首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

In this study, a melting process with addition of SiO2was applied to treat incinerator fly ash. To describe the encapsulation behaviors of metals quantitatively, the amorphous volume fraction (AVF) of slags was initially determined. Vitrification appeared to reduce the mobility of Cr, Cu, Mn, and Ni instead of significantly immobilizing Cd, Pb, and Zn. It was verified that SiO2enhanced the formation of an amorphous glassy structure. With the increase of SiO2, the crystalline phases would gradually diminish and transform into a higher silica-connected species. During the formation of slag matrix, Al, Ca, and Mg could modify the glass network, and consequently the encapsulation behaviors of these species would noticeably affect the chemical stability of slags. Significant immobilization of crust metals could be achieved only when a more compact and interconnected amorphous glass network was formed. Hence, it indicated that a higher AVF silica-based slag had a better potential to resist acid attack. In conclusion, for environmental protection, it is important to investigate the correlation between the encapsulation behaviors of metals and the crystalline characteristics of slag structure.  相似文献   

2.
The final disposal of ash from an incinerator is of special concern because of the possibility of its releasing toxic substances. Melting/vitrification has been regarded as a prospective technology of ash treatment. The object of this investigation was to evaluate the effect of silica (SiO2) addition on the immobilization of hazardous metals and the encapsulation of a glass network during the vitrification process. Four specimens with SiO2/fly ash mixing ratios of 0, 0.1, 0.2, and 0.3, respectively, were tested. The mobility of metals in slag was then estimated by a sequential extraction procedure. X-ray diffraction analysis indicates that SiO2 leads to the polymerization of silicates. The encapsulation of aluminum, calcium, and magnesium would not be observed unless adequate amount of SiO2 was added. It was also found that SiO2 addition enhances the formation of a compact and interconnected glass network structure and, thus, contributes to the chemical stability of metals in slag. After vitrification, the mobility of cadmium, copper, iron, chromium, nickel, lead, and zinc was significantly reduced. However, there is no significant correlation between the immobilization of these metals and the addition of SiO2.  相似文献   

3.
Metallurgical slags from primary lead smelting were submitted to a 30-day batch leaching procedure in 20 and 8 mM citric solutions in order to determine the kinetics of release of Pb, Cu, Zn and As. The experiment was coupled with the PHREEQC-2 speciation-solubility modelling and mineralogical study of newly formed products (SEM/EDS, XRD, TEM/EDS and Raman spectrometry). A strong scavenging of metals and metalloids from the 8 mM citric leachate was observed due to the formation of newly formed products. The secondary precipitate consisted of well-developed calcite (CaCO3) crystals and amorphous organo-mineral matrix composed of hydrous ferric oxides and amorphous SiO2. Metals (Pb, Zn, Cu) and arsenic released into the solution were subsequently bound onto the newly formed product (adsorption on oxides) or trapped within the calcite structure (Zn, Mn). Similar scavenging mechanism can be taken into account in real soil systems with lower concentration of citric acid. Then, the covering of slag dumps with a thick soil layer and subsequent re-vegetation might be a possible scenario for slag management on some metallurgical sites.  相似文献   

4.
This study investigates the role of Na ions, a common flux, in the vitrification process. Artificial glass systems composed of Al2O3, CaO, and SiO2 with various Na concentrations were melted at 1450 °C. The specimens were cooled by air cooling and water quenching and the metal mobility was evaluated using a sequential extraction procedure. The X-ray diffraction analysis and scanning electron microscopy observations showed that Na ions governed the air-cooled slag’s structure. Na ions initially depolymerized CaSiO3-linked chains into CaSiO3 chains, and further cut them into shorter and nonuniform ones, making the slag structure amorphous. With even more Na ions, CaSiO3 chains were divided into single SiO4 tetrahedrons and formed Na-related crystals (Na2Ca3Si2O8 and NaAlSiO4). The phase distributions of Al, Cr, Cu Mn, and Ni showed that Na has a positive effect on the immobilization of heavy metals at suitable concentrations, but a negative effect when in excess amounts.
Implications:Vitrification has been widely used to treat hazardous materials. The Na-bearing additives were often used as a flux to improve the melting process. This study described the role of Na played in the vitrification process. The Na ions acted as glass modifier and depolymerize the chain structure of slag. With adequate addition amount of Na ions, the immobilization of heavy metals was improved. The results provided much information about the crystalline phase variation, metal mobility, and surface characteristics while Na serves as a flux.  相似文献   

5.

This comparative field study examined the responses of bacterial community structure and diversity to the revegetation of zinc (Zn) smelting waste slag with eight plant species after 5 years. The microbial community structure of waste slag with and without vegetation was evaluated using high-throughput sequencing. The physiochemical properties of Zn smelting slag after revegetation with eight plant rhizospheres for 5 years were improved compared to those of bulk slag. Revegetation significantly increased the microbial community diversity in plant rhizospheres, and at the phylum level, Proteobacteria, Acidobacteria, and Bacteroidetes were notably more abundant in rhizosphere slags than those in bulk waste slag. Additionally, revegetation increased the relative abundance of plant growth-promoting rhizobacteria such as Flavobacterium, Streptomyces, and Arthrobacter as well as symbiotic N2 fixers such as Bradyrhizobium. Three dominant native plant species (Arundo donax, Broussonetia papyrifera, and Robinia pseudoacacia) greatly increased the quality of the rhizosphere slags. Canonical correspondence analysis showed that the differences in bacterial community structure between the bulk and rhizosphere slags were explained by slag properties, i.e., pH, available copper (Cu) and lead (Pb), moisture, available nitrogen (N), phosphorus (P), and potassium (K), and organic matter (OM); however, available Zn and cadmium (Cd) contents were the slag parameters that best explained the differences between the rhizosphere communities of the eight plant species. The results suggested that revegetation plays an important role in enhancing bacterial community abundance and diversity in rhizosphere slags and that revegetation may also regulate microbiological properties and diversity mainly through changes in heavy metal bioavailability and physiochemical slag characteristics.

  相似文献   

6.
Digested sewage sludge solidification by converter slag for landfill cover   总被引:9,自引:0,他引:9  
Kim EH  Cho JK  Yim S 《Chemosphere》2005,59(3):387-395
A new technology for solidification of digested sewage sludge referred to as converter slag solidification (CSS) has been developed using converter slag as the solidifying agent and quick lime as the solidifying aid. The CSS technology was investigated by analyzing the physicochemical properties of solidified sludge and determining its microstructural characteristics. The feasibility of using solidified sludge as a landfill cover material was considered in the context of the economical recycling of waste. Sludge solidified using the CSS technology exhibited geotechnical properties that are appropriate for replacing currently used cover soil. Microscopic analyses using XRD, SEM and EDS revealed that the main hydrated product of solidification was CSH (CaO . SiO2 . nH2O), which may play an important role in the effective setting process. Negligible leaching of heavy metals from the solidified sludge was observed. The solidification process of the hydrated sludge, slag and quicklime eliminated the coliform bacteria. Recycled sewage sludge solidified using CCS technology could be used as an effective landfill cover.  相似文献   

7.
Huang YC  Li KC 《Chemosphere》2003,50(8):1063-1068
The objective of this study was to compare the effects of CO/CO(2) reducing conditions with those of air oxidizing conditions on the pouring temperature of the sludge melting process and the heavy metal leachability of the resultant sludge slag. Synthetic sludge ash composed of SiO(2), CaO and Al(2)O(3), as well as sewage sludge ash generated from a laboratory incinerator was employed. The experimental results indicated that the pouring temperatures are significantly reduced under the reducing conditions of CO/CO(2), or 24 and 77 degrees C lower than under air conditions for synthetic and sludge ash, respectively. The heavy metal leaching tests further indicate lower heavy metal concentrations present in the leachate under the reducing conditions, notably an order of magnitude lower in Zn. However, X-ray diffractogram indicates similar peaks for these two slags produced under different conditions.  相似文献   

8.
Here we demonstrate a calcifying ureolytic bacterium Bacillus sp. CS8 for the bioremediation of chromate (Cr(VI)) from chromium slag based on microbially induced calcite precipitation (MICP). A consolidated structure like bricks was prepared from chromium slags using bacterial cells, and five stage Cr(VI) sequential extraction was carried out to know their distribution pattern. Cr(VI) mobility was found to significantly be decreased in the exchangeable fraction of Cr slag and subsequently, the Cr(VI) concentration was markedly increased in carbonated fraction after bioremediation. It was found that such Cr slag bricks developed high compressive strength with low permeability. Further, leaching behavior of Cr(VI) in the Cr slag was studied by column tests and remarkable decrease in Cr(VI) concentration was noticed after bioremediation. Cr slags from columns were characterized by SEM–EDS confirming MICP process in bioremediation. The incorporation of Cr(VI) into the calcite surface forms a strong complex that leads to obstruction in Cr(VI) release into the environment. As China is facing chromium slag accidents at the regular time intervals, the technology discussed in the present study promises to provide effective and economical treatment of such sites across the country, however, it can be used globally.  相似文献   

9.
The Sustainable Environment Research Center of National Cheng Kung University in Taiwan has set up a treatment plant to dispose of laboratory waste. In the treatment process, the residue from the incineration system and the physical and chemical system is vitrified by a plasma melting system. Part 1 of this study described the treatment path of metals during vitrification. In Part 2, plasma vitrified slag is reused by using a molding technology. Unsaturated polyester resin and glass fiber were used as the molding material and additive, respectively, in the molding process. With an appropriate mixing ratio of unsaturated polyester resin, glass fiber, and slag, the physical properties of composites improved, and the ultimate tensile strength reached 17.6 MPa. However, an excess amount of slag reduced the strength and even retarded the production of composites. Differential thermal analysis and the water bathing test results show that the composite decomposed at 80 degrees C and that it vaporized at 187 degrees C. Although the unsaturated polyester resin decomposed, the metal encapsulated in the slag did not leach out. The results show that the reuse of slag using molding technology should be taken into consideration.  相似文献   

10.
The applicability of sequential extraction as a means to determine species of heavy-metals was examined by a study on soil samples from two Superfund sites: the National Lead Company site in Pedricktown, NJ, and the Roebling Steel, Inc., site in Florence, NJ. Data from a standard sequential extraction procedure were compared to those from a comprehensive study that combined optical- and scanning-electron microscopy, X-ray diffraction, and chemical analyses. The study shows that larger particles of contaminants, encapsulated contaminants, and/or man-made materials such as slags, coke, metals, and plastics are subject to incasement, non-selectivity, and redistribution in the sequential extraction process. The results indicate that standard sequential extraction procedures that were developed for characterizing species of contaminants in river sediments may be unsuitable for stand-alone determinative evaluations of contaminant species in industrial-site materials. However, if employed as part of a comprehensive, site-specific characterization study, sequential extraction could be a very useful tool.  相似文献   

11.
The applicability of sequential extraction as a means to determine species of heavy-metals was examined by a study on soil samples from two Superfund sites: the National Lead Company site in Pedricktown, NJ, and the Roebling Steel, Inc., site in Florence, NJ. Data from a standard sequential extraction procedure were compared to those from a comprehensive study that combined optical- and scanning-electron microscopy, X-ray diffraction, and chemical analyses. The study shows that larger particles of contaminants, encapsulated contaminants, and/or man-made materials such as slags, coke, metals, and plastics are subject to incasement, non-selectivity, and redistribution in the sequential extraction process. The results indicate that standard sequential extraction procedures that were developed for characterizing species of contaminants in river sediments may be unsuitable for stand-alone determinative evaluations of contaminant species in industrial-site materials. However, if employed as part of a comprehensive, site-specific characterization study, sequential extraction could be a very useful tool.  相似文献   

12.

Silicon-based fertilizers and soil amendments can have direct and indirect positive influences on cultivated plants. The solid forms of Si-based substances, the most widespread in use, are efficient only at high application rates due to their low level of solubility. Several types of Si-based substances such as fumed silica, slags from the iron and steel industry, modified slags, and a Si-rich product were tested using barley and pea as silicon accumulative and non-accumulative plants, respectively, at two application rates. The plants were grown under toxic concentrations of heavy metals in a greenhouse. Si-rich materials high in water-soluble Si had a positive effect at both the low and high application rates, and for both plant species. This type of substance can be regarded as Si fertilizer, demonstrating greater efficiency at a low application rate and lessened efficiency at a high application rate for protection of the cultivated plants against accumulation of the heavy metals.

  相似文献   

13.
Slag arising in ferrochromium and stainless steel production is known to contain residual levels of trivalent chromium. As the chromium is normally bound in the slag matrix in various silicate or spinel phases, and hence not easily mobilised, utilisation or controlled disposal of such slag is generally considered unproblematic. Experimental test work with a number of slag materials indicates, however, that very gradual oxidation of trivalent to hexavalent chromium does occur when the slag is exposed to atmospheric oxygen, rendering a quantifiable but small portion of chromium in this much more mobile and toxic form. Mechanisms and rates of the oxidation reaction were investigated in a number of long-term studies using both original slag materials and artificial mixes of chromium and calcium oxides. Powders of these materials, some of them rolled into balls, were left to age under different conditions for periods of up to 12 months. In the slag samples, which contained between 1 and 3 wt.% chromium, 1000–10 000 μg Cr(VI) were found per gram of chromium within 6–9 months of exposure to an ambient atmosphere. The rate of the oxidation reaction decreased exponentially, and the reaction could generally be said to have ceased within 12 months. In mixtures of calcium and chromium oxides the oxidation reaction is presumed to occur at the boundaries between chromium oxide and calcium oxide phases through diffusion of oxygen along the grain boundaries and of Cr3+ across the boundaries, resulting in the formation of calcium chromate. In the slags, where calcium and chromium oxide can form a solid solution, the oxidation is likely to occur at the exposed surface of grains containing this solution.  相似文献   

14.
Wang S  Liang K 《Chemosphere》2007,69(11):1798-1801
A new glass–ceramic was synthesized by crystal growth from a homogenous glass obtained by melting a mixture of fly ash collected from a power plant in Hebei province of China, titanium slag collected from a titanium factory in Sichuan province of China, and MgCO3 as an additive. According to the measurement results of differential thermal analysis, a thermal treatment of nucleating at 850 °C for 2 h and crystallizing at 985 °C for 1.5 h was used to obtain the crystallized glass. X-ray diffraction and scanning electron microscopy measurements showed that the main crystalline phase of this material was iron-ion substituted cordierite, (Mg,Fe)2Al4Si5O18, which is homogeneously dispersed within the parent glass matrix. The infrared radiance and thermal expansion coefficient of this material have been examined, and the results demonstrate that this glass–ceramic material has potential for application in a wide range of infrared heating and drying materials.  相似文献   

15.
污泥焚烧灰固化处理技术研究   总被引:1,自引:0,他引:1  
研究了硅酸盐水泥、高铝水泥、高岭土和β-萘系减水剂在污泥焚烧灰固化技术中的应用效果。考察了污泥焚烧灰固化块(以下简称固化块)的抗压强度,测定了固化块的重金属浸出毒性,并采用X射线衍射(XRD)和扫描电镜(SEM)分析固化块组成和微观结构。结果表明,4种物质对提高固化块的抗压强度均具有较好的效果,硅酸盐水泥、高铝水泥、高岭土和β-萘系减水剂的适宜掺量分别为10、30、20、1.0g(以100g污泥焚烧灰中掺加的质量计)。XRD和SEM分析结果显示,经固化处理后制得的固化块结构密实,存在石英(SiO2)、水化硅铝酸钙(CaAl2Si2O8)和水化硅酸铝钙(Ca2Al2SiO7)等物质,其中水化硅铝酸钙等凝胶物质有利于提高固化块的抗压强度。  相似文献   

16.
Hou YD  Wang XC  Wu L  Chen XF  Ding ZX  Wang XX  Fu XZ 《Chemosphere》2008,72(3):414-421
Mesoporous nanocrystalline N-doped SiO2/TiO2 visible-light photocatalysts were prepared by treating SiO2/TiO2 xerogels in a flow of nitrogen gas bubbled through concentrated ammonia solution. Structural characterization and performance analysis results revealed that the addition of SiO2 remarkably altered the phase composition, specific surface area, microstructure, as well as the photocatalytic activity of N-doped TiO2. The presence of SiO2 in N-doped TiO2 particles suppressed the formation of rutile phase and the crystal growth of N-doped TiO2 particles during thermal calcinations. When weight ratio of SiO2/TiO2 was in 0.05-0.20, the N-doped SiO2/TiO2 exhibited higher photocatalytic activity than the N-doped TiO2, and optimum ratio was found to be 0.05. The enhanced photocatalytic activity could be attributed to the higher specific area, larger pore volume, and more surface hydroxyl groups in the catalyst.  相似文献   

17.
Yang HC  Kim JH 《Chemosphere》2004,57(5):421-428
This study investigated the emission characteristics of PCDD/Fs and the partitioning of three heavy metals (Cd, Hg and Pb) and two radioactive metal surrogates (Co and Cs) in a radwaste plasma arc melter system. Typical mixtures of low-level radioactive wastes were simulated as the trial burn surrogate wastes. The emission of PCDD/Fs and the partitioning of the metals were strongly influenced by the feed waste stream and melter operating temperature, respectively. The emissions of PCDD/Fs, cadmium and lead were greatly enhanced when the polyvinyl chloride was included in the feed waste stream. Most of the nonvolatile cobalt partitioned into the glass. A significant quantity of cesium, cadmium and lead was vaporized during the highest melter temperature test. A lower melter temperature resulted in more cesium, cadmium and lead species remaining in the glass. The results of this study suggest that wet scrubbing as well as a low-temperature two-step fine filtration, or both of them together could not effectively capture the gas-phase or fine particle phase PCDD/Fs and mercury species. In order to effectively treat low-level radioactive waste streams, the tested high-temperature melter should include an adsorption system, which could collect the gas-phase PCDD/Fs and mercury species.  相似文献   

18.
The role of rhizosphere processes in metal hyperaccumulation is largely unexplored and a matter of debate, related field data are virtually not available. We conducted a field survey of rhizosphere characteristics beneath the Ni hyperaccumulator Thlaspi goesingense Hálácsy and the metal-excluder species Silene vulgaris L. and Rumex acetosella L. growing natively on the same serpentine site. Relative to bulk soil and to the rhizosphere of the excluder species, we found significantly increased DOC and Ni concentrations in water extracts of T. goesingense rhizosphere, whereas exchangeable Ni was depleted due to excessive uptake of Ni. Chemical speciation analysis using the MINTEQA2 software package revealed that enhanced Ni solubility in Thlaspi rhizosphere is driven by the formation of Ni-organic complexes. Moreover, ligand-induced dissolution of Ni-bearing minerals is likely to contribute to enhanced Ni solubility. Increased Mg and Ca concentrations and pH in Thlaspi rhizosphere are consistent with ligand-induced dissolution of orthosilicates such as forsterite (Mg(2)SiO(4). Our field data reinforce the hypothesis that exudation of organic ligands may contribute to enhanced solubility and replenishment of metals in the rhizosphere of hyperaccumulating species.  相似文献   

19.
Reboreda R  Caçador I 《Chemosphere》2007,69(10):1655-1661
Total concentrations and fractionation of Cu, Zn and Pb in seven operationally defined phases (exchangeable, carbonates, manganese oxides, organic complexes, amorphous iron oxides, crystalline iron oxides and residual) were determined in sediments colonised by the halophyte species Halimione portulacoides and Spartina maritima in a Tagus estuary salt marsh (Portugal). We aimed to determine whether the speciation of these metals was different in areas colonised by each halophyte. Higher concentrations of Cu, Zn and, in particular Pb, were found in the rhizosphere of S. maritima than in the root sediments of H. portulacoides. Geochemical fractionation of Cu, Zn and Pb in sediments of the salt marsh depended upon the metal, and for Zn and Pb clearly varied with depth and with the colonising species. The higher redox potential observed in sediments colonised by H. portulacoides may in part explain the observed differences in the speciation of Cu, Zn and Pb.  相似文献   

20.
Recovering valuable metals such as Si, Ag, Cu, and Al has become a pressing issue as end-of-life photovoltaic modules need to be recycled in the near future to meet legislative requirements in most countries. Of major interest is the recovery and recycling of high-purity silicon (>99.9%) for the production of wafers and semiconductors. The value of Si in crystalline-type photovoltaic modules is estimated to be ?$95/kW at the 2012 metal price. At the current installed capacity of 30 GW/yr, the metal value in the PV modules represents valuable resources that should be recovered in the future. The recycling of end-of-life photovoltaic modules would supply >88,000 and 207,000 tpa Si by 2040 and 2050, respectively. This represents more than 50% of the required Si for module fabrication. Experimental testwork on crystalline Si modules could recover a >99.98%-grade Si product by HNO3/NaOH leaching to remove Al, Ag, and Ti and other metal ions from the doped Si. A further pyrometallurgical smelting at 1520ºC using CaO–CaF2–SiO2 slag mixture to scavenge the residual metals after acid leaching could finally produce >99.998%-grade Si. A process based on HNO3/NaOH leaching and subsequent smelting is proposed for recycling Si from rejected or recycled photovoltaic modules.
Implications:The photovoltaic industry is considering options of recycling PV modules to recover metals such as Si, Ag, Cu, Al, and others used in the manufacturing of the PV cells. This is to retain its “green” image and to comply with current legislations in several countries. An evaluation of potential resources made available from PV wastes and the technologies used for processing these materials is therefore of significant importance to the industry. Of interest are the costs of processing and the potential revenues gained from recycling, which should determine the viability of economic recycling of PV modules in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号