for the remediation of Cu-rich/influenced serpentine soils without compromising its Ni content and vitality.

  相似文献   

18.
以广州市和佛山市的5个城市污水处理厂的污泥为实验对象,选取费氏弧菌、蒙古裸腹溞、卤虫、裸项栉鰕虎鱼仔鱼4种不同营养级的海洋生物为受试对象,结合化学分析方法,研究广州区域周边污水污泥浸出液的生物毒性效应。结果显示各污水污泥浸出液的毒性均较大,且浸出液的Cu污染浓度较高;广州市污水污泥对4种受试生物的毒性效应要高于佛山市。从污泥毒性对受试生物的选择性方面分析,发现卤虫筛分能力强且灵敏度高,而费氏弧菌则相关性好且方法简捷。研究结果为反映城市污泥的生物毒性强度和选择合适毒性评价受试生物提供基础数据。  相似文献   

19.
松胞素B对人血淋巴细胞和CHL细胞微核率的影响   总被引:2,自引:0,他引:2  
研究了不同浓度的松胞素B对人血淋巴细胞和中国仓鼠肺成纤维细胞(CHL)分裂吉周期和微核率的影响。结果表明,松胞素B浓度增高过高能引起细胞微核率增高。在本研究中,对CHL细胞微核率试验以3μg/mL松胞素B较适合;而对人血淋巴细胞微核试验,松胞素B浓度以2-4μg/mL为宜,松胞表B浓度过高会提高微核背景值,降低试验的灵敏度和精确性。  相似文献   

20.
茄子苗对镉积累和耐性的品种间差异   总被引:1,自引:0,他引:1  
通过盆栽实验方法研究了13种茄子幼苗对镉(Cd)积累与耐性的品种间差异。结果表明,这些茄子幼苗根及地上部Cd含量均随土壤中外加Cd的量的增加而提高。品种间存在着显著差异(P<0.05),其中Cd含量最高品种根部和地上部的Cd含量分别为Cd含量最低品种的2.1、2.4倍(2mg·kg-1Cd处理组)和1.5、1.6倍(4mg·kg-1Cd处理组)。不同品种幼苗对Cd的富集系数均大于1,表现出较强的富集能力。但转运系数均小于1,Cd从根部向地上部转移能力较弱,大多数品种间差异不大。当Cd添加量为2mg·kg-1时,只有绿龙长茄地上部生物量显著下降(P<0.05)。当Cd添加量提高到4mg·kg-1时,6个品种地上部生物量显著下降(P<0.05),这些品种对Cd的耐性较弱。综合评价,辽茄三号对Cd积累的含量最低,富集系数和转移系数也较低,对Cd具有较强的耐性,具有Cd低积累特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号