首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
土壤水溶态铜对小白菜的毒害效应及其预测模型   总被引:1,自引:0,他引:1  
土壤中铜(Cu)重金属的生物毒性/有效性主要取决于它们在土壤液相中含量和土壤溶液的性质。探寻土壤有效态Cu的生物毒害效应,表征量化其与土壤溶液性质关系,可为土壤Cu的环境风险评价提供参考。选取17种典型农田土壤,探讨了有效态Cu(土壤孔隙水以及CaCl_2浸提态)对小白菜生长的毒性效应及其预测模型。结果表明:土壤孔隙水中Cu对小白菜生长10%抑制的毒性阈值值(EC_(10))和50%抑制的毒性阈值(EC_(50)),最大值与最小值相差为14.7和14.6倍;同样,对于CaCl_2提取态Cu的EC_(10)和EC_(50),最大值与最小值相差12.7和7.7倍,表明土壤溶液性质对水溶性Cu对小白菜的毒性阈值影响很大。建立了土壤溶液的重要因子(溶解性有机碳、土壤溶液pH值、电导率、全硫含量、Ca~(2+)、Mg~(2+)、K~+、Na~+)和水溶性Cu阈值之间的多元回归关系,结果显示,土壤溶液性质可以较好地预测水溶性Cu对小白菜的毒性阈值。同时,土壤溶液中Mg~(2+)、K~+和S的含量是控制孔隙水中Cu对小白菜生长毒性的最重要因子,单一的S能分别解释34%的EC_(10)变异,K~+解释26%的EC_(50)变化。本研究结果可为陆地环境中水溶性Cu的风险评价提供基础。  相似文献   

2.
为阐明稻秆生物炭介导土壤Cd形态转化过程中化学性质与微生物群落多样性变化特征,通过室内培养实际污染土壤实验,研究施加稻秆生物炭对土壤Cd形态、pH值、阳离子交换量(CEC)、有机质(SOM)、碱解氮(AN)、有效磷(AP)、速效钾(AK)含量,以及土壤蔗糖酶(CA)、脲酶(UA)、过氧化氢酶(IA)活性等的影响特征,并通过高通量测序手段揭示土壤细菌和真菌群落结构组成与多样性的变化规律。结果表明,稻秆生物炭能够显著降低土壤中酸提取态Cd含量(23.19%),增加残渣态Cd含量(28.42%),促进Cd形态由不稳定态向稳定态转化。生物炭在不同程度上提高土壤pH、CEC、SOM、AN、AP和AK含量,其中SOM和AK含量增幅最显著,分别达到48.42%和81.28%。生物炭的添加显著影响土壤细菌和真菌群落中的优势类群丰度,其中Bacillus、Streptomyces、Aspergillus等与重金属形态有关的功能菌种丰度增加,细菌群落相较于真菌群落可能更容易受到环境因子的影响;影响土壤Cd形态转化的关键因素主要包括土壤pH值、SOM和AK以及细菌群落。稻秆生物炭主要通过影响土壤pH值、有机...  相似文献   

3.
施用污泥的土壤重金属元素有效性的影响因素   总被引:4,自引:0,他引:4  
污泥农用是解决城市污泥出路较为合理的途径.但由于含较高量的重金属,它的应用受到限制.研究发现,进入土壤的重金属在不同的土壤类型、不同的土壤条件下,形态分布各不相同,而不同形态的重金属对植物的有效性和毒性也不相同,本文试图对土壤中影响重金属形态分布的因素及机制作一综述.  相似文献   

4.
土壤中铜和镍的不同毒性阈值间量化关系   总被引:2,自引:0,他引:2  
污染物的剂量-效应关系是生态毒理学的重要基础。在剂量-效应关系中,EC10 (10%有效抑制浓度) 是建立基于风险的环境质量基准值的基础,但有关污染物生态效应的研究报导中多数采用毒性阈值EC50 (半数抑制浓度),如何将EC50转化为EC10是建立污染物环境质量基准急需解决的问题。利用log-logistic拟合了中国17种代表性土壤中大麦、西红柿、小白菜3种植物的铜和镍剂量—效应曲线,获得了不同土壤中铜、镍剂量—效应曲线中段的斜率(b值),并依据计量—效应曲线获得3种植物在不同土壤中的铜、镍EC10和EC50值。结果表明:铜和镍的剂量—效应曲线 b值受土壤性质显著影响,但不同物种间的变化较小,大麦、西红柿及小白菜的铜、镍剂量—效应曲线b值绝对值的平均值分别接近于6.0和7.0。利用来自中国土壤的毒理学数据建立的铜和镍EC50和EC10单因子量化模型能较为准确地通过铜和镍EC50值预测其EC10值,其量化模型的决定系数 分别为0.704和0.799,当分别考虑土壤pH和有机碳 (OC) 的影响时,铜和镍的EC10量化模型的决定系数分别提高至0.730和0.885。土壤中铜、镍EC10与EC50量化关系的建立可为中国土壤中铜、镍的风险评价及相关标准的制定提供更多的数据基础。  相似文献   

5.
东北地区旱地土壤有机碳密度的主控自然因素研究   总被引:6,自引:1,他引:6  
土壤有机碳(SOC)库在陆地生态系统中具有重要作用.基于全国第二次土壤普查获得的1022个东北地区旱地土壤剖面数据,采用方差分析和回归分析方法分析了年均温、年均降水量、成土母质、土壤质地和pH值对旱地SOC密度的影响.结果表明,各因子对东北地区旱地SOC密度在表层和剖面均有显著影响.在5个自然因子中,对SOC密度变异程度的独立解释能力最大的在表层为气温,达32%,剖面为土壤质地,为28.7%.5个自然因子的综合作用分别能解释旱地表层和剖面SOC密度变异的51.2%和50.2%.其中,气温和土壤质地是影响东北地区旱地SOC密度的主要自然因子.因此,合理利用自然条件有利于该区旱地SOC的积累.  相似文献   

6.
通过窜内模拟培养实验,研究赤红壤中添加富含铝盐的造纸污泥堆肥后,土壤中活性铝的释放特性.实验结果表明:模拟培养过程中,总酸溶性铝和总单核铝浓度随培养时间总体呈下降趋势,初期下降显著,且添加堆肥各处理的降幅均高于CK,其中20%PSC分别降低61.64%和60.32%,降幅最大;经过60d培养后,添加堆肥各处理活性铝浓度与CK差异不显著;添加造纸污泥堆肥后,土壤中的pH值、有机质、有效磷均显著增加,这些因素导致土壤中铝活性的降低,且总单核铝是土壤中活性铝的主要存在形态.  相似文献   

7.
几种土壤的基本理化性质与Cu2+吸附的关系   总被引:6,自引:0,他引:6  
胡红青  陈松  李妍  丁树文  赵竹青 《生态环境》2004,13(4):544-545,548
研究了大冶市几种类型土壤的基本性质及与Cu2+吸附的关系,结果表明,土壤对Cu2+的吸附量随其CEC值(记为CEC)而变化,供试土壤的Cu2+吸附量由大到小的顺序为石灰土→水稻土→潮土→棕红壤.加入铜浓度为5 mmol·L-1时11个土壤对铜的吸附量x((mol·g-1)与CEC的直线相关方程为x(Cu2+) = 2.018×CEC + 24.4 (r=0.7066).而影响CEC的因素,如Ph、粘粒含量及其组成、有机质、比表面等,也是决定Cu2+吸附量的重要因素.  相似文献   

8.
广州绿地土壤理化特性及其相关性   总被引:2,自引:0,他引:2  
朱纯  熊咏梅  贺漫媚  冯毅敏 《生态环境》2010,19(8):1868-1871
以广州市荔湾区城市绿地为起点往东北延伸至从化流溪河自然保护区,建立长100km、宽10km的绿地土壤样带以研究广州市绿地土壤理化性状及土壤因子间的相关性。研究结果表明,广州绿地土壤容重平均值为(1.31±0.20)g·cm^-3,属偏紧范围;自然含水量为112.14~402.33g·kg^-1;总孔隙度均值(44.10%±4.84%),属过紧实(45.3%~41.5%)。土壤pH值为2.21~7.82,变幅较广;有机质属丰富偏下水平(30~40g·kg^-1);有效磷、有效钙和重金属的变化范围也较广。土壤砂粒质量分数与绝大多数土壤物理因子呈极显著负相关(P〈0.01),土壤pH值与重金属总铬、总镉、总铅、有效铜、有效钙和有效钾等呈极显著正相关(P〈0.01)。研究结果为科学使用和保护城市绿地土壤提供依据。  相似文献   

9.
生物炭-锰氧化物复合材料对红壤吸附铜特性的影响   总被引:5,自引:0,他引:5  
锰氧化物作为改性材料应用于制造复合材料一直是环境领域的研究热点,锰氧化物改性的复合材料在水处理、空气清新剂等领域应用广泛。但目前,将生物炭-锰氧化物复合材料作为吸附材料改变土壤对铜吸持能力的研究还不多见。采用等温平衡吸附法,测定生物炭-锰氧化物复合材料对红壤吸附铜的能力影响,并应用Freundlich方程Cs=KfCen分析红壤对铜的吸附特征。结果表明:不同用量的生物炭-锰氧化物复合材料加入后,均会明显提高红壤对铜的吸附量。添加0.5%、1.0%、2.0%和4.0%生物炭-锰氧化物复合材料的红壤处理,其铜的吸附量较未添加处理分别增加了63.1%、130%,310%和509%。Freundlich吸附方程能较好的描述不同用量生物炭-锰氧化物复合材料影响红壤对铜的吸附特征。添加0.5%、1.0%、2.0%和4.0%炭-锰材料处理的分配系数(Kf值)分别为0.176、0.286、0.653和0.800。生物炭-锰氧化物复合材料用量为4.0%时,分配系数(Kf值)较对照红壤提高了5倍,生物炭-锰氧化物复合材料加入红壤后对红壤pH值影响不大,对CEC(阳离子交换量)有较大的影响;生物炭-锰氧化物复合材料用量为4.0%时,CEC为5.59 cmol·kg-1,较对照增加了14.1%,温度升高,有利于提高红壤对铜的吸附能力。生物炭-锰氧化物复合材料加入红壤后,红壤在1034.63、537.22、471.45 cm-1处有吸收峰出现,红壤表面-OH、Mg-O、Si-O等活性官能团数量明显增加。生物炭-锰氧化物复合材料增加红壤对铜的吸附机制可能是红壤表面Mg-O、Si-O等官能团与铜形成了Mg-O-Cu-、Si-O-Cu-络合物,提高了红壤对铜的吸持能力。从土壤化学与土壤修复的角度出发,生物炭-锰氧化物复合材料可用于铜污染红壤修复。  相似文献   

10.
丘陵山区土壤阳离子交换量(CEC)的空间分布预测   总被引:4,自引:0,他引:4  
运用GIS的空间分析技术和DEM.在区域范围内可以表征基于地形因子的土壤-景观模型.本研究根据江西省兴国县151个样点数据,分析CEC和地形因子的相关关系,建立回归模型,进行预测.结果表明,表层土壤中CEC含量平均值为8.7 cmol/kg.空间分布上,CEC含量在5~8 cmol/kg、8~12 cmol/kg和12~15 cmol/kg的而积分别为l 270 km2、l500 km2和281 km2.CEC含量大于12 cmol/kg,主要分布在干枚岩和红砂岩发育的土壤中,分布面积分别为242 km2和56km2.地形变量巾坡向埘CEC含量影响最大,CEC含量和有机质、粘粒、海拔、母岩、坡向存在着正相关关系,坡度和CEC含量的相关关系不明显.利用回归分析模型和DEM(30 ITIX 30 m),预测CEC的卒问分布,R2为0.575.  相似文献   

11.
This study investigated the effects of surface functional groups, cation exchange capacity (CEC), surface charge, sesquioxides and specific surface area (SSA) of three soil clay fractions (SCFs) (kaolinite–illite, smectite and allophane) on the retention of dissolved organic carbon (DOC) in soils. Physico-chemical properties of the SCFs before and after removing native carbon and/or sesquioxides were characterised, and the DOC adsorption–desorption tests were conducted by a batch method. Native organic carbon (OC)/sesquioxide removal treatments led to a small change in the CEC values of kaolinite–illite, but significant changes in those of smectite and allophane. The net negative surface charge increased in all samples with an increase in pH indicating their variable charge characteristics. The removal of native OC resulted in a slight increase in the net positive charge on soil clay surfaces, while sesquioxide removal increased the negative charge. Changes in the functional groups on the SCF surfaces contributed to the changes in CEC and zeta potential values. There was a strong relationship (R 2 = 0.93, p < 0.05) between the Langmuir maximum DOC adsorption capacity (Q max) and SSA. The Q max value also showed a moderately strong relationship (R 2 = 0.55, p < 0.05) with zeta potential (at pH 7). Q max was only poorly correlated with CEC and native OC content. Therefore, along with SSA, the surface charge and functional groups of SCFs played the key role in determining the adsorption affinity and hence retention of DOC in soils.  相似文献   

12.
We studied the accumulation of p353-nonylphenol residues in the biomass of grass grown in soil amended with sewage sludge submitted to various conditioning/dewatering treatments. Incubation experiments were conducted growing Poa pratensis in sludge-amended soils and applying one 14C-labelled isomer of nonylphenol in the different systems. More metabolites than parent compounds were recovered in both roots and leaves of the grass. The type of sludge conditioning and dewatering treatment had a slight effect on the bioaccumulation of nonylphenol and its metabolites. When the grass was cultivated in soils amended with dewatered sludge without conditioning pretreatment, an increased accumulation was observed in the roots, while the final biomass of the grass was lower.  相似文献   

13.
Previous research has demonstrated that many urban soils are enriched in Pb, Cd and Zn. Culture of vegetable crops in these soils could allow transfer of potentially toxic metals to foods. Tanya lettuce (Lactuca sativa L.) was grown in pots of five urban garden soils and one control agricultural soil to assess the effect of urban-soil metal enrichment, and the effect of soil amendments, on heavy metal uptake by garden vegetables. The amendments included NPK fertilizer, limestone, Ca(H2PO4)2, and two rates of limed sewage sludge compost. Soil Cd ranged from 0.08 to 9.6 mg kg–1; soil Zn from 38 to 3490 mg kg–1; and soil Pb from 12 to 5210 mg kg–1. Lettuce yield on the urban garden soils was as great as or greater than that on the control soil. Lettuce Cd, Zn and Pb concentrations increased from 0.65, 23, and 2.2 mg kg–1 dry matter in the control soil to as high as 3.53, 422 and 37.0 mg kg–1 on the metal-rich urban garden soils. Adding limestone or limed sewage sludge compost raised soil pH and significantly reduced lettuce Cd and Zn, while phosphate fertilizer lowered soil pH and had little effect on Zn but increased Cd concentration in lettuce. Urban garden soils caused a significant increase in lettuce leaf Pb concentration, especially on the highest Pb soil. Adding NPK fertilizer, phosphate, or sludge compost to two high Pb soils lowered lettuce Pb concentration, but adding limestone generally did not. On normally fertilized soils, Pb uptake by lettuce was not exceptionally high until soil Pb substantially exceeded 500 mg kg–1. Comparing garden vegetables and soil as potential sources of Pb risk to children, it is clear that the risk is greater through ingestion of soil or dust than through ingestion of garden vegetables grown on the soil. Urban dwellers should obtain soil metal analyses before selecting garden locations to reduce Pb risk to their children.  相似文献   

14.
Sequential extraction has been used as a suitable method for fractionation of chemical forms of trace elements and study of their plant availability. Surface soils were sampled from Guilan and Hamadan provinces in north and northwest of Iran with temperate and semiarid climates. The chemical forms of Pb in the Pb(NO3)2-treated (400 μg Pb g−1) soils have been studied in solid state incubation (FC) at 27°C in sterile and unsterile conditions. After 20 min and 3600 h a sequential extraction scheme was also used to fractionate Pb of incubated samples into soluble-exchangeable (Sol-Exch), carbonates associated (ACar), organic matter associated (AOM), Mn oxide associated (AMnOx), Fe oxide associated (AFeOx), and residual (Res) forms. Temperate soil samples had higher clay content, cation exchange capacity (CEC), dichromate oxidable organic carbon (OC), total Kjeldahl-nitrogen (TN), biological activity, amorphous and crystalline Fe and Al, but semiarid soil samples had higher sand content, pH, equivalent calcium carbonate (ECC), available P and K. Soil lead fractionation revealed that in both groups of soils Pb largely changed to exchangeable, carbonates associated and organic associated forms after 20 min. The chemical forms of Pb differed widely among soils after 3600-h incubation. The conversion rate of Pb from more available forms to less available forms was higher in temperate soils with higher Fe–Mn oxides and OM contents compared to semiarid soils. In temperate soils after 3600-h incubation, greater content of Pb was observed in Res (68%), AOM (14%), ACar (7%), and AMnOx (5%) fractions. However, in semiarid soils greater content of Pb was observed in Res (61%), ACar (16%), Sol-Exch (8%), and AOM (8%) fractions. The sum of AMnOx and AFeOx chemical forms for Pb in semiarid soils compared to temperate soils was lower. It was only 7% against 9% in temperate soils. Soil microorganisms in unsterile soils had significant effect on AOM, AFeOx and Res fractions of Pb. They not only increased AOM and AFeOx fractions of Pb in soils but also decreased Res fraction of Pb significantly.  相似文献   

15.
The effects of soil pH and other soil properties on the uptake of AI by soybean plants have been investigated in a greenhouse experiment. Six soils were compared that were developed over six contrasting bedrock types ranging widely in their AI content and other chemical and physical characteristics, namely Oxford Clay, Chalk, Lower Lias Clay, Devonian Shale, Granite and Lower Greensand. Soil pH varied naturally between soil types and each soil was also amended to give two other pH levels using elemental sulphur and/or calcium carbonate. AI concentrations in various parts of the soybean plants were determined by ICP-AES after acid digestion. The AI solubility in the soils and hence its availability to the plants was estimated using a number of different reagents designed to extract different forms of AI. The AI concentration measured in the soybean leaves was found to be predicted most accurately by the ‘available’ AI extracted from soils by 0.02 M CaCl2. The relationship appears to the linear, with a correlation coefficient of 0.97 (p <0.01). The AI content of the leaves increases with decreasing soil pH. The relationship is non-linear with a marked increase in leaf AI for soils with pH <4.4. The amounts of ‘plant-available’ AI in the soils extracted with 0.02 M CaCl2 was much less than that extracted with 0.05 M EDTA, although both increased markedly with decreasing soil pH. The amount of AI measured in the soybean plants was directly related to both the ‘available’ forms of AI in the soils, and also to the pH of the soils. Soil pH was identified as a major factor that controls the uptake of Al from soil into the soybean plant.  相似文献   

16.
Sewage sludge contains rich organic matter and nutrients essential for the growth of plants but the presence of toxic heavy metals restricts its land application. To overcome this, the study aims an eco-friendly approach for leaching out heavy metals. Sewage sludge from sewage treatment plant, Chennai, India was characterised. The analysis of total heavy metal concentration was done by digesting in nitric acid and different forms were extracted by community bureau of reference sequential method. Heavy metals: As, Cd, Cr, Cr, Ni, Pb and Zn were determined using inductively coupled plasma optical emission spectrometry Perkin Elmer Optima 5300 DV. The experimental set-up for heavy metal leaching was held for five consecutive days at different concentrations of humic acid (0.1%, 0.5% and 1%) at varied pH (5–9). Results revealed that at the end of fifth day at pH 8, 1% humic acid is capable of leaching out 75.5% cadmium, 66.0% nickel, 52.0% lead, 51.2% zinc, 31.2% copper and 8.5% cadmium from sewage sludge. Statistically positive correlation (0.7088) existed between the percentage of heavy metals leached out and the sum of soluble and reducible fractions. Thus, from ecological point of view, humic acid can be used to leach out heavy metals from sewage sludge serving the need in restoration of soil fertility upon land application.  相似文献   

17.
A study to understand the mobility and transport of heavy metals (HMs) from soil and soil amended with sewage sludge to maize plants was carried out. The total and ethylenediaminetetraaceticacid (EDTA)-extractable HMs in agricultural soil and untreated domestic sewage sludge samples, and the correlation between the total and extractable metals in soil and sewage sludge were carried out. Pot experiments were performed to study the transfer of HMs to maize grains, grown in soil (control) and in soil amended with sewage sludge (test samples). The total and extractable HMs in soil, sewage sludge, and maize grains were analysed by FAAS/ETAAS (flame atomic absorption spectrometer/electrothermal atomic absorption spectrometer) after digestion in microwave oven. Statistically significant correlations were obtained between the total contents of Cu, Cd, As and their respective extractable fractions in soil, while in domestic wastewater sludge (DWS) the better correlation was observed only for Ni and Cd. The edible part of maize plants (grains) from test samples presented high concentration of Zn, Pb, Ni, Cd, Cu, As, and Cr concentrations (80.7–85.6, 3.8–3.95, 2.35–2.5, 0.75–0.82, 3.21–3.29, 0.23–0.27, and 0.22–0.29?mg?kg?1, respectively). Good correlations were found between metals in exchangeable fractions of both soil and DWS and total metals in control and test samples of maize grains. The transfer factor of all HMs from DWS to maize grains was also determined.  相似文献   

18.
The addition of synthetic zeolites and similar materials to metal contaminated soils has been shown to reduce soil phytotoxicity and to improve the quality of plant growth on such amended soils. To gain an understanding of the mechanism by which the phytotoxicity of contaminated soils is reduced when treated with synthetic zeolites, sequential extraction procedures and soil solution techniques have been used to identify changes associated with metal speciation in amended soils. Sequential extraction data and changes in soil solution composition are presented for three different contaminated soils, amended with three synthetic zeolites (P, 4A and Y) at concentrations of 0.5%, 1% and 5% w/w, or lime at 1%. The soils were collected from the site of a metal refinery, an old lead zinc mine spoil tip and from a field which had been treated with sewage sludge. After incubation of the zeolite treated soils for between one and three months, results showed a reduction in the metal content of the ammonium acetate fraction between 42% and 70%, depending on soil, zeolite and rate of addition, compared with the unamended soils. In addition, soil solution experiments indicated that synthetic zeolite amendments were more efficient at reducing metal content than comparable lime treatment. The mechanism by which synthetic zeolites reduce metal bioavailability in contaminated soils is discussed and compared to other amendments.  相似文献   

19.
The effects of various organic wastes on nitrogen mineralisation in soil were investigated. For this purpose, poultry (pl), cattle (ct), sheep (sh) manures and sewage sludge were used as organic wastes. This study was conducted as a laboratory incubation experiment with a calcareous soil. Organic wastes (3%) were added to pots of soil and incubated at 28°C for 16 weeks under non-leaching conditions. The cumulative mineralised N was then fitted to a single exponential model. Maximum nitrogen mineralisation was determined in the second week of incubation in soil treated with poultry manure. Overall, the results showed that the amount of mineral nitrogen in soil treated with different organic wastes was controlled by the type of manure. The results indicated that among the organic wastes, sewage sludge induced the highest quantities of net N mineralisation. Generally, organic wastes increased the amount of N mineralisation in the studied soil and the values of N0 and k in treated soil varied depending on the type of organic waste. The highest N0 and k values were found in poultry-treated soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号