首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
An experiment was designed to examine in a long-lived seabird, the thin-billed prion (Pachyptila belcheri), how adults adjust their food provisioning strategy when their foraging abilities are reduced and when the chick's needs are increased. To reduce the foraging abilities of adults we impaired their flying ability by removing some flight feathers (handicapped), and to increase the food needs of the chick one parent was retained (single). Birds made either short foraging trips lasting 1–3 days, or long trips lasting 5–9 days. Control birds alternated long and short trips whereas single birds or handicapped birds made several successive short trips and thereafter a long trip. In each treatment, food loads tended to be heavier after long trips than after short trips, and single birds tended to bring heavier loads than control or handicapped birds. Birds in the three treatments lost similar amounts of mass after short trips and gained similar amounts of mass after long trips. However, the mass of handicapped birds declined through the experiment, while that of control and single birds remained stable. Although the proportion of chicks that died during the experiment was similar among the three treatments, the chicks fledged by a single bird were lighter than those in control nests. The results of the experiment suggest that thin-billed prions adjust their breeding effort differently to decreased flying ability or increased food demand by the chick. Single birds increase foraging effort without allowing their condition to deteriorate. Conversely, handicapped birds are unable to maintain their body condition while sustaining the chick at the same rate as control birds. It is suggested that in this long-lived seabird, adults probably adjust their breeding effort so that they do not incur the risk of an increased mortality, this risk being monitored by the body condition.  相似文献   

2.
Many breeding seabird species are central-place foragers and constrained to find productive prey patches within their foraging ranges. We assessed how different populations of a pelagic seabird species, the Cory’s shearwater Calonectris diomedea, breeding in oceanic and neritic conditions, cope with these constraints in the North Atlantic, during both incubation and chick-rearing periods. We analysed 237 foraging trips to study the movements and oceanographic characteristics of foraging habitats of seven different populations of Cory’s shearwaters. Generally, oceanic populations exhibited higher foraging effort, by travelling more time and to more distant areas, and larger home ranges and feeding areas, than the neritic population (i.e. breeding on an island within the Portuguese continental platform). On their short trips (i.e. ≤4 days), birds from the different populations fed mostly in shallower waters around the colony. During long trips (i.e. ≥5 days), feeding areas of both oceanic and neritic populations were characterized by high concentration values of chlorophyll-a, low sea-surface temperature and shallower habitats, with oceanic populations of the Azores exploiting areas north of the islands over known seamounts and frontal regions. Birds from other oceanic population (Selvagens) also exploited the African continental shelf system on their long trips. The home ranges of the different populations overlapped widely, but there was a general spatial segregation in terms of the core feeding areas at the population level. Core feeding areas and areas of foraging overlap between different populations should be important to inform conservation management measures, such as the definition of Marine Important Bird Areas for seabirds over the North Atlantic.  相似文献   

3.
Central place foragers are constrained in their foraging distribution by the necessity to return to their nest site at regular intervals. In many petrels that feed on patchily distributed prey from the sea surface over large foraging areas, alternating long and short foraging trips are used to balance the demands of the chick with the requirements of maintaining adult body condition. When the local conditions are favourable for prey density and quality, adults should be able to reduce the number of long foraging trips. We studied the flexibility in foraging trip lengths of a small pelagic petrel, the thin-billed prion Pachyptila belcheri, over three breeding seasons with increasingly favourable, cold-water conditions. During a warm-water influx in February 2006, chicks were fed less frequently and adults carried out foraging trips of up to 8 days. When conditions became more favourable with colder water temperatures in 2007 and 2008, thin-billed prions decreased trip lengths, more often attended their chick every day, and long foraging trips of six to eight days were not registered during 2008. Chick growth rates mirrored this, as chicks grew poorly during 2006, intermediate during 2007 and best during 2008. Thin-billed prions preyed mainly on squid during incubation and mainly on amphipods and euphausiids during chick-rearing. In the poorest season only, the diet was substantially supplemented with very small copepods. Together, the present results indicate that during warm-water conditions, thin-billed prions had difficulties in finding sufficient squid, amphipods or euphausiids and were forced to switch to lower trophic level prey, which they had to search for over large ocean areas.  相似文献   

4.
Pelagic seabirds are central place foragers during breeding and variation in foraging trip duration and range reflect differences in diet and chick provisioning, through the exploitation of divergent habitats of varying productivity. We tested whether these relationships hold in small procellarriids by equipping chick-rearing Cook’s petrel Pterodroma cookii (200 g) with geolocation-immersion loggers, conducting isotope analysis of blood and measuring chick meal mass following foraging trips of varying duration. Cook’s petrel tracked during chick rearing from Little Barrier Island (LBI) and Codfish Island (CDF), New Zealand had larger maximum ranges during longer foraging trips. Blood nitrogen isotope signatures (δ15N) of adults were significantly higher after foraging trips of longer duration, but not of greater maximum range. There was no significant relationship between blood carbon isotope signatures (δ13C) and foraging trip characteristics. Proportion of time spent on the sea surface and the mass of the meal brought back to chicks were consistently greater for Cook’s petrel with larger maximum ranges, which in the case of birds from CDF coincided with productive subtropical convergence zone habitats. As predicted, trip duration reflected divergent foraging behaviours in Cook’s petrel during breeding. We suggest that the availability of different prey is a key factor governing at-sea distributions and dietary composition of this species.  相似文献   

5.
Evidence of segregation in foraging habitat has been demonstrated in some top marine predators, including cetaceans, pinnipeds and seabirds. However, most data are not adequate to assess differences relating to body size or seasonal influences. This has implications for quantitative modelling of population-level predator–prey interactions and ecosystem structure. We examined potential influence of body size and ‘fatness’ on the foraging trip characteristics of a top marine predator, the Atlantic grey seal (Halichoerus grypus), in southwest Ireland within the framework of optimal foraging theory to examine how female grey seals foraging behaviour varied with size, and across the period between moult and breeding. Larger seals undertook trips of greater duration and travelled further from haul-out sites than smaller seals. However, body fat was negatively associated with trip duration and extent. Seals spent more time at sea during the summer, but trips were shorter in extent, suggesting more localized foraging during this season.  相似文献   

6.
As central-place foragers, pelagic seabirds are constrained by spatiotemporal heterogeneity to find productive marine areas and compete for prey. We analysed 97 foraging trips to study the movement and oceanographic characteristics of foraging habitats of two different—yet closely related—species of shearwaters (Scopoli’s shearwater Calonectris diomedea and Cory’s shearwater C. borealis) breeding in sympatry in the Mediterranean. We combined various methodological approaches (GPS-tracking, species distribution modelling and stable isotope analysis) to explore the foraging strategies of these two species. Isotopic results suggested that trophic habits of both shearwater species were similar, mainly based on pelagic fish consumption. Foraging areas of both species were characterized by shallow waters near the colony. Both shearwater species exploited persistent productive marine areas. The foraging areas of the two species broadly overlapped during the incubation period, but during chick-rearing period, Scopoli’s shearwaters apparently foraged in different areas than Cory’s shearwaters.  相似文献   

7.
Summary One aspect of behavioral ecology that has received considerable attention, especially by students of social insects, is the relative amount of energy invested by parents in the rearing of male versus female offspring. Sexual selection theory makes predictions about how individuals should allocate their total investment in the sexes. To test these predictions we must accurately quantify the relative cost incurred by a parent in the production of an average individual of either sex. Body weight ratios are the most common estimate of cost ratio, but the correspondence between offspring body weight and energetic investment on the part of the parent has rarely been determined. Calliopsis (Hypomacrotera) persimilis is a solitary, ground-nesting bee whose natural history makes it particularly convenient for studies of investment patterns and foraging behavior. Each day females construct and provision from 1 to 6 cells in linear, closely-spaced series. Each cell is provisioned with pollen from Physalis Wrightii flowers, which is collected on two or three foraging trips. However, the temporal sequence in which two- and three-trip foraging bouts occur is not random. Females invariably begin each day provisioning cells with three trips worth of pollen and usually switch to provisioning the latter cells of the day with just two trips worth of pollen. The sex of the offspring within the same co-linear series of cells also varies non-randomly — female offspring predominate in the first cells of each series and male offspring in the latter cells. The correspondence between the number of foraging trips to provision a cell, the total time spent foraging, and offspring sex was determined for 36 cells. The data indicate a close, though not absolute, relationship between the number of foraging trips and the sex of the offspring: males usually received two trips of pollen, though some received three, whereas female offspring invariably received three trips worth of pollen. A number of potential estimates of the relative cost of female and male offspring production were calculated. Estimates of the cost ratio based on the amount of time spent foraging, adult dry body weight, and pollen ball dry weight all give similar values. Female offspring receive an energetic investment of from 1.3 to 1.5 times that of males. These results support the use of adult dry body weight ratios in the estimation of cost ratios.  相似文献   

8.
Shallow-water octopuses have been reported as major predators of motile species in benthonic marine communities, capturing their prey by different foraging techniques. This study assessed for the first time the feeding ecology, foraging behavior, and defensive strategy during foraging, including the use of body patterns, to construct a general octopus foraging strategy in a shallow water-reef system. Octopus insularis was studied in situ using visual observations and video recordings. The diet included at least 55 species of crustaceans (70%), bivalves (17.5%), and gastropods (12.5%); however, only four species accounted for half of the occurrences: the small crabs Pitho sp. (26.8%) and Mithrax forceps (23.9%), the bivalve Lima lima (5.3%), and the gastropod Pisania pusio (4.9%). Poke and crawl were most frequent foraging behaviors observed in the video recordings. The foraging behaviors were associated with environmental variables and octopus body size. The sequences of foraging behavior showed characteristics of a tactile saltatory searching predator, as well as a visual opportunist. Body patterns showed a relationship with foraging behavior, habitat variables, and octopus body size. Mottle was the most frequent pattern, especially during poke and crawl, in shallower depths. Dorsal light–ventral blue green was more frequent during swimming at mid-water, and Blotch was the normal pattern during web-over by large animals. The large proportion of two species of small crabs in den remains, the intense search for food during short hunting trips, and the intense use of cryptic body patterns during foraging trips, suggest that this species is a ‘time-minimizing’ forager instead of a ‘rate-maximizer’.  相似文献   

9.
In order to forage and to provision offspring effectively, seabirds negotiate a complex of behavioural, energetic, environmental and social constraints. In first tests of GPS loggers with seabirds in North America, we investigated the foraging tactics of free-ranging northern gannets (Sula bassana) at a large and a medium-sized colony that differed in oceanography, coastal position and prey fields. Gannets at Low Arctic colony (Funk Island) 50 km off the northeast coast of Newfoundland, Canada provisioned chicks almost entirely with small forage fish (capelin Mallotus villosus, 89%), while at boreal colony (Bonaventure Island) 3 km from shore in the Gulf of St. Lawrence, Quebec, Canada, large pelagic fish dominated parental prey loads (Atlantic mackerel Scomber scombrus 50%, Atlantic herring Clupea harengus 33%). Mean foraging range and the total distance travelled per foraging trip were significantly greater at the larger inshore colony (Bonaventure) than at the smaller offshore colony (Funk Island; 138 and 452 km vs. 64 and 196 km, respectively). Gannets from Funk Island consistently travelled inshore to forage on reproductive capelin shoals near the coast, whereas foraging flights of birds from Bonaventure were much more variable in direction and destination. Birds from the Low Arctic colony foraged in colder sea surface water than did birds from the boreal colony, and dive characteristics differed between colonies, which is concordent with the difference in prey base. Differences between the colonies reflect oceanographic and colony-size influences on prey fields that shape individual foraging tactics and in turn generate higher level colony-specific foraging “strategies”.  相似文献   

10.
In pelagic seabirds, who often explore distant food resources, information is usually scarce on the level of trophic segregation between parents and their offspring. To investigate this issue, we used GPS tracking, stable isotopes and dietary information of Cory’s shearwaters Calonectris diomedea breeding in contrasting environments. Foraging trips at Selvagem Grande (an oceanic island) mainly targeted the distant African coast, while at Berlenga island (located on the continental shelf), shearwaters foraged mainly over nearby shelf waters. The degree of isotopic segregation between adults and chicks, based on δ13C, differed markedly between the two sites, indicating that adult birds at Selvagem fed their chicks with a mixture of shelf and offshore pelagic prey but assimilated more prey captured on coastal shelf waters. Isotopic differences between age classes at Berlenga were much smaller and may have resulted from limited dietary segregation or from age-related metabolic differences. The diet of shearwaters was also very different between the two colonies, with offshore pelagic prey only being detected at Selvagem Grande. Our findings suggest that spatial foraging constraints influence resource partitioning between pelagic seabirds and their offspring and can lead to a parent–offspring dietary segregation.  相似文献   

11.
The diet of white-chinned petrels Procellaria aequinoctialis breeding at the Crozet Archipelago (southern Indian Ocean) was studied using two complementary methods: lipid analysis of stomach oils as trophic markers together with the conventional dietary approach (i.e., stomach content analysis). Objectives were (1) to investigate the adult diet when they feed for themselves by analyzing stomach oil lipids, and (2) to compare the lipid signature of chick and adult oils. Stomach oils mainly consisted of triacylglycerols (TAG), diacylglycerol-ethers (DAGE) and wax esters (WE) (66, 14 and 11%, respectively). The dietary origin of TAG and WE was evaluated by linear discriminant analyses with fatty acid and fatty alcohol fractions. Analyses evidenced that stomach oils did not originate from Antarctic krill, but instead from myctophid fish, thus demonstrating the importance of mesopelagic fish in the nutrition of adult petrels. This result was consistent with the identification of digested remains of myctophids recovered from adult stomach contents after long foraging trips. Large amounts of a rare lipid class, DAGE (up to 76% of total lipids), were identified in two stomach oils, together with fresh remains of the squid Gonatus antarcticus (99% by mass), suggesting that DAGE could have the potential to be trophic markers of cephalopods. Moreover, six oils probably originated from Patagonian toothfish, thus confirming strong interactions between white-chinned petrels and fisheries. Comparison between chick and adult stomach oils indicated no major differences in their biochemical composition suggesting an identical dietary origin of oils, mainly myctophids. Both adult and chick oils can therefore be used to determine the feeding ecology of adult birds when they feed far away from their breeding grounds. Finally, food analysis of chick samples and adult samples collected after short and long trips indicated different foraging grounds during the two kinds of trips, and also between long trips performed in subtropical and Antarctic waters.  相似文献   

12.
Among species where there is a risk to leaving offspring unattended, parents usually take alternating shifts guarding their young. However, they may occasionally exhibit brood neglect by leaving their offspring unattended at the nest. To investigate this phenomenon further, we examined the foraging behavior of the northern gannet (Morus bassanus) during chick-rearing. This species has a prolonged nestling period (13 weeks) and the single chick is usually guarded by one or other of its parents, because unattended chicks are frequently attacked by conspecifics. We tested the prediction that the foraging behavior of adults when they left their offspring alone at the nest (unattended trips) would differ in character to when adults left offspring with their partner (attended trips). Brood neglect typically occurred after a longer-than-average attendance period at the nest. Unattended trips were, on average, about half the duration of attended trips, and therefore much closer to the colony. There was also a difference in departure direction between attended and unattended trips, with unattended trips tending to be northeast of the colony. Chicks were fed by parents after both attended and unattended trips, but the frequency and the duration of unattended trips increased as chicks grew older whereas the duration of attended trips decreased as chicks grew. These results indicate that parents may be making a trade-off between risk of attack to their offspring and food-intake rate, and that the solution to this trade-off is dependent on chick age.Communicated by C. Brown  相似文献   

13.
We investigated the foraging habitats of the winter breeding community of tropical seabirds from Europa Island (Mozambique Channel) in September 2003. We focused our study on the dominant species of this austral community, the sooty tern (Sterna fuscata), the red-footed booby (Sula sula), and the frigatebirds, including the great (Fregata minor) and the lesser frigatebirds (F. ariel). We considered the at-sea distribution and abundance of these species in relation to chlorophyll concentration, sea-surface temperatures, sea-surface height anomalies, depth of the thermocline, distance to the colony, and presence of surface marine predators, flying fishes and other seabirds. Although the marine environment where seabirds foraged was oligotrophic, it presents the best feeding opportunities for seabirds for the area in winter. Our study demonstrates that the winter-breeding seabird species of Europa Island tend to forage in productive waters in association with other marine predators when possible. Sooty terns and frigatebirds were widely distributed in the whole study area, whereas red-footed boobies were not found farther than 160 km from their colonies and were associated with relatively productive waters. Sooty terns and red-footed boobies were aggregated where flying fishes were abundant. The presence of other marine predators was associated with larger multispecies feeding flocks than when no association occurred. Sooty terns, which are numerically dominant at Europa and adopted network foraging, seem to be catalysts of feeding events, and represented a good target for the other foraging species, especially frigatebirds. However, when possible, frigatebirds favour association with flocks of red-footed boobies.Communicated by S.A. Poulet, Roscoff  相似文献   

14.
Annual cycles in day length are an important consideration in any analysis of seasonal behaviour patterns, since they determine the period within which obligate diurnal or nocturnal animals must conduct all of their essential activities. As a consequence, seasonal variation in day length may represent an ecological constraint on behaviour, since short winter days restrict the length of the time available for foraging in diurnal species (with long summer days, and thus short nights, a potential constraint for nocturnal species). This paper examines monthly variation in activity patterns over a 4-year study of chacma baboons (Papio cynocephalus ursinus) at De Hoop Nature Reserve, South Africa. Time spent feeding, moving, grooming and resting are all significant positive functions of day length, even before chance events such as disease epidemics and climatically mediated home range shifts have been accounted for. These results provide strong support for the idea that day length acts as an ecological constraint by limiting the number of daylight hours and thus restricting the active period at certain times of year. Day length variation also has important implications across populations. Interpopulation variation in resting time, and non-foraging activity in general, is a positive function of latitude, with long summer days at temperate latitudes apparently producing an excess of time that cannot profitably be devoted to additional foraging or social activity. However, it is the short winter days that are probably of greatest importance, since diurnal animals must still fulfil their foraging requirements despite the restricted number of daylight hours and elevated thermoregulatory requirements at this time of year. Ultimately this serves to restrict the maximum ecologically tolerable group sizes of baboon populations with increasing distance from the equator. Seasonal variation in day length is thus an important ecological constraint on animal behaviour that has important implications both within and between populations, and future studies at non-equatorial latitudes must clearly be mindful of its importance.  相似文献   

15.
Studies of the otariids (fur seals and sea lions), a highly sexually dimorphic group, have provided conflicting evidence of differential maternal expenditure in male and female offspring and, thus, suggestions that they conform to predictions of investment theory are equivocal. Since the mid-1970s, a diversity of research on Antarctic fur seals (Arctocephalus gazella) including studies of their reproductive ecology, lactation energetics, and foraging behaviour have been conducted at Bird Island, South Georgia that have resulted in one of the more complete and diverse data sets for any species of otariid. These long-term data were reviewed to determine whether there was any evidence to support that differential maternal expenditure occurred in Antarctic fur seals. Most of the data examined were collected during five consecutive austral summers from 1988 through 1992 and included years in which local food resources were abundant and scarce. We were unable to detect differences in the sex ratios of pups at birth or sex-biased differences in growth rates estimated from serial data, the number of foraging trips made, the duration of attendance ashore, diving behaviour, suckling behaviour, or milk consumption in any year and in the duration of foraging trips or age at weaning in 2 of 3 years. In addition, we found no evidence of greater reproductive costs between mothers with sons or daughters relative to their reproductive performance the following year. In contrast, sex-biased differences were only found in the duration of foraging trips in 1990, the age at weaning in 1988, and consistently in growth rates estimated from cross-sectional data. We suggest that differential maternal expenditure does not occur in Antarctic fur seals because male pups probably do not gain greater benefit from additional maternal expenditure than female pups. After weaning, males experience a period of rapid juvenile growth over 3–4 years during which time body mass nearly trebles. This growth will almost certainly be dependent upon available food resources then rather than on any maternal expenditure received over the first 4 months of life and, thus, the assumptions of the Trivers and Willard hypothesis are probably invalid for Antarctic fur seals. Received: 10 July 1996 / Accepted after revision: 3 March 1997  相似文献   

16.
The duration of periods spent ashore versus foraging at sea, diving behaviour, and diet of lactating female Antarctic (Arctocephalus gazella, AFS) and subantarctic (A. tropicalis, SFS) fur seals were compared at Iles Crozet, where both species coexist. The large disparity in lactation duration (SFS: 10 months, AFS: 4 months), even under local sympatry, has led to the expectation that AFS should exhibit higher foraging effort or efficiency per unit time than SFS to allow them to wean their pups in a shorter period of time. Previous evidence, however, has not supported these expectations. In this study, the distribution of foraging trip durations revealed two types of trips: overnight (OFT, <1 day) and long (LFT, >1 day), in common with other results from Macquarie Island. However, diving behaviour differed significantly between foraging trip types, with greater diving effort in OFTs than in LFTs, and diving behaviour differed between fur seal species. OFTs were more frequent in SFS (48%) than in AFS (28%). SFS performed longer LFTs and maternal attendances than AFS, but spent a smaller proportion of their foraging cycle at sea (66.2 vs. 77.5%, respectively). SFS dove deeper and for longer periods than AFS, in both OFTs and LFTs, although indices of diving effort were similar between species. Diel variation in diving behaviour was lower among SFS, which foraged at greater depths during most of the night time available than AFS. The diving behaviour of AFS suggests they followed the nychthemeral migration of their prey more closely. Concomitant with the differences in diving behaviour, AFS and SFS fed on the same prey species, but in different proportions of three myctophid fish (Gymnoscopelus fraseri, G. piabilis, and G. nicholsi) that represented most of their diet. The estimated size of the most important fish consumed did not vary significantly between fur seal species, suggesting that the difference in dive depth was mostly a result of changes in the relative abundance of these myctophids. The energy content of these fish at Iles Crozet may thus influence the amount and quality of milk delivered to pups of each fur seal species. These results contrast with those found at other sites where both species coexist, and revealed a scale of variation in foraging behaviour which did not affect their effort while at sea, but that may be a major determinant of foraging efficiency and, consequently, maternal investment.  相似文献   

17.
Within pinnipeds, phocids and otariids show differing maternal care strategies. Phocids rear young out of body stores in a yearly cycle with a single stay ashore when the mother fasts while lactating, whereas otariids provision their young by repeated foraging trips to sea alternating with brief stays ashore where they suckle their young. In a previous optimality model, these differences have been interpreted as adaptations based on differing energy requirements of large (phocid) and smaller (otariid) species, and the time budget of the large elephant and the much smaller Antarctic fur seal were correctly predicted. Our refined model—extended to pinniped species of all sizes—predicts lactation strategies to shift from attendance cycles to 1-year cycles with increasing body mass and provides an explanation for the finding that phocid pups are weaned at lower relative mass than otariid pups. However, other predictions do not correspond to empirical findings. In particular, the model does not explain the behavior of large otariids and small phocids. Thus, maternal metabolic requirements alone appear insufficient to explain observed lactation patterns. In the light of our results, we discuss more generally the scope and limitations of optimality models when applied in a comparative framework to a group of related species.  相似文献   

18.
We used radio telemetry and observations to study the activity patterns and behavior of gentoo penguin chicks at Admiralty Bay, King George Island, South Shetland Islands in 2005 during their “fledging period”; defined as the time between a chick’s first trip to sea and its final dispersal from the breeding colony. Gentoo penguins exhibited delayed dispersal of young and extended parental provisioning, behaviors not observed in other Pygoscelis species. Chicks took their first trip to sea at a mean age of 70 days of age, before finally departing the colony at a mean age of 82 days. During this fledging period, individual chicks made an average of five trips to sea. Trip duration increased significantly as chicks aged, with trips to sea becoming similar to literature values of adult foraging trips in both timing and duration. Behavioral observations and mass dynamics confirmed that many chicks were still being fed during this fledging period, with parental feeding behaviors most often observed in the late afternoon to evening hours. We hypothesize that these behaviors provide an opportunity for chicks to gain experience at sea prior to dispersal and might allow them to develop foraging skills before they are completely independent.  相似文献   

19.
As predicted by life history theory, once recruited into the breeding population and with increasing age, long-lived animals should be able to manage more efficiently the conflict between self-maintenance and reproduction. Consequently, breeding performances should improve with age before stabilizing at a certain level. Using temperature–depth recorders and isotopic analysis, we tested how age affects the foraging behaviour of king penguin Aptenodytes patagonicus during one trip in the chick-rearing phase. Depending on sex and age, king penguins expressed two different foraging strategies. Older birds gained more daily mass per unit body mass than younger ones. Older females conducted shorter trips, dived deeper and performed more prey pursuits. They also had higher blood levels of δ15N than younger individuals and males indicating sex- and age-specific dietary regimes. However, we found no differences in carbon isotopic signature, suggesting that individuals exploited the same foraging areas independently of sex and age. Our results suggest that king penguins are able to increase the quantity of energy extracted with increasing age and that such a strategy is sex-related. Our study is the first to reveal of an interaction between age and sex in determining foraging efficiency in king penguins.  相似文献   

20.
Individually distinctive vocalizations are ubiquitous; however, group distinctive calls have rarely been demonstrated. Under some conditions, selection should favor calls indicating social group membership in animals that forage in groups. Greater spear-nosed bats (Phyllostomus hastatus) give calls that appear to facilitate recognition of social group mates who are unrelated. Females give loud broadband (4–18 kHz) vocalizations termed screech calls when departing on foraging trips and at foraging sites. Screech calls help to establish foraging groups among social group members, and to maintain contact over the long distances they travel while foraging. I test two hypotheses about how screech calls may be structured to convey caller identity. Individual calls may be distinct and group members may learn to recognize each individual's calls and to associate the individual with the social group. Alternatively, groups may give distinct calls and individuals within groups may share call characteristics. To test these hypotheses I conducted multivariate acoustic analysis of multiple calls from 28 bats from three social groups. Although the ubiquity of individually distinctive calls in other taxa makes this result more likely, the results reveal that group calls are highly distinctive. Individual bats within groups are statistically indistinguishable. Calls appear to decrease slightly in frequency as bats age. Call convergence among unrelated group mates implies vocal learning in this species. Received: 28 March 1996 / Accepted after revision: 6 October 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号