共查询到19条相似文献,搜索用时 46 毫秒
1.
2.
包埋固定化微生物强化SBR工艺脱氮性能研究 总被引:3,自引:0,他引:3
将采用PVA-H2BO4法制得的包埋固定化微生物凝胶小球引入SBR工艺中,通过平行试验比较了普通SBR反应器(N1)与投加包埋固定化微生物凝胶小球的SBR反应器(N2)的脱氮性能,分析了包埋固定化微生物强化SBR工艺脱氮性能的特性。研究结果表明:在相同的运行条件下,N2反应器的NH4+-N及TIN的去除率较N1反应器分别提高了4.4%~32.8%、34.1%~50.9%,且表现出明显的抗冲击负荷能力;同时通过典型周期内不同反应器各形态氮随时间的变化研究发现,该反应器发生了很好的同步硝化反硝化作用,说明包埋固定化微生物对SBR反应器的脱氮性能有很好的强化作用。N2为提高SBR反应器得脱氮性能提供了新思路。 相似文献
3.
影响MBR脱氮效率的因素研究 总被引:17,自引:0,他引:17
采用重力出流式膜生物反应器,考察了采用2种脱氮运行方式对生活污水脱氮的效果,同时对影响脱氮效率的相关因素进行了分析.研究结果表明,C/N是影响A/O与同步硝化反硝化(SND)2种运行方式脱氮效率最关键的因素.当C/N比小于12时,A/O方式的脱氮效率高于SND;随着C/N的升高,A/O与SND脱氮效率的差距逐渐缩小.对于A/O运行方式,在低C/N条件下可以通过提高回流比与增加缺氧段的HRT来提高系统的总氮去除率.而对于SND运行方式,好氧反硝化的完成是建立在有足够有机物作碳源的基础上,此时,DO的控制就成为提高脱氮效率的关键因素. 相似文献
4.
固定化微生物用于废水生物脱氮的试验研究 总被引:2,自引:0,他引:2
本文通过试验确定了用聚乙烯酸(PVA)对微生物进行固定化的最佳条件,对低温下未包埋和包埋反硝化菌脱氛的效果进行比较,探讨了固定化细胞用于有毒废水生物脱氮的可行性。结果表明,固定化微生物在低温时的脱氮效果明显优于未固定化细胞,且固定化做生物对毒性有很强的耐受力。 相似文献
5.
SBR工艺处理晚期垃圾渗滤液的脱氮特性研究 总被引:2,自引:1,他引:2
采用有效容积为1 200 m3的SBR反应器处理晚期垃圾渗滤液,进行生物脱氮特性研究.结果表明,通过投加粪水调节进水C/N,能显著提高SBR反应器对晚期垃圾渗滤液中氮素污染物的去除效果,其中第112~136 d的TN平均去除率高达82.62%,出水TN≤190 mg.L-1,COD≤400 mg.L-1;能在反应器内达到各种生物脱氮反应的平衡状态,BOD5与TN去除量的比值稳定在1.43左右.在稳定平衡阶段,通过对反应器内氮素污染物和SO24-的含量变化进行周期跟踪监测,发现在搅拌回流阶段存在NH4+-N和SO24-的同时等比例去除现象,去除率分别为27.06%和76.17%,反应器内存在同步硝化反硝化和同步脱氮除硫(SO24-)过程;量化分析了反应器内各种生物脱氮反应,得到异养反硝化、同步硝化反硝化、同化作用、同步脱氮除硫(SO24-)和内源呼吸反硝化对TN去除量的贡献率分别为62.6%、33.8%、7.0%、26.1%和2.7%. 相似文献
6.
为考察自养脱氮污泥亚硝化活性快速恢复的策略,在3个反应器内分别采用不同的方法对经过长期冷冻保存后的污泥进行了恢复活性的研究.其中R1为MBR(膜生物反应器),采用低ρ(DO)(0.30 mg/L)连续流恢复策略;R2为SBR(序批式反应器),采用低ρ(DO)(0.30 mg/L)间歇流恢复策略;R3为SBR,采用低ρ(NH4+-N)预培养-高曝气-低ρ(DO)运行三阶段的恢复策略.结果表明,R1的恢复时间为46 d,NH4+-N氧化速率达到4.99 mg/(h·g)(以N计),最终ρ(MLSS)达到5.43 g/L;R2的恢复时间为39 d,NH4+-N氧化速率达到4.61 mg/(h·g),最终ρ(MLSS)达到4.47 g/L;R3的恢复时间为48 d,NH4+-N氧化速率达到5.64 mg/(h·g),最终ρ(MLSS)达到5.16 g/L. 3个反应器均能长期抑制亚硝酸盐氧化细菌的活性,使亚硝化稳定运行. 3个反应器中,R3恢复所需时间最长,但污泥活性最好; R1中的污泥活性较低,但是膜组件有效截留了污泥,达到了最高的ρ(MLSS).研究显示,通过厌氧预培养后转为膜生物反应器连续流运行的策略,可有助于污泥的极大保留及污泥活性的最大恢复. 相似文献
7.
为了提高垃圾渗滤液生化处理的TN去除率,采用厌氧序批式反应器(ASBR)串联序批式生物膜反应器(SBBR)处理化学需氧量(COD)为(5 700±500)mg/L、TN浓度为(210±50)mg/L的实际垃圾渗滤液。结果表明:ASBR的出水进入SBBR反应器进行深度脱氮,主要作用是调节后续SBBR进水的碳氮比(C/N),ASBR对渗滤液COD的去除率为90%。C/N是决定SBBR脱氮效率的关键,进水C/N调至4.8,在生物膜的作用下,SBBR仅通过厌氧搅拌和好氧阶段的同步硝化反硝化(SND)便可以实现对垃圾渗滤液的深度脱氮,出水TN浓度低于10 mg/L,周期运行时长也由第54天的24 h缩短至5.6 h。整个串联系统经过103 d的驯化和启动可以达到最佳的处理效果,出水COD、氨氮(NH4 +-N)、TN浓度分别为(380±10)、(1.0±0.5)、(5±5)mg/L,去除率分别达到93%、99%和95%。通过高通量测序分析可知,系统中变形菌门(Proteobacteria)和拟杆菌门(Bacteroidetes)相对丰度较高,分别为55.11%、21.32%。系统中具有反硝化作用的厚壁菌门(Firmicutes)相对丰度占比为2.81%,这可能是SBBR取得优秀脱氮效果的关键。在属水平下,系统中具有反硝化功能的菌种主要为
8.
采用PVA包埋反硝化菌,研究了其脱氮特性并与未包埋菌进行了对比。结果表明,相对于未包埋反硝化菌,包埋菌进行废水脱氮时的最适宜pH值及温度未变,为pH=8和30℃,但在外界环境超出最适范围时,表现出明显的耐受性,尤其是在低温(10℃)下。另外包埋菌在低浓度DO或高浓度NH+4存在的条件下其脱氮活性均远高于未包埋菌。 相似文献
9.
10.
11.
12.
提出了一种利用沸石强化SBR生物脱氮的新工艺。试验结果表明,沸石具有强化SBR的生物脱氮功能,水温较低时强化作用更为明显。此外,研究了碱度、进水氨氮浓度等对氨氮去除的影响。 相似文献
13.
14.
固定化硝化菌去除废水中氨氮工艺的研究 总被引:34,自引:2,他引:34
采用聚乙烯醇-硼酸包埋固定化法,选用PVA为包埋载体,粉末活性炭作为无机载体,包埋固定A/O生物脱氮系统中的再经驯化过的硝化污泥,制成固定化硝化菌颗粒。 相似文献
15.
盐度变化对SBBR和SBR中含氨氮废水的处理影响 总被引:2,自引:1,他引:1
针对含氨氮高盐废水,研究了逐步提高盐度(以Cl-离子浓度计)对内循坏SBBR和SBR中硝化和反硝化作用的影响,以及当盐度降为0后的恢复过程.结果表明,在内循坏SBBR和SBR中,随着盐度的逐步提高,亚硝化过程都会受到影响,当盐度<1.0×104mg.L-1时,SBBR中的氨氮降解速率小于SBR,从1.5×104mg.L-1开始SBBR中的氨氮降解速率大于SBR,当盐度提高为4.0×104mg.L-1时,两者的亚硝化过程都受到极大抑制;SBBR在盐度为1.5×104mg.L-1时即持续有NO2--N累积,而在SBR中,当盐度提高为2.5×104mg.L-1时,反应周期末才开始持续有大量的NO2--N累积;在SBBR中,当盐度低于1.5×104mg.L-1时,TN去除率达到60%左右,当盐度>3.0×104mg.L-1时,同步硝化反硝化过程受到较大抑制. 相似文献
16.
以聚乙烯醇、硼酸、丙三醇、海藻酸钠、戊二醛、碳酸钙为原料制备固定化微生物载体,然后将硝化细菌固定到载体上,用于对水体氨氮的处理。探讨了戊二醛的加入对载体的水溶膨胀性、含水量、化学稳定性、固定化微生物活性的影响;研究了固定化微生物对氨氮去除效果。结果表明,当戊二醛的质量分数为0.3%时,载体的含水量、化学稳定性、固定化微生物活性较好;所制备得到的固定化微生物载体可以较好地固定硝化细菌,对氨氮废水具有较好的处理能力。 相似文献
17.
SBR法短程深度脱氮过程分析与控制模式的确立 总被引:4,自引:1,他引:3
为了实现稳定的SBR法短程深度脱氮技术,考察了实际生活污水处理过程中pH值的变化规律及其影响因素.通过对生物脱氮过程机制和碳酸平衡过程的分析可知,pH值在氨氧化结束和反硝化结束时都会出现明显的变化点,对于采用SBR工艺处理有机物浓度较低、碱度适中的生活污水或城市污水的过程来说,采用pH值作为控制参数一方面可以保证出水水质达到TN<1 mg/L的深度脱氮效果;另一方面防止了过度曝气引起短程硝化率降低,对于短程深度脱氮的稳定起到了重要作用.在理论分析和试验研究的基础上建立了SBR法短程深度脱氮过程的实时控制策略,在控制策略中设置了18个可调节的变量,以适应不同的水质并保持控制策略的准确性.该控制策略的建立为开发短程深度脱氮的控制软件和控制系统奠定了基础. 相似文献
18.
缺氧/好氧SBR工艺去除亚铵法造纸废水中的氮 总被引:7,自引:2,他引:7
采用反应期缺氧/好氧SBR工艺去除亚铵法造纸废水中氮的研究结果表明:该工艺脱氮的最佳操作条件为:缺氧、好氧时间比1:1.5,运行周期为8h;SRT≥12d,NH3-N负荷率<0.063g/(g·d);当进水中CODcr浓度为1200~1800mg/L,NH3-N浓度为135~200mg/L,NOx-N浓度为7~10mg/L时,没有外加碳源时,氨氮的去除率为95%,总氮的去除率为66%,投加乙酸钠后,总氮的去除率提高到85%;投加乙酸钠的量为125mg/L(以CODCr计)最经济、有效. 相似文献
19.
固定化微生物技术在废水处理中的应用 总被引:4,自引:1,他引:4
固定化微生物技术是一种高效的废水生物处理技术,具有能保持高效菌种,稳定性强,反应易于控制,污泥产生量少,能够去除高浓度有机物及难降解物质等优点。对载体的选择及常用的固定化方法进行了介绍,分析了各种方法与载体在应用中的优缺点。重点叙述了固定化微生物技术在含难降解有机物废水、含重金属离子废水、含高浓度有机废水、含氮含磷废水中的应用现状。但要实现其工业化,仍然有诸多问题需要解决,主要包括:固定化参数的建立、载体的选择、运行成本的削减等。 相似文献