首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a statistical method for detecting distinct scales of pattern for mosaics of irregular patches, by means of perimeter–area relationships. Krummel et al. (1987) were the first to develop a method for detecting different scaling domains in a landscape of irregular patches, but this method requires investigator judgment and is not completely satisfying. Grossi et al. (2001) suggested a modification of Krummel's method in order to detect objectively the change points between different scaling domains. Their procedure is based on the selection of the best piecewise linear regression model using a set of statistical tests. Even though the change points were estimated, the null distributions used for testing purposes were those appropriate for known change points. The present paper investigates the effect that estimating the change points has on the underlying distribution theory. The procedure we suggest is based on the selection of the best piecewise linear regression model using a likelihood ratio (LR) test. Each segment of the piecewise linear model corresponds to a fractal domain. Breakpoints between different segments are unknown, so the piecewise linear models are non-linear. In this case, the frequency distribution of the LR statistic cannot be approximated by a chi-squared distribution. Instead, Monte Carlo simulation is used to obtain an empirical null distribution of the LR statistic. The suggested method is applied to three patch types (CORINE biotopes) located in the Val Baganza watershed of Italy.  相似文献   

2.
We assessed the occurrence of a common river bird, the Plumbeous Redstart Rhyacornis fuliginosus, along 180 independent streams in the Indian and Nepali Himalaya. We then compared the performance of multiple discrimant analysis (MDA), logistic regression (LR) and artificial neural networks (ANN) in predicting this species’ presence or absence from 32 variables describing stream altitude, slope, habitat structure, chemistry and invertebrate abundance. Using the entire data (=training set) and a threshold for accepting presence in ANN and LR set to P≥0.5, ANN correctly classified marginally more cases (88%) than either LR (83%) or MDA (84%). Model performance was assessed from two methods of data partitioning. In a ‘leave-one-out’ approach, LR correctly predicted more cases (82%) than MDA (73%) or ANN (69%). However, in a holdout procedure, all the methods performed similarly (73–75%). All methods predicted true absence (i.e. specificity in holdout: 81–85%) better than true presence (i.e. sensitivity: 57–60%). These effects reflect species’ prevalence (=frequency of occurrence), but are seldom considered in distribution modelling. Despite occurring at only 36% of the sites, Plumbeous Redstarts are one of the most common Himalayan river birds, and problems will be greater with less common species. Both LR and ANN require an arbitrary threshold probability (often P=0.5) at which to accept species presence from model prediction. Simulations involving varied prevalence revealed that LR was particularly sensitive to threshold effects. ROC plots (received operating characteristic) were therefore used to compare model performance on test data at a range of thresholds; LR always outperformed ANN. This case study supports the need to test species’ distribution models with independent data, and to use a range of criteria in assessing model performance. ANN do not yet have major advantages over conventional multivariate methods for assessing bird distributions. LR and MDA were both more efficient in the use of computer time than ANN, and also more straightforward in providing testable hypotheses about environmental effects on occurrence. However, LR was apparently subject to chance significant effects from explanatory variables, emphasising the well-known risks of models based purely on correlative data.  相似文献   

3.
Ecological theory and current evidence support the validity of various species response curves according to a variety of environmental gradients. Various methods have been developed for building species distribution models but it is not well known how these methods perform under various assumptions about the form of the underlying species response. It is also not well known how spatial correlation in species occurrence affects model performance. These effects were investigated by applying an environmental envelope method (BIOCLIM) and three regression-based methods: logistic regression (LR), generalized additive modelling (GAM), and classification and regression tree (CART) to simulated species occurrence data. Each simulated species was constructed as a sum of responses with varying weights. Three basic species response curves were assumed: Gaussian (bell-shaped), Beta (skew) and linear. The two non-linear responses conform to standard ecological niche theory. All three responses were applied in turn to three simulated environmental variables, each with varying degrees of spatial autocorrelation. GAM produced the most consistent model performance over all forms of simulated species response. BIOCLIM and CART were inclined to underrate the performance of variables with a linear response. BIOCLIM was less sensitive to data density. LR was susceptible to model misspecification. The use of a linear function in LR underestimated the performance of variables with non-linear species response and contributed to increased spatial autocorrelation in model residuals. Omission of important environmental variables with non-linear species response also contributed to increased spatial autocorrelation in model residuals. Adding a spatial autocovariate term to the LR model (autologistic model) reduced the spatial autocorrelation and improved model performance, but did not correct the misidentification of the dominant environmental determinant. This is to be expected since the autologistic approach was designed primarily for prediction and not for inference. Given that various forms of species response to environmental determinants arise commonly in nature: (1) higher order functions should always be tested when applying LR in modelling species distribution; (2) spatial autocorrelation in species distribution model residuals can indicate that environmental determinants with non-linear response are missing from the model; and (3) deficiencies in LR model performance due to model misspecification can be addressed by adding a spatial autocovariate to the model, but care should be taken when interpreting the coefficients of the model parameters.  相似文献   

4.
To make a macrofaunal (crustacean) habitat potential map, the spatial distribution of ecological variables in the Hwangdo tidal flat, Korea, was explored. Spatial variables were mapped using remote sensing and a geographic information system (GIS) combined with field observations. A frequency ratio (FR) and logistic regression (LR) model were employed to map the macrofauna potential area for the Ilyoplax dentimerosa, a crustacean species. Spatial variables affecting the tidal macrofauna distribution were selected based on abundance and biomass and used within a spatial database derived from remotely sensed data of various types of sensors. The spatial variables included the intertidal digital elevation model (DEM), slope, distance from a tidal channel, tidal channel density, surface sediment facies, spectral reflectance of the near infrared (NIR) bands and the tidal exposure duration. The relation between the I. dentimerosa and each spatial variable was calculated using the FR and LR. The species was randomly divided into a training set (70%) to analyse habitat potential using FR and LR and a test set (30%) to validate the predicted habitat potential map. The relations were overlaid to produce a habitat potential map with the species potential index (SPI) value for each pixel. The potential habitat maps were compared with the surveyed habitat locations such as validation data set. The comparison results showed that the LR model (accuracy is 85.28%) is better in prediction than the FR (accuracy is 78.96%) model. The performance of models gave satisfactory accuracies. The LR provides the quantitative influence of variables on a potential habitat of species; otherwise, the FR shows the quantitative influence of a class in each variable. The combination of a GIS-based frequency ratio and logistic regression models and remote sensing with field observations is an effective method to determine locations favorable for macrofaunal species occurrences in a tidal flat.  相似文献   

5.
The arcsine is asinine: the analysis of proportions in ecology   总被引:3,自引:0,他引:3  
Warton DI  Hui FK 《Ecology》2011,92(1):3-10
The arcsine square root transformation has long been standard procedure when analyzing proportional data in ecology, with applications in data sets containing binomial and non-binomial response variables. Here, we argue that the arcsine transform should not be used in either circumstance. For binomial data, logistic regression has greater interpretability and higher power than analyses of transformed data. However, it is important to check the data for additional unexplained variation, i.e., overdispersion, and to account for it via the inclusion of random effects in the model if found. For non-binomial data, the arcsine transform is undesirable on the grounds of interpretability, and because it can produce nonsensical predictions. The logit transformation is proposed as an alternative approach to address these issues. Examples are presented in both cases to illustrate these advantages, comparing various methods of analyzing proportions including untransformed, arcsine- and logit-transformed linear models and logistic regression (with or without random effects). Simulations demonstrate that logistic regression usually provides a gain in power over other methods.  相似文献   

6.
Species distribution models (SDMs) based on statistical relationships between occurrence data and underlying environmental conditions are increasingly used to predict spatial patterns of biological invasions and prioritize locations for early detection and control of invasion outbreaks. However, invasive species distribution models (iSDMs) face special challenges because (i) they typically violate SDM's assumption that the organism is in equilibrium with its environment, and (ii) species absence data are often unavailable or believed to be too difficult to interpret. This often leads researchers to generate pseudo-absences for model training or utilize presence-only methods, and to confuse the distinction between predictions of potential vs. actual distribution. We examined the hypothesis that true-absence data, when accompanied by dispersal constraints, improve prediction accuracy and ecological understanding of iSDMs that aim to predict the actual distribution of biological invasions. We evaluated the impact of presence-only, true-absence and pseudo-absence data on model accuracy using an extensive dataset on the distribution of the invasive forest pathogen Phytophthora ramorum in California. Two traditional presence/absence models (generalized linear model and classification trees) and two alternative presence-only models (ecological niche factor analysis and maximum entropy) were developed based on 890 field plots of pathogen occurrence and several climatic, topographic, host vegetation and dispersal variables. The effects of all three possible types of occurrence data on model performance were evaluated with receiver operating characteristic (ROC) and omission/commission error rates. Results show that prediction of actual distribution was less accurate when we ignored true-absences and dispersal constraints. Presence-only models and models without dispersal information tended to over-predict the actual range of invasions. Models based on pseudo-absence data exhibited similar accuracies as presence-only models but produced spatially less feasible predictions. We suggest that true-absence data are a critical ingredient not only for accurate calibration but also for ecologically meaningful assessment of iSDMs that focus on predictions of actual distributions.  相似文献   

7.
We consider the impact of recent molecular phylogenetic analyses on conservation issues for shiitake mushrooms. Bused on mating compatibility, shiitake has been considered a single species, Lentinula edodes sensu lato . Phylogenetic analyses of ribosomal RNA internal transcribed spacers (Hibbett et al. 1995), however, suggest that shiitake is composed of four distinct lineages. Thus, under a phylogenetic species concept, four species of shiitake should be recognized. A classification of shiitake based on a phylogenetic species concept would convey information about evolutionary relationships and distribution of genetic variation, whereas a classification based on a biological species concept would lack such information. This is a clear case in which new insights into phylogenetic relationships can be used to target areas for conservation action and formulate international agricultural policies. At the heart of our argument is the belief that the basic units of both taxonomy and conservation should be unique evolutionary lineages of organisms identified through phylogenetic studies.  相似文献   

8.
9.
《Ecological modelling》2007,200(1-2):1-19
Given the importance of knowledge of species distribution for conservation and climate change management, continuous and progressive evaluation of the statistical models predicting species distributions is necessary. Current models are evaluated in terms of ecological theory used, the data model accepted and the statistical methods applied. Focus is restricted to Generalised Linear Models (GLM) and Generalised Additive Models (GAM). Certain currently unused regression methods are reviewed for their possible application to species modelling.A review of recent papers suggests that ecological theory is rarely explicitly considered. Current theory and results support species responses to environmental variables to be unimodal and often skewed though process-based theory is often lacking. Many studies fail to test for unimodal or skewed responses and straight-line relationships are often fitted without justification.Data resolution (size of sampling unit) determines the nature of the environmental niche models that can be fitted. A synthesis of differing ecophysiological ideas and the use of biophysical processes models could improve the selection of predictor variables. A better conceptual framework is needed for selecting variables.Comparison of statistical methods is difficult. Predictive success is insufficient and a test of ecological realism is also needed. Evaluation of methods needs artificial data, as there is no knowledge about the true relationships between variables for field data. However, use of artificial data is limited by lack of comprehensive theory.Three potentially new methods are reviewed. Quantile regression (QR) has potential and a strong theoretical justification in Liebig's law of the minimum. Structural equation modelling (SEM) has an appealing conceptual framework for testing causality but has problems with curvilinear relationships. Geographically weighted regression (GWR) intended to examine spatial non-stationarity of ecological processes requires further evaluation before being used.Synthesis and applications: explicit theory needs to be incorporated into species response models used in conservation. For example, testing for unimodal skewed responses should be a routine procedure. Clear statements of the ecological theory used, the nature of the data model and sufficient details of the statistical method are needed for current models to be evaluated. New statistical methods need to be evaluated for compatibility with ecological theory before use in applied ecology. Some recent work with artificial data suggests the combination of ecological knowledge and statistical skill is more important than the precise statistical method used. The potential exists for a synthesis of current species modelling approaches based on their differing ecological insights not their methodology.  相似文献   

10.
A frequent assumption in environmental risk assessment is that the underlying distribution of an analyte concentration is lognormal. However, the distribution of a random variable whose log has a t-distribution has infinite mean. Because of the proximity of the standard normal and t-distribution, this suggests that a distribution such as the gamma or truncated normal, with smaller right tail probabilities, might make a better statistical model for mean estimation than the lognormal. In order to assess the effect of departures from lognormality on lognormal-based statistics, we simulated complete lognormal, truncated normal, and gamma data for various sample sizes and coefficients of variation. In these cases, departures from lognormality were not easily detected with the Shapiro-Wilk test. Various lognormal-based estimates and tests were compared with alternate methods based on the ordinary sample mean and standard error. The examples were also considered in the presence of random left censoring with the mean and standard error of the product limit estimate replacing the ordinary sample mean and standard error. The results suggest that in the estimation of or tests about a mean, if the assumption of lognormality is at all suspect, then lognormal-based approaches may not be as good as the alternative methods.  相似文献   

11.
Lead poisoning produces serious health problems, which are worse when a victim is younger. The US government and society have tried to prevent lead poisoning, especially since the 1970s; however, lead exposure remains prevalent. Lead poisoning analyses frequently use georeferenced blood lead level data. Like other types of data, these spatial data may contain uncertainties, such as location and attribute measurement errors, which can propagate to analysis results. For this paper, simulation experiments are employed to investigate how selected uncertainties impact regression analyses of blood lead level data in Syracuse, New York. In these simulations, location error and attribute measurement error, as well as a combination of these two errors, are embedded into the original data, and then these data are aggregated into census block group and census tract polygons. These aggregated data are analyzed with regression techniques, and comparisons are reported between the regression coefficients and their standard errors for the error added simulation results and the original results. To account for spatial autocorrelation, the eigenvector spatial filtering method and spatial autoregressive specifications are utilized with linear and generalized linear models. Our findings confirm that location error has more of an impact on the differences than does attribute measurement error, and show that the combined error leads to the greatest deviations. Location error simulation results show that smaller administrative units experience more of a location error impact, and, interestingly, coefficients and standard errors deviate more from their true values for a variable with a low level of spatial autocorrelation. These results imply that uncertainty, especially location error, has a considerable impact on the reliability of spatial analysis results for public health data, and that the level of spatial autocorrelation in a variable also has an impact on modeling results.  相似文献   

12.
Environmental monitoring of aquatic systems is needed to estimate the quality of the systems, to evaluate standards and to study stressor–response relationships. Monitoring programs often focus on the collection of biological, chemical and physical measures of the system. An important concern is the effect of chemical and physical stressors on the biological community. Evaluation of relationships may be difficult as the extent of the relationship is not known. From a management perspective, interest is on what factors affect the biological community and where these factors have an influence. The focus of this paper is on the use of regression based cluster analysis as a tool for finding relationships between a single biological response and a suite of environmental stressors. The approach to cluster analysis uses a penalized regression classification likelihood and Markov Chain Model Composition Monte Carlo. This approach allows for simultaneous development of regression models and clustering of the regression models. The method is applied to the analysis of a data set describing stressors/response relationship in Ohio.  相似文献   

13.
Spatial autocorrelation in wildlife observation data arises when extrinsic environmental processes and patterns that influence the spatial distribution of wildlife are themselves spatially structured, or when species are subject to intrinsic population processes, causing contagion or dispersion effects. Territoriality, Allee effects, dispersal limitations, and social clustering are examples of intrinsic processes. Both forms of autocorrelation can violate the assumptions of generalized linear regression models, resulting in biased estimation of model coefficients and diminished predictive performance. Such consequences may be avoided for extrinsic autocorrelation when autocorrelated environmental variables are available for use as model covariates, whereas intrinsic spatial autocorrelation requires an alternative modeling approach. The autologistic model provides an approach suited to the binary observations often obtained in wildlife surveys, but its performance has not been tested across widely varying sampling intensities or strengths of intrinsic spatial structure. Here we use simulated data to test the autologistic model under a range of sampling conditions. The autologistic model obtains better fits and substantially better predictive performance than the standard logistic regression model over the full range of sampling designs and intensities tested. We provide a simple Bayesian implementation of the autologistic model, which until now has not been achieved with standard statistical software alone. A step-by-step procedure is given for characterizing and modeling spatial autocorrelation in binary observation data, along with computer code for fitting autologistic models in WinBUGS, a freeware Bayesian analysis package. This approach avoids normal approximations to the pseudo-likelihood, in contrast to previous Bayesian applications of the autologistic model. We provide a sample application of the autologistic model, fitted to survey data for a gliding marsupial in southeastern Australia.  相似文献   

14.
Merow C  Latimer AM  Silander JA 《Ecology》2011,92(7):1523-1537
Entropy maximization (EM) is a method that can link functional traits and community composition by predicting relative abundances of each species in a community using limited trait information. We developed a complementary suite of tests to examine the strengths and limitations of EM and the community-aggregated traits (CATs; i.e., weighted averages) on which it depends that can be applied to virtually any plant community data set. We show that suites of CATs can be used to differentiate communities and that EM can address the classic problem of characterizing ecological niches by quantifying constraints (CATs) on complex trait relationships in local communities. EM outperformed null models and comparable regression models in communities with different levels of dominance, diversity, and trait similarity. EM predicted well the abundance of the dominant species that drive community-level traits; it typically identified rarer species as such, although it struggled to predict the abundances of the rarest species in some cases. Predictions were sensitive to choice of traits, were substantially improved by using informative priors based on null models, and were robust to variation in trait measurement due to intraspecific variability or measurement error. We demonstrate how similarity in species' traits confounds predictions and provide guidelines for applying EM.  相似文献   

15.
Recent advances in telemetry technology have created a wealth of tracking data available for many animal species moving over spatial scales from tens of meters to tens of thousands of kilometers. Increasingly, such data sets are being used for quantitative movement analyses aimed at extracting fundamental biological signals such as optimal searching behavior and scale-dependent foraging decisions. We show here that the location error inherent in various tracking technologies reduces the ability to detect patterns of behavior within movements. Our analyses endeavored to set out a series of initial ground rules for ecologists to help ensure that sampling noise is not misinterpreted as a real biological signal. We simulated animal movement tracks using specialized random walks known as Lévy flights at three spatial scales of investigation: 100-km, 10-km, and 1-km maximum daily step lengths. The locations generated in the simulations were then blurred using known error distributions associated with commonly applied tracking methods: the Global Positioning System (GPS), Argos polar-orbiting satellites, and light-level geolocation. Deviations from the idealized Lévy flight pattern were assessed for each track after incrementing levels of location error were applied at each spatial scale, with additional assessments of the effect of error on scale-dependent movement patterns measured using fractal mean dimension and first-passage time (FPT) analyses. The accuracy of parameter estimation (Lévy mu, fractal mean D, and variance in FPT) declined precipitously at threshold errors relative to each spatial scale. At 100-km maximum daily step lengths, error standard deviations of > or = 10 km seriously eroded the biological patterns evident in the simulated tracks, with analogous thresholds at the 10-km and 1-km scales (error SD > or = 1.3 km and 0.07 km, respectively). Temporal subsampling of the simulated tracks maintained some elements of the biological signals depending on error level and spatial scale. Failure to account for large errors relative to the scale of movement can produce substantial biases in the interpretation of movement patterns. This study provides researchers with a framework for understanding the limitations of their data and identifies how temporal subsampling can help to reduce the influence of spatial error on their conclusions.  相似文献   

16.
《Ecological modelling》2006,190(1-2):171-189
Complex spatial heterogeneity of ecological systems is difficult to capture and interpret using global models alone. For this reason, recent attention has been paid to local spatial modeling techniques. We used one local modeling approach, geographically weighted regression (GWR), to investigate the effects of local spatial heterogeneity on multivariate relationships of white-tailed deer distribution using land cover patch metrics and climate factors. The results of these analyses quantify differences in the contributions of model parameters to estimates of deer density over space. A GWR model with local kernel bandwidth was compared to a GWR model with global kernel bandwidth and an ordinary least-squares regression (OLS) model with the same parameters to evaluate their relative abilities in modeling deer distributions. The results indicated that the GWR models predicted deer density better than the traditional ordinary least-squares model and also provided useful information regarding local environmental processes affecting deer distribution. GWR model comparisons showed that the local kernel bandwidth GWR model was more realistic than the global kernel bandwidth GWR model, as the latter exaggerated local spatial variation. The parameter estimates and model statistics (e.g., model R2) of the GWR models were mapped using geographic information systems (GIS) to illustrate local spatial variation in the regression relationship and to identify causes of large-scale model misspecifications and low estimation efficiencies.  相似文献   

17.
The planning of representative systems of nature conservation reserves can be based on a wide variety of criteria. The ready availability of data on the physical attributes of the environment, and the patchiness of biological data, have made reservation planning based on environmental classifications an attractive option for decision makers. We developed an environmental classification based on ecologically relevant variables and used it to plan a forest reserve system for Tasmania. We then used biological distributional data and the same targets and procedures to choose a forest reserve system. The analyses based on the environmental classification selected the same areas as equivalent analyses based on biological distributional data to a greater degree than could be expected by chance. Many rare species and communities missed selection by environmental classificatory units (environmental domains), however, and the proportions of ranges of selected taxa varied widely. Conversely, environmental domains were missed by a reservation strategy based only on biological data. These domains might reflect some gaps in the biological data. A reservation planning approach based on both biological data and domains may produce better results than either used in isolation.  相似文献   

18.
The performance of statistical methods for modeling resource selection by animals is difficult to evaluate with field data because true selection patterns are unknown. Simulated data based on a known probability distribution, though, can be used to evaluate statistical methods. Models should estimate true selection patterns if they are to be useful in analyzing and interpreting field data. We used simulation techniques to evaluate the effectiveness of three statistical methods used in modeling resource selection. We generated 25 use locations per animal and included 10, 20, 40, or 80 animals in samples of use locations. To simulate species of different mobility, we generated use locations at four levels according to a known probability distribution across DeSoto National Wildlife Refuge (DNWR) in eastern Nebraska and western Iowa, USA. We either generated 5 random locations per use location or 10,000 random locations (total) within 4 predetermined areas around use locations to determine how the definition of availability and the number of random locations affected results. We analyzed simulated data using discrete choice, logistic-regression, and a maximum entropy method (Maxent). We used a simple linear regression of estimated and known probability distributions and area under receiver operating characteristic curves (AUC) to evaluate the performance of each method. Each statistical method was affected differently by number of animals and random locations used in analyses, level at which selection of resources occurred, and area considered available. Discrete-choice modeling resulted in precise and accurate estimates of the true probability distribution when the area in which use locations were generated was ≥ the area defined to be available. Logistic-regression models were unbiased and precise when the area in which use locations were generated and the area defined to be available were the same size; the fit of these models improved with increased numbers of random locations. Maxent resulted in unbiased and precise estimates of the known probability distribution when the area in which use locations were generated was small (home-range level) and the area defined to be available was large (study area). Based on AUC analyses, all models estimated the selection distribution better than random chance. Results from AUC analyses, however, often contradicted results of the linear regression method used to evaluate model performance. Discrete-choice modeling was best able to estimate the known selection distribution in our study area regardless of sample size or number of random locations used in the analyses, but we recommend further studies using simulated data over different landscapes and different resource metrics to confirm our results. Our study offers an approach and guidance for others interested in assessing the utility of techniques for modeling resource selection in their study area.  相似文献   

19.
Much effort has been directed toward elucidating pollution effects on marine benthic communities (Pearson and Rosenberg, 1978; Sanders et al., 1980; NAS 1985). Less effort has been directed at methods of data analysis which will identify distribution patterns and relationships between communities. Traditional community structure summary parameters such as species richness and various indices of diversity utilize only part of the information contained in a data set and are not very useful in elucidating relationships between communities of animals.  相似文献   

20.
Boback SM  Guyer C 《Ecology》2008,89(5):1428-1435
Reproductive power is a contentious concept among ecologists, and the model has been criticized on theoretical and empirical grounds. Despite these criticisms, the model has successfully predicted the modal (optimal) size in three large taxonomic groups and the shape of the body size distribution in two of these groups. We tested the reproductive power model on snakes, a group that differs markedly in physiology, foraging ecology, and body shape from the endothermic groups upon which the model was derived. Using detailed field data from the published literature, snake-specific constants associated with reproductive power were determined using allometric relationships of energy invested annually in egg production and population productivity. The resultant model accurately predicted the mode and left side of the size distribution for snakes but failed to predict the right side of that distribution. If the model correctly describes what is possible in snakes, observed size diversity is limited, especially in the largest size classes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号