首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Grazing in juvenile stages of some estuarine calanoid copepods   总被引:1,自引:0,他引:1  
The grazing of juvenile Eurytemora affinis, Acartia tonsa and A. clausi from the Chesapeake Bay (USA) was investigated using natural particle distributions and freshly caught copepods, live-sorted into stages. Data were analyzed in 110 size channels using an electronic particle counter, and filtering rates (FR) were estimated based on total particle removal (mean FR), and that for each size channel (giving maximum FR). Mean and maximum filtering rates increased from NVI (Nauplius Stage VI) through CVI (Copepodid Stage VI). Both rates plotted against weight satisfied a log fit best for A. tonsa, and a linear fit best for E. affinis. Results for A. tonsa were quite variable, apparently due to differences in temperature between experiments. Particle selection was investigated from the shape of the filtering rate curve over particle size. We define selective feeding by a FR curve which is higher in some size categories, and non-selective feeding by a flat FR curve. The general pattern was one of selective feeding in all copepodid stages of the three calanoid copepods investigated. E. affinis tended to track biomass peaks while Acartia spp.'s feeding was more variable, including feeding in size ranges of greatest particle concentration, on larger particles, and in other size categories as well. Experiments with nauplii tended to yield flat FR curves, and it may be that selective grazing appears with, or is greatly accentuated by, metamorphosis from NVI to CI (Copepodid Stage I).University of Maryland, Center for Environmental and Estuarine Studies Contribution No. 762.  相似文献   

2.
Estimates of daily feeding rates were obtained for two groups of herbivorous labroid fishes, one confined to cold water and the other to tropical reef environments. These were the family Odacidae, represented by Odax pullus from New Zealand waters, (Goat Island Bay: Latitude 36° South; on the northeastern coast of New Zealand) and the family Scaridae, represented by Scarus rivulatus, S. schlegeli and S. sordidus from the northern Great Barrier Reef (Lizard Island; a mid-shelf reef at 14° South latitude). Observations on the odacid were made in 1984 and in 1992, and on the scarids in 1984 and 1988. O. pullus displayed a diurnal feeding pattern in which the rates (expressed as bites min-1) are greatest early in the day. The mean combined feeding rate for three size groups (juveniles, subadults and adults) peaked (average of 2.9 bites) from 06.00 to 08.00 hrs and declined fourfold to a combined average of 0.7 bites min-1 by midday. The greatest mean feeding rate recorded was 3.7 bites min-1, with an overall mean of 1.8 bites min-1. For subadults and adults there were consistent trends in feeding, with subadults feeding at a greater rate than adults and both groups displaying a decline in feeding rate during the day. The change in feeding rate with time of day was statistically significant in both groups. The pattern for juvenile O. pullus was different from that in the two larger size groups in that juveniles did not show a uniform decline in feeding with time of day. For scarids, the daily feeding rate varied by site, but the pattern was similar for all species, characterised by initial low rates increasing to higher but variable levels by midday. The influence of both site of feeding and time of day on feeding rate was confirmed by analysis. The overall mean values for each species were 20.1 bites min-1 for S. rivulatus, 19.7 bites min-1 for S. schlegeli and 14.9 bites min-1 for S. sordidus. For scarids, the peak feeding rates varied from 19.3 to 32.8 bites min-1, with overall rates from 14.9 to 21.1 bites min-1. Estimates of activity and movement patterns during feeding were obtained for O. pullus. Distance moved per unit time was highly variable, 0.1 to 47.5 m min-1, with a mean of 8.5 m min-1 (SD=9.9). Trends in movement among sexes and size classes were obscured by the variable movement patterns of individual fishes.  相似文献   

3.
M. Omori 《Marine Biology》1971,9(3):228-234
Sergestes lucens Hansen, a mesopelagic shrimp fished commercially in Suruga Bay, Japan, was successfully reared from egg to post-larval stage V under laboratory conditions. Chaetoceros ceratosporum and Artemia nauplii were found to be satisfactory food in the laboratory during rearing. Growth, mortality, food preference, and feeding and swimming activities during the various developmental stages were investigated. Temperature changes greatly affected the speed of development and the mortality of the larvae. The optimum temperature range for larval development was 18° to 25°C. The growth rate (length) of larval stages was as rapid as 0.16mm/ day at 20 °C and 0.21 mm/day at 23 °C. The larvae first started feeding on phytoplankton at elaphocaris stage I, and then gradually became predators in the post-larval stages. It is suggested that the critical period for the species occurs in the elaphocaris stages. Environmental data, vertical distribution of the species, and data obtained from laboratory experiments suggest that the fluctuation in the abundance of S. lucens is greatly influenced by the water temperature at around 50 m from June to August. Feeding mechanisms observed in the post-larval stages are described.  相似文献   

4.
Size appears to be an important parameter in ecological processes. All physiological processes vary with body size ranging from small microorganisms to higher mammals. In this model, five state variables — phosphorus, detritus, phytoplankton, zooplankton and fish are considered. We study the implications of body sizes of phytoplankton and zooplankton for total system dynamics by optimizing exergy as a goal function for system performance indicator. The rates of different sub-processes of phytoplankton and zooplankton are calculated, by means of allometric relationships of their body sizes. We run the model with different combinations of body sizes of phytoplankton and zooplankton and observe the overall biomass of phytoplankton, zooplankton and fish. The highest exergy values in different combinations of phytoplankton and zooplankton size indicate the maximum biomass of fish with relative proportions of phytoplankton and zooplankton. We also test the effect of phosphorus input conditions corresponding to oligotrophic, mesotrophic, eutrophic system on its dynamics. The average exergy to be maximized over phytoplankton and zooplankton size was computed when the system reached a steady state. Since this state is often a limit cycle, and the exergy copies this behaviour, we averaged the exergy computed for 365 days (duration of 1 year) in the stable period of the run. In mesotrophic condition, maximum fish biomass with relative proportional ratio of phytoplankton, zooplankton is recorded for phytoplankton size class 3.12 (log V μm3 volume) and zooplankton size 4 (log V μm3 volume). In oligotrophic condition the highest average exergy is obtained in between phytoplankton size 1.48 (log V μm3 volume) and zooplankton size 4 (log V μm3 volume), whereas in eutrophic condition the result shows the highest exergy in the combination of phytoplankton size 5.25 (log V μm3 volume) and zooplankton size 4 (log V μm3 volume).  相似文献   

5.
The swimming behaviour of newly hatched turbot (Scophthalmus maximus L.) larvae was observed in artificial seawater (ASW) and in solutions of 21 l-amino acids at a concentration of 10−5M. The behaviour of 20 larvae was analysed in each solution. Each larva was observed for 1 min. Individual movements were recorded on video and analysed using a computer-assisted program. The larvae swam in convoluted, randomised three-dimensional paths, rested and started swimming again. There were large variations in the swimming behaviour of turbot larvae during ontogeny. In ASW the mean frequency of trajectories longer than a body length of 4 mm larva−1 min−1 increased from 1.2 at Day 1, to 10 at Day 4. Analysing the data (Dunnett's method) revealed that the frequency of swimming trajectories increased in the presence of glycine, histidine and glutamine, and decreased in the presence of proline. The total distance swum increased for glycine but decreased for proline. The threshold concentration for glycine detected by turbot larvae was 10−5M. The straightness index did not change in the presence of the amino acids. The possible role of these changes in behaviour is discussed. Received: 12 June 1997 / Accepted: 13 January 1998  相似文献   

6.
Although scyphomedusae have received increased attention in recent years as important predators in coastal and estuarine environments, the factors affecting zooplankton prey vulnerability to these jellyfish remain poorly understood. Current models predicting feeding patterns of cruising entangling predators, such as Chrysaora quinquecirrha (Desor, 1948), fail to account for the selection of fast-escaping prey such as copepods. Nevertheless, our analysis of gastric contents of field-collected medusae showed that this scyphomedusa fed selectively on the calanoid copepod Acartia tonsa (Dana, 1846) and preferentially ingested adult over copepodite stages. We measured feeding rates in a planktonkreisel while simultaneously videotaping predator–prey interactions. C. quinquecirrha consumed adult A. tonsa ten times faster than copepodites. Differences in prey behavior, in the form of predator–prey encounter rates or post-encounter escape responses, could not account for the elevated feeding rates on adults. Prey size, however, had a dramatic impact on the vulnerability of copepods. In experiments using heat-killed prey, feeding rates on adults (1.5 times longer than copepodites) were 11 times higher than on copepodites. In comparison, medusae ingested heat-killed prey at only two to three times the rate of live prey. These results suggest that during scyphomedusan–copepod interactions, prey escape ability is important, but ultimately small size is a more effective refuge from predation. Received: 26 September 1997 / Accepted: 20 May 1998  相似文献   

7.
Hilbish  T. J. 《Marine Biology》1985,85(2):163-169
Feeding rates, patterns of prey selection, and starvation tolerance were investigated for adult males and females of the cyclopoid copepod Corycaeus anglicus collected from the waters of Friday Harbor, Washington, USA. Selection by C. anglicus was determined largely by prey body-size, but was also affected by species and developmental stage. Small developmental stages of all prey species were fed upon at relatively low rates. The small calanoid species Acartia clausii was increasingly vulnerable to predation by C. anglicus as it progressed through successive developmental stages. Larger prey species, Pseudocalanus sp. and Calanus pacificus, were more vulnerable in intermediate stages, the C3 and N6 stages, respectively. Larger and smaller prey were characteristically attacked at different sites on their bodies; however, attack sites fell within a similar range of body widths, 130 to 170 m. Males of Corycaeus anglicus killed a maximum of 1.4 prey d-1 when feeding on the optimally-sized adult females of Acartia clausii, which are approximately equivalent to its own body length. Males fed at approximately double the rates of females. Despite its small size and apparent lack of metabolic stores, this cyclopoid is highly tolerant of starvation conditions. Median survival time without food is at least 2 wk for both males and females. In its predatory behavior, C. anglicus employs an ambush-type strategy and seems to be adapted for infrequent encounters with relatively large prey.Contribution No. 1412 from the School of Oceanography, University of Washington, Seattle  相似文献   

8.
Heterotrophic nitrogen-fixation (acetylene reduction) was measured during decomposition (under dark conditions) of Rhizophora mangle L. and Avicennia germinans (L.) Stearn leaf litter. Nitrogen-fixation rates in leaf litter increased following 24 d incubation, then decreased after ≃44 d for both species. Maximum rates of 66.2 and 64.6 nmol C2H4 g−1 dry wt h−1 were reached by R. mangle and A. germinans leaf litter, respectively. Higher fixation rates of leaf litter were associated with an increase in water content and sediment particles on leaf surfaces of both species. Rates of nitrogen fixation by diazotrophs attached to sediment particles were not significantly different from zero. With additions of d-glucose, ethylene production rates increased by factors of 625-, 34- and 7-fold for sediment, R. mangle and A.␣germinans leaf litter, respectively, compared to rates prior to enrichment. These organically enhanced rates of nitrogen fixation on leaves could be accounted for by increased activity associated with attached sediment particles and not the leaf material. Total phenolics [reported as tannic acid equivalent (TAE) units] decreased nitrogen-fixation rates when added to d-glucose-enriched sediment at >20 mg TAE l−1. Phenolic compounds could explain the initial lag in rates of nitrogen fixation during leaf-litter decomposition of R. mangle (initial content of 110.8 mg TAE g−1 dry wt), but not of A. germinans (initial content of 23.4 mg TAE g−1 dry wt). The higher phenolic content and reportedly lower carbon substrate of R. mangle did not result in species-specific differences in either the magnitude or temporal pattern of nitrogen fixation compared to A. germinans leaf litter. We conclude that the availability of organic substrates leached from the leaf litter along with colonization by the heterotrophic diazotrophs (as indicated by sediment accumulation) controls nitrogen-fixation rates in a similar manner in the leaf litter of both species. Received: 8 August 1997 / Accepted: 4 December 1997  相似文献   

9.
The natural diet and mode of feeding of the rock lobster Jasus lalandii (H. Milne Edwards) was determined in a rock-lobster sanctuary near Cape Town, South Africa. Field observations were tested and confirmed by means of aquarium studies. Rock lobsters feed mainly upon ribbed mussels Aulacomya ater (Molina), which comprise the largest component of the sessile benthic fauna. Mussel remains were found as the major constituent in 97% of the rock-lobster stomachs examined. The density of rock lobsters averaged 8,100 per hectare (0.81 m-2), while mussel biomass averaged more than 5 kg (wet whole weight) m-2 within the same depth range (12 to 30 m). More than 80% of the mussel biomass comprised large individuals between 60 and 90 mm in length. Large rock lobsters (mainly males) were capable of feeding on all sizes of mussels, although many of these were inaccessible to predation. Smaller rock lobsters became progressively more limited in the size range of mussels which they could crack open and consume. Competition between rock lobsters for small mussels appeared to be intense, as mussels of suitable size for feeding were generally in short supply to most of the rock-lobster population. Hence, feeding and growth rates of rock lobsters are likely to be affected by the relative population densities of predator and prey. Growth rates of rock lobsters could be limited by food supplies even in areas where mussel biomass is comparatively large.  相似文献   

10.
 Growth and developmental rates were determined for copepodids of Calanus finmarchicus (Gunnerus) from experimental seawater mesocosms in a western Norwegian fjord. The instantaneous growth rates (g) from copepodid stage I (CI) to adult ranged from 0.08 to 0.10 d−1. Daily per capita mortality rate of the cohorts was as low as 0.012 d−1 (1.2% d−1). At local increasing temperatures (5.1 to 8.3 °C), development was equiproportional, and the cumulative median development time from egg to CV was approximately 65 d. CV moulted to males and females, and egg production was initiated. Enhancement of food resources by nutrient addition caused a 23.4% increase in growth rates from CI to adult. Additionally, copepodid stages showed a generally larger body size, carbon and nitrogen content and total storage lipid content (wax esters + triacylglycerols) in response to enhanced resources. Our data support an elsewhere proposed exponential-growth hypothesis; growth of the structural compartments and store lipids (mostly wax esters) was exponential during the copepodid stages. However, a sigmoidal pattern of growth best described growth of adult stages if reared at high resources, and depot lipid accumulation in late CVs and adults at high resources. Body nitrogen growth increased exponentially, however, no significant changes in nitrogen specific growth rates were found between individuals from low and high resources. CV and adults seem to have reached near-maximal weights at high resources, whereas structural weight continued to increase at low resources. Despite the differences in structural growth dynamics, cohort development was similar until the end of CV. During the onset of sexual differentiation, the male:female ratio and the adult:CV ratio were highest at high food resources, suggesting that the time used for the final moult depends on the feeding history of the copepods in relation to food quality and quantity. It appears that relatively small changes in food availability strongly influence the biochemical composition of C. finmarchicus copepodids. Received: 28 May 1999 / Accepted: 10 February 2000  相似文献   

11.
Sprat (Sprattus sprattus) eggs and larvae were sampled from plankton and the Irish Sea in 1988 and 1989 and analysed forl-ascorbic acid (Vitamin C) content, which is considered an index of the nutritional well being and thus indicative of the status of the population in relation to environmental (physical and biological) structures. In one month, the Vitamin C content of larvae in different developmental stages decreased from 800 to 300µg g–1 in the youngest larvae (4 to 14 mm) and to 250µg g–1 in the oldest larvae (14 to 28 mm). No significant differences in the Vitamin C content per unit weight were found between larvae collected at four sites located in western stratified waters, central stratified, central mixed and eastern mixed waters. The mean Vitamin C content per larva, as well as mean length and wet weight of larvae were lowest in central mixed and eastern mixed waters in May–June. The estimated increases in Vitamin C, length and weight of individuals in the population of larvae varied significantly from April to June and between western stratified and eastern mixed areas. Highest rates coincided with stratified water conditions and with suitable quantity and quality of food, which seemed to constitute the most favourable environmental conditions for abundance and growth of sprat larvae.  相似文献   

12.
Samples of sediments from Australian seagrass (Zostera capricorni Aschers.) beds were taken in June to August 1983 (for15N experiments) and November 1982 to January 1983 (14N experiments). The ammonium pool turned-over every 0.4 to 0.8 d, as determined with a15N isotope-dilution technique. The ammonium pool in subtidal bare areas turned-over two to three times more slowly than in adjacent seagrass beds. Gross rates ofin situ ammonium regeneration equalled those of utilization, and ranged from 0.04 to 0.35 mol cm-3 d-1, or from 50 to 490 mg N m-2 d-1 over the upper 10 cm of the sediment. The potential rate of glycine utilization, measured with a large excess of glycine added to anaerobic incubations, ranged from 0.21 to 0.39mol cm-3 d-1, butin situ rates were probably much lower. Between 35 and 65% of added15N-glycine was deaminated over 12 h, and the remainder was most likely assimilated by microbes. Evidence for the seagrasses taking up glycine was equivocal, owing to the rapid deamination of the amino acid and the likelihood that they assimilated the labelled ammonium produced from the glycine.  相似文献   

13.
We determined feeding rates of the hydromedusan Nemopsis bachei L. Agassiz in the mesohaline region of Chesapeake Bay, USA during the spring of 1989 and 1990 from gut contents, digestion rates and abundances of medusae and zooplankton. The medusae consumed primarily copepodites of Acartia tonsa, selecting against naupliar stages. The peak abundance of N. bachei medusae was in April to May, when densities averaged more than 10 m-3. Medusa densities were similar in both years, but were greatest (maximum of 132 medusae m-3) along a southern transect sampled only in 1990. At peak densities, N. bachei medusae consumed 30% d-1 of the copepodite standing stocks, but they consumed <1% d-1 at the lower densities typical of late May or early June. The predation effects were generally greater than those reported for other hydromedusan species. But even at peak predation, N. bachei medusae could not have controlled or reduced A. tonsa copepod populations, which had a production rate of 85% d-1 at that time. Medusa feeding rates were highest at nighttime, and were correlated with prey density in the field, but not in the laboratory.Communicated by J. Grassle, New Brunswick  相似文献   

14.
Food composition and food requirements of four amphipod species of the Black Sea — Dexamine spinosa (Mont.), Amphithoe vaillanti Lucas, Gammarellus carinatus (Rathke), Gammarus locusta L. — were studied and an attempt made to assess the quantitative composition of the food, daily rhythms of feeding, and daily food rations. The composition of the food of the above-named amphipods is similar and consists primarily of seaweeds. Daily feeding intensity is characterized by a distinct increase during the dark period (D. spinosa, A. vaillanti); however, in G. locusta feeding intensity increases in the morning. The daily food rations of amphipods vary greatly (from 1.7 to 360% of the specimens' body weight), depending upon factors such as the kind of food, age, sex, the physiology of specimens, and the water temperature. The total quantity of food eaten by the populations of these amphipods in the coastal zone of the Black Sea amounts to 4000 g organic matter per square metre within 1 year.  相似文献   

15.
Ling Ong  Kim N. Holland 《Marine Biology》2010,157(6):1313-1323
Parrotfishes can be significant bioeroders and sediment producers on coral reefs. We quantified the bioerosion rates of two similarly sized Hawaiian parrotfishes with two different feeding modes (Scarus rubroviolaceus—a scraper and Chlorurus perspicillatus—an excavator). The results showed that feeding modes did not affect bioerosion rates but that bioerosion rates were size dependent, with largest individuals (S. rubroviolaceus 45–54 cm FL) bioeroding up to 380 ± 67 kg ind−1 year−1. The size for onset of bioerosion capabilities for both species was 15 cm. Grazing by the two species consumed 60% of the carbonate production of the fore reef area, suggesting that large parrotfishes in Hawaii are ecologically important bioeroders. As individual large S. rubroviolaceus contributed disproportionately more to bioerosion and sediment production than the equivalent biomass of smaller conspecifics, management strategies designed to retain normal reef bioerosion rates should seek to preserve the historical size structure of S. rubroviolaceus populations and to especially protect the larger size classes.  相似文献   

16.
Methods are described for the successful rearing of northern anchovy larvae (Engraulis mordax Girard) on cultured foods. Larvae were fed successively on the unarmored dinoflagellate Gymnodinium splendens, the veliger of the gastropod Bulla gouldiana, and nauplii of the brine shrimp Artemia salina. Rearing containers ranging in capacity from 4.5 to 510 l were tested; the smaller ones were found to be most useful for laboratory experimentation. Irreversible starvation occurred when E. mordax were denied food for more than 1.5 days after yolk absorption. Growth rates of larval anchovies fed different diets were compared. Larvae fed G. splendens grew for 1 week at the same rate as animals fed wild plankton, but did not maintain this rate. Laboratory survival of E. mordax larvae on a diet of G. splendens alone, did not differ significantly when veligers supplemented the diet. However, when G. splendens and veligers were fed simultaneously to E. mordax larvae, growth rate was greatly improved, although still not matching the growth attained on a diet of wild plankton. Length (L) versus weight (W) analyses were made for all larvae at all diets. The results showed that weight could be calculated most accurately from length by the relationship log W=3.3237 log L-3.8205, regardless of diet.  相似文献   

17.
This study tested the hypothesis that the dimensions and symmetry of the depth regulatory window of crustacean larvae are controlled by the level of light adaptation. Responses of first and last zoeal stages of the crab Rhithropanopeus harrisii (Gould) to different rates of pressure change were analyzed with a video system. Crabs were collected from the Neuse River estuary (North Carolina, USA) from May to September 1988. Responses were measured when larvae were adapted to light having an angular light distribution similar to that underwater at intensities ranging from one log unit above the lower phototaxis threshold to four log units higher. For both zoeal stages in darkness and at 10-6 W m-2, the distance larvae descend before responding to a pressure increase was much shorter than the distance they would ascend before responding to a pressure decrease. When adapted to a light level of 10-4 W m-2 both zoeal stages descended and ascended approximately equal distances before responding to an increase or decrease in pressure, respectively. Finally at the highest test light intensity (10-2 W m-2), the ascent distance was much shorter than the descent distance. These results support the hypothesis. The depth regulatory window dimensions predict an ascent in the water column upon adaptation to low light intensities and descent at high light levels. Thus Sulkin's negative feedback model provides the general mechanism of depth regulation. The effects of light adaptation on the limits of the depth regulatory window provide an additional component that negates the requirement for depth regulation at an absolute depth. The composite model can be termed the light-dependent negative feedback model of depth regulation.  相似文献   

18.
Omnivorous feeding behavior of the Antarctic krill Euphausia superba   总被引:5,自引:0,他引:5  
Feeding experiments were conducted at Palmer Station from December 1985 to February 1986 to examine the potential role of copepod prey as an alternative food source for Euphausia superba. Copepod concentration, copepod size, phytoplankton concentration, the duration of krill starvation and the volume of experimental vessels were altered to determine effects on ingestion and clearance rates. Krill allowed to feed on phytoplankton and copepods in 50-litre tubs showed greatly increased feeding rates relative to animals feeding in the much smaller volumes of water traditionally used for krill-feeding studies. Clearance rates on copepods remained constant over the range of concentrations offered, but clearance rates on phytoplankton increased linearly with phytoplankton concentration. Feeding rates increased when larger copepods were offered and when krill were starved for two weeks prior to experiments. Clearance rates of krill feeding on copepods were higher than, but not correlated with, their clearance rates on phytoplankton in the same vessel. E. superba may have a distinct mechanism for capturing copepods, perhaps through mechanoreception. Although our observed clearance rate of 1055 ml krill-1 h-1 indicates that krill can feed very efficiently on copepod prey, such feeding would meet less than 10% of their minimum metabolic requirements at the typical copepod concentrations reported for Antarctic waters. However, substantial energy could be gained if krill fed on the patches of high copepod concentrations occasionally reported during the austral summer, or if krill and copepods were concentrated beneath the sea ice during the winter or spring months. Our results, indicating efficient feeding on zooplankton and higher clearance rates on phytoplankton than previously believed, represent a step towards balancing the energy budget of E. superba in Antarctic waters.  相似文献   

19.
Capture success of the medusa Aurelia aurita preying on various developmental stages of fish larvae was measured together with larval reactivity and escape speed after being stung. These experiments were conducted in the spring of 1983 with A. aurita medusae collected from Loch Etive, Scotland and laboratory-reared larvae of Gadus morhua L., Platichthys flesus L., Pleuronectes platessa L. and Clupea harengus L. Capture success of the medusae increased with medusa size, but decreased with advancing larval development. Smaller species of larvae were more vulnerable to capture. Larval reactivity to encounters with medusae increased with advancing development, and larger species of larvae were more reactive to encounters. Larval escape swimming speeds also increased with advancing larval development and size. These results indicate that earlier stages of larvae within a species and smaller species of larvae at a given stage are more vulnerable to predation by medusae since they are less reactive to encounters. Apparently they are more susceptible to the effects of neurotoxins. Predation rates on different developmental stages of herring larvae are documented and compared with rates predicted by a predation model. Predictions fell within the range of observed predation rates, but tended to overestimate rates by larger medusae feeding on larger herring larvae. This indicates the possibility of predator satiation and/or behavioural avoidance.  相似文献   

20.
Population energy budgets estimated on the assumption of steady state conditions for Nerita tessellata Gmelin, N. versicolor Gmelin, and N. peloronta L. on Barbados, W. Indies, are presented. Large differences in population structure, and hence energetics, occurred at different localities along the beach. Relatively high proportions (81 to 88%) of the assimilated energy were lost via metabolism. Assimilation efficiencies ranged from 39 to 43%, net growth efficiencies from 5 to 13%, and ecological efficiencies from 3 to 7%. For each species, production (P), energy flow (A) and total energy consumption (C) were expressed as functions of animal size, in order to facilitate gross estimations of the energy components for other populations for which data on size-frequency and density are available. Respiration studies of all three species in the laboratory failed to detect differences between respiration rates in air or under seawater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号