首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Marine cladocerans are important contributors to the zooplankton community of tropical and temperate coastal ecosystems during the warmer months, when they show explosive population growth. Despite this fact, little information is available on their ecology compared with the extensive studies on their freshwater relatives. The main objective of this study was to determine the in situ feeding and growth rates, and life history parameters of Penilia avirostris in São Sebastião Bay (Brazil) during austral summer 2004, as a premise to understand the advantages of this cladoceran in oligotrophic waters. Culture development experiments, monitored for a period of 12 days, showed that maximum juvenile release occurred after 2 days, and that the development duration of a complete cohort was around 9 days. From bottle incubation grazing experiments, significant ingestion rates upon flagellates, ciliates, dinoflagellates and diatoms were detected. Flagellates were the most important contributors to P. avirostris diet (ca. 80%). P. avirostris ingested between 28 and 97% of its own carbon biomass per day (daily ration) and individual growth rates of this marine cladoceran (0.10–0.24 d?1) increased with prey availability. The combination of ingestion rates of natural prey and growth rates provided gross growth efficiencies (GGE) of 15–53%, on a carbon basis. Our results suggest that P. avirostris has similar GGE to copepods, although at low food conditions the values for the marine cladocerans seems slightly higher. However, this characteristic alone does not explain the explosive growth and community dominance shown by P. avirostris. Therefore, other traits related to the reproductive biology of the species, such as short generation time, parthenogenetic reproduction, and continuous somatic growth, seems to be mostly responsible for the success of P. avirostris in many marine ecosystems during their seasonal occurrence.  相似文献   

2.
Diet and respiration of the small planktonic marine copepod Oithona nana   总被引:5,自引:0,他引:5  
The functional responses of Oithona nana (Giesbr.) to various phytoplankton and zooplankton food species are described. The food species were divided into three size categories, the seasonal abundances of which were measured in Loch Turnaig, a Scottish sea loch in 1977. The seasonal variations in feeding rates in the sea for each size class were derived. The seasonal variation in respiration rate of O. nana was measured, and metabolic requirements were claculated as between 6 and 40% of the food material estimated as being eaten. O. nana differs from other common copepods in having a wide food-particle size spectrum and a low metabolic rate. It is suggested that these adaptations constitute the strategy whereby O. nana maintains its population levels throughout the year.  相似文献   

3.
T. Ikeda 《Marine Biology》1977,41(3):241-252
Herbivorous zooplankton species (Calanus plumchrus, Paracalanus parvus and Euphausia pacifica) and carnivorous species (Parathemisto pacifica and Pleurobrachia pileus) collected from Saanich Inlet, British Columbia, Canada, were maintained in the laboratory under fed and starved conditions. Respiration rate and excretion rates of ammonia and inorganic phosphate were measured successively on the same batch populations of each species in different feeding conditions. Respiration rate remained at a constant level or increased during the feeding experiment but decreased progressively in starved individuals. Herbivorous, but not carnivorous, species showed a rapid decrease in both excretion rates for the first few days of an experiment irrespective of feeding conditions. However, the general level of excretion rates of fed specimens was higher than that of starved ones. The O:N, N:P and O:P ratios were calculated from respiration, ammonia excretion and phosphate excretion and discussed in relation to metabolic substrates of animals during the experiment. A marked difference was shown in the O:N ratio between fed hervivores (>16) and fed carnivores (7 to 19), suggesting highly protein-oriented metabolism in the latter. One unknown factor causing variation in excretion rates is speculated to be the physiological stress on animals during sampling from the field. It is suggested that the laboratory measurement of realistic excretion rates of zooplankton is difficult owing to their large fluctuations, but this is not the case with respiration rate.  相似文献   

4.
Food selection by young larvae of the gulf menhaden (Brevoortia patronus) was studied in the laboratory at Beaufort, North Carolina (USA) in 1982 and 1983; this species is especially interesting, since the larvae began feeding on phytoplankton as well as microzooplankton. When dinoflagellates (Prorocentrum micans), tintinnids (Favella sp.), and N1 nauplii of a copepod (Acartia tonsa) were presented to laboratory-reared, larval menhaden (3.9 to 4.2 mm notochord length), the fish larvae ate dinoflagellates and tintinnids, but not copepod nauplii. Larvae showed significant (P<0.001) selection for the tintinnids. Given the same mixture of food items, larger larvae (6.4 mm notochord length) ate copepod nauplii as well as the other food organisms. These feeding responses are consistent with larval feeding in the northern Gulf of Mexico, where gulf menhaden larvae between 3 and 5 mm in notochord length frequently ate large numbers of dinoflagellates (mostly P. micans and P. compressum) and tintinnids (mostly Favella sp.), but did not eat copepod nauplii. As larvae grew, copepod nauplii and other food organisms became important, while dinoflagellates and tintinnids became relatively less important in the diet. Since the tintinnids and nauplii used in the laboratory feeding experiments were similar in size as well as carbon and nitrogen contents, the feeding selectivity and dietary ontogeny that we observed were likely due to a combination of prey capturability and larval fish maturation and learning.Contribution No. 5575 of the Woods Hole Oceanographic Institution  相似文献   

5.
Weight specific rates of oxygen consumption carbon dioxide production, and ammonia-N excretion, measured for a Florida population of the bay scallop Argopecten irradians concentricus between May and September, 1982 and October and November, 1983 were significantly correlated (P<0.0005) to environmental factors that co-varied seasonally with metabolic shifts related to reproduction. Mean O/N and CO2/O2 (RQ) molar ratios indicates that scallop energy metabolism varied over the course of the reproductive cycle. Resting stage individuals (May-early June) had RQ values close to 0.7, indicative of a predominantly lipid-based metabolism. During the initial stages of gametogenesis (late June-early July) scallops catabolized primarily carbohydrate, as evidenced by maximum O/N (>22) values and RQ values close to 1.0 RQ values >1.0 indicated a possible carbohydrate to lipid conversion during the period of cytoplasmic growth (late July-early September). As gametes matured and spawning commenced (late September-November), metabolism became primarily protein based, as indicated by O/N and RQ values around 9.0 and 0.8, respectively. This pattern of substrate catabolism supports existing data on the storage and utilization of specific energy reserves with respect to reproduction in this species.  相似文献   

6.
The nutritional history of corals is known to affect metabolic processes such as inorganic nutrient uptake and photosynthesis, but little is known about how it affects assimilation efficiency of ingested prey items or the partitioning of prey nitrogen between the host and symbiont. The temperate scleractinian coral Oculina arbuscula and its tropical congener Oculina diffusa were acclimated to three nutritional regimes (fed twice weekly, starved, starved with an inorganic nutrient supplement), then fed Artemia nauplii labeled with the stable isotope tracer 15N. Fed corals of both species had the lowest assimilation efficiencies (36–51% for O. arbuscula, 38–57% for O. diffusa), but were not statistically different from the other nutritional regimes. Fed and starved corals also had similar NH4+ excretion rates. This is inconsistent with decreased nitrogen excretion and reduced amino acid catabolism predicted by both the nitrogen recycling and conservation paradigms. In coral host tissue, ~90% of the ingested 15N was in the TCA-insoluble (protein and nucleic acids) and ethanol-soluble (amino acids/low molecular weight compounds) within 4 h of feeding. The TCA-insoluble pool was also the dominant repository of the label in zooxanthellae of both species (40–53% in O. arbuscula, 50–60% in O. diffusa). However, nutritional history had no effect on the distribution of prey 15N within the biochemical pools of the host or the zooxanthellae for either species. This result is consistent with the nitrogen conservation hypothesis, as preferential carbon metabolism would minimize the effects of starvation on nitrogen-containing biochemical pools.Communicated by P.W. Sammarco, Chauvin  相似文献   

7.
The zoeal larvae of brachyuran crabs must feed soon after hatching on a diet that includes large micro- and mesozooplankton in order to satisfy nutritional requirements. However, newly hatched larvae have been shown to ingest a variety of dinoflagellates, perhaps using microbial carbon sources to sustain them until they encounter more favored prey. Ingestion of dinoflagellates by larval crabs has been documented previously under conditions in which the larvae were exposed to algae provided in monoculture or in defined mixtures of cells. We report here on experiments conducted on the hatching stage of five crab species to determine if ingestion of dinoflagellates occurred when they were provided in combination with Artemia sp. nauplii or after a period of feeding on mesozooplankton. Quantitative measurements of chl a in the larval guts provided evidence of ingestion of algal cells. Active ingestion of the dinoflagellate Prorocentrum micans at specified intervals during an extended feeding period was determined on larvae of two crab species using fluorescently labeled cells provided for brief periods at prescribed time intervals. Stage 1 larvae of four of the five crab species ingested dinoflagellates when they were provided in combination with nauplii and larvae of all five species ingested cells after feeding solely on nauplii for 24 h. Ingestion of algal cells was first evident in the larval guts after 6 h of feeding at both low (200 cell ml−1) and high (1,000 cells ml−1) prey densities. Higher prey densities resulted in higher gut chl a. Larvae continuously exposed to dinoflagellates actively ingested cells at every 3 h interval tested over a 36 h period. Results confirm previous studies that larvae will ingest dinoflagellates even when they are encountered in a mixed prey field or when having previously fed. Ingestion of cells may occur on a continual basis over time.  相似文献   

8.
The little-known cladoceran population of the Aegean Sea was studied. One hundred and seventy-six planktonic samples were collected during 8 cruises in the Aegean Sea (4 in the northern part, 4 in the southern part). From these samples, the following 4 species of Cladocera were determined: Evadne spinifera Muller, Evadne tergestina Claus, Penilia avirostris Dana, Podon intermedius Lilljeborg. All species were found both in the north and in the south Aegean Sea, with the exception of P. avirostris, which was found only in the northern Aegean Sea. Its absence from the southern part is attributed to the higher salinities and the pelagic character of the area. With regard to abundance, E. spinifera is by far the commonest in this area; P. avirostris and E. tergestina could be characterised as frequent forms; P. intermedius is scarce. P. avirostris, E. spinifera and E. tergestina are thermophilic; their occurrence is more or less restricted to the warm season; P. intermedius is psychrophilic and appears only in winter.  相似文献   

9.
The effect of light quality on growth, photosynthesis and carbon metabolism in two species of marine algae,Cyclotella nana (Hustedt) andDunaliella tertiolecta (Butcher), was examined. Relative growth constants forC. nana were 0.37, 0.29 and 0.25 in blue, white and green light, respectively. Corresponding constants were 0.41, 0.31 and 0.29 forD. tertiolecta. Photosynthetic rates in both species were higher in blue light and lower in green light compared with white light of the same intensity. More than 60% of14C assimilated byC. nana orD. tertiolecta grown in blue or green light was incorporated into the ethanol-insoluble fraction, compared with 10 to 30% in this fraction in white light. The relative importance of the various components within this fraction was independent of light quality. Although less14C was assimilated into the ethanol-soluble fraction in blue or green light, there was a relative increase in some amino acids and organic acids in this fraction and a decrease in sugars and sugar phosphates relative to white light of the same intensity. These differences were independent of light intensity, photosynthetic rate and cell density in the cultures.  相似文献   

10.
We conducted grazing experiments with the three marine cladoceran genera Penilia, Podon and Evadne, with Penilia avirostris feeding on plankton communities from Blanes Bay (NW Mediterranean, Spain), covering a wide range of food concentrations (0.02–8.8 mm3 l–1, plankton assemblages grown in mesocosms at different nutrient levels), and with Podon intermedius and Evadne nordmanni feeding on the plankton community found in summer in Hopavågen Fjord (NE Atlantic, Norway, 0.4 mm3 l–1). P. avirostris and P. intermedius showed bell-shaped grazing spectra. Both species reached highest grazing coefficients at similar food sizes, i.e. when the food organisms ranged between 15 and 70 µm and between 7.5 and 70 µm at their longest linear extensions, respectively. E. nordmanni preferred organisms of around 125 µm, but also showed high grazing coefficients for particles of around 10 µm, while grazing coefficients for intermediate food sizes were low. Lower size limits were >2.5 µm, for all cladocerans. P. avirostris showed upper food size limits of 100 µm length (longest linear extension) and of 37.5 µm particle width. Upper size limits for P. intermedius were 135 µm long and 60 µm wide; those for E. nordmanni were 210 µm long and 60 µm wide. Effective food concentration (EFC) followed a domed curve with increasing nutrient enrichment for P. avirostris; maximum values were at intermediate enrichment levels. The EFC was significantly higher for P. intermedius than for E. nordmanni. With increasing food concentrations, the clearance rates of P. avirostris showed a curvilinear response, with a narrow modal range; ingestion rates indicated a rectilinear functional response. Mean clearance rates of P. avirostris, P. intermedius and E. nordmanni were 25.5, 18.0 and 19.3 ml ind.–1 day–1, respectively. Ingestion rates at similar food concentrations (0.4 mm3 l–1) were 0.6, 0.8 and 0.9 g C ind.–1 day–1.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

11.
A complete energy balance equation was estimated for the common octopus Octopus vulgaris at a constant temperature of 20°C, fed ad libitum on anchovy fillet (Engraulis encrasicolus). Energy used for growth and respiration or lost with faeces and excreted ammonia was estimated, along with total energy consumption through food, for six specimens of O. vulgaris (with masses between 114 and 662 g). The energy balance equation was estimated for the specimens at 10-day intervals. During each 10-day interval, food consumed, body mass increase and quantity of faeces voided were measured. The calorific values of octopus flesh, anchovy flesh and faeces were measured by bomb calorimetry. Oxygen consumption and ammonia excretion rates were monitored for each specimen during three 24-h experiments and daily oxygen consumption and ammonia excretion were estimated. It was found that 58% of the energy consumed was used for respiration. The amount of energy invested in somatic and gonadal growth represented 26% of the total energy budget. The energy discarded through faeces was 13% of consumed energy. The estimated assimilation efficiency (AE) values of O. vulgaris feeding on anchovy (80.9–90.7%) were lower than the AE values estimated for other cephalopod species with different diets of lower lipid content such as crabs or mussels. Specific growth rates (SGR) ranged 0.43–0.95 and were similar to those reported for other high-lipid diets (bogue, sardine) and lower than SGR values found for low-lipid, high-protein diets (squid, crab, natural diet). Ammonia excretion peak (6 h after feeding) followed the one of oxygen consumption (1 h after feeding). The values of atomic oxygen-to-nitrogen (O:N) ratio indicated a protein-dominated metabolism for O. vulgaris.  相似文献   

12.
T. Ikeda  R. Kirkwood 《Marine Biology》1989,100(2):261-267
Oxygen consumption, ammonia excretion and phosphate excretion rates were measured on Sagitta gazellae Ritter-Zahony, in conjunction with body composition analyses (water, ash, carbon, hydrogen, nitrogen and phosphorus). Both water content (94.7% of wet weight) and ash content (53.0% of dry weight) recorded on S. gazellae were the highest and the lowest, respectively, among the chaetognath data being reported. Contents of carbon, hydrogen and nitrogen of S. gazellae were the lowest among published values of chaetognaths. Metabolic comparison with other chaetognaths living in similar subzero water temperature revealed reduced rates in S. gazellae, while no appreciable differences were seen in the metabolic quotients (O:N, N:P and O:P ratios). The O:N atomic ratios were 10.5 to 15.9 indicating protein oriented metabolism. Reduced metabolic activity of S. gazellae is not due to their body composition as calculated daily metabolic losses of body carbon (0.50%), body nitrogen (0.38) and body phosphorus (1.6%) were also found to be lower than respective values reported on other congeners and even those of other zooplankton living in the Antarctic waters.  相似文献   

13.
Rates of oxygen consumption, ammonia excretion and phosphate excretion were measured on a hydromedusae (Aglantha digitale), pteropods (Limacia helicina, Clione limacina), copepods (Calanus finmarchicus, C. glacialis, C. hyperboreus, Metridia longa), an amphipod (Parathemisto libellula), a euphausiid (Thysanoessa inermis) and a chaetognath (Sagitta elegans), all of which were dominant species in the Barents Sea during early summer 1987. Water and ash contents and elemental composition (C and N) were also analysed on the specimens used in these metabolic experiments. Between species variations were 67.8% to 94.7% of wet weight in water content, 6.4% to 56.5% of dry weight in ash content, 16.7% to 61.0% of dry weight in carbon content, and 4.3% to 11.2% of dry weight in nitrogen content. Oxygen consumption rates ranged from 0.33 to 13.8 l O2 individual-1 h-1, ammonia excretion rates, from 0.0072 to 0.885 gN individual-1 h-1 and phosphate excretion rates, from 0.0036 to 0.33 g P individual-1 h-1. In general, higher rates were associated with larger species, but considerable differences were also seen between species. The ratios between the rates (O : N, N : P, O : P) exhibited a wide species-specific variation, indicating differences in dominant metabolic substrates. Typical protein oriented metabolism was identified only in S. elegans. From the results of metabolic rate measurements and elemental analyses, daily losses of body carbon and nitrogen were estimated to be 0.50 to 4.15% and 0.084 to 1.87%, respectively, showing faster turnover rates of carbon than that of nitrogen. Comparison of daily loss of body carbon of the Barents Sea zooplankton with that of the Antarctic zooplankton indicated reduced rates of the former (63% on average).  相似文献   

14.
Vertical distributions of the larval stages of Euphausia nana Brinton and E. similis G. O. Sars in Sagami Bay and Suruga Bay, Central Japan were studied. Most of the metanauplius larvae of E. nana occurred between 25 and 80 m depth, and they were found at greater depths than the eggs and calyptopis larvae. The nauplii and metanauplii of e. similis were mainly found between 50 and 100 m depth, and they also occurred deeper than the eggs and calyptopes. The larvae of the two species from calyptopis I demonstrate diurnal vertical migration. However, this phenomenon was not clear in the season (March) when a seasonal thermocline was absent. Calyptopes and fruciliae of E. similis occurred deeper and migrated over greater vertical distances than those of E. nana. The distance of migration of furcilia I larvae of E. similis was estimated to be about 200 m.  相似文献   

15.
T. Onbé 《Marine Biology》1985,87(1):83-88
Seasonal fluctuations in the abundance of resting eggs of four species of marine cladocerans, Penilia avirostris Dana, Podon polyphemoides (Leuckart), Evadne tergestina Claus and Evadne nordmanni Lovén, were investigated in association with their planktonic populations in the central part of the Inland Sea of Japan for a period of over two years. Most numerous were the eggs of P. avirostris, followed by those of the species in the aforementioned order. There was a marked seasonal fluctuation in the number of eggs that was closely correlated with the occurrence of the planktonic population for each species. The egg-number was highest just before the planktonic population disappeared from the water column, and gradually decreased thereafter until a minimum value was reached shortly before the new planktonic population appeared in the next season. The pattern of fluctuation in number was found to be very similar among all four species, indicating strongly that the cladoceran populations in this warm temperate sea may persist either as plankton in warmer seasons or as benthic resting eggs in colder seasons. The possible causes of the decrease in egg density in bottom sediments are discussed.  相似文献   

16.
The relationship between the rates of oxygen consumption, ammonia and phosphate excretion of a pelagic tunicate, the larvacean Oikopleura dioica Fol, 1872 were assessed as a function of size, dry weight and ash-free dry weight at 15°, 20° and 24°C. O. dioica has higher respiration and excretion rates than copepods of similar weight, but the weight exponent of the allometric power function: Y=aX b is similar to that of other poikilotherms. Temperatures above 20°C have a depressing effect on respiration and ammonia excretion. 90% of the variance in metabolic rates is explainable by body mass and temperatures Q10 values for oxygen consumption, ammonia and phosphate excretion, respectively, are 2.45, 1.86 and 1.75 between 15° and 20°C, and 3.75, 2.90 and 3.60 between 20° and 24°C. Metabolic quotients (O:N, O:P, N:P) indicate a protein-oriented diet. The results of this study suggest weak metabolic regulation in O. dioica, an energetic strategy which allows an immediate response to favourable changes in feeding conditions.  相似文献   

17.
T. Ikeda  B. Bruce 《Marine Biology》1986,92(4):545-555
Oxygen uptake and ammonia excretion rates, and body carbon and nitrogen contents were measured in krill (Euphausia superba) and eight other zooplankton species collected during November–December 1982 in the Prydz Bay, Antarctica. From these data, metabolic O:N ratios (by atoms), body C:N ratios (by weight) and daily metabolic losses of body carbon and nitrogen were calculated as a basis from which to evaluate seasonal differences in metabolism and nutritional condition. Comparison of the present data with mid-summer (January) data revealed that early-summer E. superba were characterized by higher metabolic O:N ratios (58.7 to 103, compared with 15.9 to 17.5 for mid-summer individuals). Higher O:N ratios of early-summer E. superba resulted largely from reduced ammonia excretion rates and, to a lesser degree, from slightly increased oxygen uptake rates. Body C:N ratios of E. superba were low in early-summer (3.8 to 4.2) compared with mid-summer krill (4.1 to 4.7) due to lowered body-carbon contents in the former (42.6 to 43.6% compared with 43.2 to 47.5% dry weight of midsummer individuals); gravid females formed an exception, since no seasonal differences in body elemental composition were detected for these. No significant changes in water content (75.3 to 81.4% wet wt) and nitrogen content (9.9 to 11.1% dry wt) in E. superba were evident between the two seasons. Seasonal differences in metabolic rates and elemental composition were less pronounced in a salp (Salpa thompsoni), but a higher metabolic O:N ratio occurred in early-summer individuals. Interspecific comparison of the seven remaining zooplankton species studied with twelve species from mid-summer zooplankton investigated in an earlier study indicated that higher metabolic O:N ratios in early-summer are characteristic not only of herbivore/filter-feeders, but also of some carnivores/omnivores. No relationship between metabolic O:N ratios and body C:N ratios was apparent either intraspecifically or interspecifically, within or between early-summer and mid-summer seasons.  相似文献   

18.
The long-distance dispersal of larvae provides important linkages between populations of reef-building corals and is a critical part of coral biology. Some coral planulae have symbiotic dinoflagellates (Symbiodinium spp.) that probably provide energy in addition to the lipids provisioned within the egg. However, our understanding of the influence of symbionts on the energy metabolism and survivorship of planulae remains limited. This study examines the relative roles of symbiotic dinoflagellate photosynthesis and stored lipid content in the survivorship of the developing stages of the corals Pocillopora damicornis and Montipora digitata. We found that survivorship decreased under dark conditions (i.e. no photosynthetic activity) for P. damicornis and M. digitata at 31 and 22 days after release/spawning, respectively. The lipid content of P. damicornis and M. digitata planulae showed a significant decrease, at a higher rate, under dark conditions, when compared with light conditions. When converted to energy equivalents, the available energy provided by the depletion of lipids could account for 41.9 and 84.7% of larval metabolism for P. damicornis (by day 31) and 38.4 and 90.1% for M. digitata (by day 21) under light and dark conditions, respectively. This finding indicates that not all energy requirements of the larvae are met by lipids: energy is also sourced from the photosynthetic activities of the symbiotic dinoflagellates within these larvae, especially under light conditions. In addition, the amounts of three main lipid classes (wax esters, triglycerides, and phospholipids) decreased throughout the experiment in the planulae of both species, with the wax ester content decreasing more rapidly under dark conditions than under light conditions. The observations that the planulae of both species derive considerable amounts of energy from wax esters, and that symbiotic dinoflagellates enable larvae to use their stores at lower rates, suggested that symbiotic dinoflagellates have the potential to extend larval life under light conditions.  相似文献   

19.
Laboratory production during the life span of Euphausia pacifica was measured directly (as the sum of growth, molting and reproduction) and indirectly (as assimilation minus metabolism and leakage) to test the hypothesis that weight-specific production is a constant for all sizes. Euphausiids were collected in Puget Sound, Washington State, USA, from September 1973 to March 1978. Equations were determined (in terms of carbon and nitrogen at 8° and 12° C) expressing the relationships between body weight and the daily rates of growth, molting, reproduction, ingestion and metabolism. The allometric equation (R=aW b ) best related body weight (W) to the rate (R) for growth, molting, ingestion, respiration and excretion for life stages from late larvae through adults. As predicted by the original above hypothesis, the weight-specific coefficient (b) was close to 1.0 for ingestion and excretion; in contrast, b was 0.62 for growth, and 0.77 to 0.85 for molting and respiration. The Q10 s also varied: 3.5 for growth, 2.4 for molting, about 3.0 for ingestion, and 2.0 for respiration and excretion. Assimilation efficiencies, for all weights and at both temperatures, were 81.3% of carbon and 85.9% of nitrogen ingested. The relationships between rate and body weight of early larvae for growth and molting were linear, as was the relationship for reproduction in adults. Weight-specific production was higher by I to 2% at 12° than 8° C for all life stages, and was 2 to 4% for carbon and 2 to 6% for nitrogen in adults, but 13 to 17% for carbon and 14 to 15% for nitrogen in early furcilia larvae. The null hypothesis was rejected for production measured directly, but would have been accepted if only an indirect measurement of nitrogen production had been considered. Clearly, indirect measurement incorporates all errors of measurement and assumption and makes interpretation difficult.  相似文献   

20.
We studied the population dynamics and the reproductive biology of Penilia avirostris during three consecutive years on the inner shelf off Ubatuba, Brazil. Penilia avirostris individuals and its eggs and embryos were counted, measured, and classified into stages. The species occurred throughout the studied period, in a wide temperature range (14.8–28.2°C). Cladoceran densities were usually higher (>2,000 ind m−3) in warm seasons, when the water column was stratified as a consequence of bottom intrusions of the cold- and nutrient-rich South Atlantic Central Water. Juveniles, non-reproducing females, and parthenogenic females were the dominant developmental stages. Males and gamogenic females were rare and only occurred when females reached peak abundances. This suggests that in tropical and subtropical coastal seas gamogenesis in P. avirostris is not as common as in temperate seas, but may play a significant role in the density-dependent control of the population preceding unfavourable periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号